Sở giáo dục và đào tạo Hng yên đề chính thức kỳ thi tuyển sinh vào lớp 10 thpt chuyên Năm học 2009 2010 Môn thi: Toán (Dành cho thí sinh thi vào các lớp chuyên Toán, Tin) Thời gian làm bài: 150 phút Bài 1: (1,5 điểm) Cho 1 1 a 2 : 7 1 1 7 1 1 = ữ ữ + + + Hãy lập một phơng trình bậc hai có hệ số nguyên nhận a - 1 là một nghiệm. Bài 2: (2,5 điểm) a) Giải hệ phơng trình: x 16 xy y 3 y 9 xy x 2 = = b) Tìm m để phơng trình ( ) 2 2 2 x 2x 3x 6x m 0 + + = có 4 nghiệm phân biệt. Bài 3: (2,0 điểm) a) Chứng minh rằng nếu số nguyên k lớn hơn 1 thoả mãn 2 k 4+ và 2 k 16+ là các số nguyên tố thì k chia hết cho 5. b) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì p a p b p c 3p + + Bài 4: (3,0 điểm) Cho đờng tròn tâm O và dây AB không đi qua O. Gọi M là điểm chính giữa của cung AB nhỏ. D là một điểm thay đổi trên cung AB lớn (D khác A và B). DM cắt AB tại C. Chứng minh rằng: a) MB.BD MD.BC= b) MB là tiếp tuyến của đờng tròn ngoại tiếp tam giác BCD. c) Tổng bán kính các đờng tròn ngoại tiếp tam giác BCD và ACD không đổi. Bài 5: (1,0 điểm) Cho hình chữ nhật ABCD. Lấy E, F thuộc cạnh AB; G, H thuộc cạnh BC; I, J thuộc cạnh CD; K, M thuộc cạnh DA sao cho hình 8 - giác EFGHIJKM có các góc bằng nhau. Chứng minh rằng nếu độ dài các cạnh của hình 8 - giác EFGHIJKM là các số hữu tỉ thì EF = IJ. ------------ Hết ------------ Họ và tên thí sinh: . . . Chữ ký của giám thị . . . Số báo danh: . . Phòng thi số: . . Hớng dẫn chấm thi Bài 1: (1,5 điểm) 1 1 7 1 1 7 1 1 a 2 : 2 : 7 7 1 1 7 1 1 + + + + = = ữ ữ + + + 0,5 đ a = 2 2 : 7 7 = 0,25 đ Đặt 2 x a 1 x 7 1 x 1 7 x 2x 1 7= = + = + + = 0,5 đ 2 x 2x 6 0 + = Vậy phơng trình 2 x 2x 6 0+ = nhận 7 1 làm nghiệm 0,25 đ Bài 2: (2,5 điểm) a) x 16 x 16 xy (1) xy y 3 y 3 y x 5 y 9 (2) xy x y 6 x 2 = = = = ĐK: x,y 0 0,25 đ Giải (2) 2 2 6y 6x 5xy (2x 3y)(3x 2y) 0 = + = 0,25 đ * Nếu 3y 2x 3y 0 x 2 + = = . Thay vào (1) ta đợc 3y 3 16 y. 2 2 3 + = 0,25 đ 2 3y 23 2 6 = (phơng trình vô nghiệm) 0,25 đ * Nếu 2y 3x 2y 0 x 3 = = . Thay vào (1) ta đợc 2 y 9 y 3= = 0,25 đ - Với y 3 x 2= = (thoả mãn điều kiện) - Với y 3 x 2= = (thoả mãn điều kiện) Vậy hệ phơng trình có hai nghiệm: (x; y) = (2; 3); (x; y) = (-2; -3) 0,25 đ b) Đặt ( ) 2 2 x 2x 1 y x 1 y x 1 y (y 0) + = = = (*) Phơng trình đã cho trở thành: ( ) ( ) 2 y 1 3 y 1 m 0 + = 2 y 5y m 4 0 + + = (1) 0,25 đ Từ (*) ta thấy, để phơng trình đã cho có 4 nghiệm phân biệt thì phơng trình (1) có 2 nghiệm dơng phân biệt 0,25 đ 0 9 4m 0 S 0 5 0 P 0 m 4 0 > > > > > + > 0,25 đ 9 m 9 4 m 4 4 m 4 < < < > Vậy với 9 4 m 4 < < thì phơng trình có 4 nghiệm phân biệt. 0,25 đ Bài 3: (2,0 điểm) a) Vì k > 1 suy ra 2 2 k 4 5; k 16 5+ > + > - Xét 2 2 2 k 5n 1 (với n ) k 25n 10n 1 k 4 5= + = + + + M 2 k 4 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 2 (với n ) k 25n 20n 4 k 16 5= + = + + + M 2 k 16 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 3 (với n ) k 25n 30n 9 k 16 5= + = + + + M 2 k 16 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 4 (với n ) k 25n 40n 16 k 4 5= + = + + + M 2 k 4 + không là số nguyên tố. Do vậy k 5M 0,25 đ b) Ta chứng minh: Với a,b,c thì ( ) ( ) 2 2 2 2 a b c 3 a b c+ + + + (*) Thật vậy 2 2 2 2 2 2 (*) a b c 2ab 2bc 2ca 3a 3b 3c + + + + + + + 2 2 2 (a b) (b c) (c a) 0 + + (luôn đúng) 0,5 đ áp dụng (*) ta có: ( ) ( ) 2 p a p b p c 3 3p a b c 3p + + = Suy ra p a p b p c 3p + + (đpcm) 0,5 đ Bài 4: (3,0 điểm) J I C N M O A B D a) Xét MBC và MDB có: ã ã BDM MBC (haigóc nội tiếp chắn hai cung bằng nhau)= ã ã BMC BMD= 0,5 đ Do vậy MBC và MDB đồng dạng Suy ra MB MD MB.BD MD.BC BC BD = = 0,5 đ b) Gọi (J) là đờng tròn ngoại tiếp BDC ã ã ã BJC 2BDC 2MBC = = hay ã ã BJC MBC 2 = ã ã 0 180 BJC BCJ cân tại J CBJ 2 = 0,5 đ Suy ra ã ã ã ã O O BJC 180 BJC MBC CBJ 90 MB BJ 2 2 + = + = Suy ra MB là tiếp tuyến của đờng tròn (J), suy ra J thuộc NB 0,5 đ c) Kẻ đờng kính MN của (O) NB MB Mà MB là tiếp tuyến của đờng tròn (J), suy ra J thuộc NB Gọi (I) là đờng tròn ngoại tiếp ADC Chứng minh tơng tự I thuộc AN Ta có ã ã ã ã ANB ADB 2BDM BJC= = = CJ // IN Chứng minh tơng tự: CI // JN 0,5 đ Do đó tứ giác CINJ là hình bình hành CI = NJ Suy ra tổng bán kính của hai đờng tròn (I) và (J) là: IC + JB = BN (không đổi) 0,5 đ Bài 5: (1,0 điểm) g f e d h c b a G F I H J M C A B D E K Gọi EF = a ; FG = b ; GH = c ; HI = d ; IJ = e ; JK = f ; KM = g ; ME = h (với a, b, c, d, e, f, g, h là các số hữu tỉ dơng) Do các góc của hình 8 cạnh bằng nhau nên mỗi góc trong của hình 8 cạnh có số đo là: O O 8 2 180 135 8 ( ). = 0,25 đ Suy ra mỗi góc ngoài của hình 8 cạnh đó là: 180 O - 135 O = 45 O Do đó các tam giác MAE ; FBG ; CIH ; DKJ là các tam giác vuông cân. MA = AE = h 2 ; BF = BG = b 2 ; CH = CI = d 2 ; DK = DJ = f 2 Ta có AB = CD nên: h b f d a e 2 2 2 2 + + = + + (e - a) 2 = h + b - f - d 0,5 đ Nếu e - a 0 thì h b f d 2 e a + = Ô (điều này vô lý do 2 là số vô tỉ) Vậy e - a = 0 e = a hay EF = IJ (đpcm). 0,25 đ ------------ Hết ------------ Sở giáo dục và đào tạo HảI dơng Kỳ thi tuyển sinh lớp 10 THPT chuyên nguyễn trãi - Năm học 2009-2010 Môn thi : toán Thời gian làm bài: 150 phút Ngày thi 08 tháng 7 năm 2009 (Đề thi gồm: 01 trang) Câu I (2.5 điểm): 1) Giải hệ phơng trình: + + = + = 2 2 2 x y xy 3 xy 3x 4 2) Tìm m nguyên để phơng trình sau có ít nhất một nghiệm nguyên: + + + = 2 2 4x 4mx 2m 5m 6 0 Câu II (2.5 điểm): 1) Rút gọn biểu thức: ( ) ( ) + + = + 3 3 2 2 2 4 x 2 x 2 x A 4 4 x với 2 x 2 2) Cho trớc số hữu tỉ m sao cho 3 m là số vô tỉ. Tìm các số hữu tỉ a, b, c để: 3 2 3 a m b m c 0+ + = Câu III (2.0 điểm): 1) Cho đa thức bậc ba f(x) với hệ số của x 3 là một số nguyên dơng và biết =f(5) f(3) 2010 . Chứng minh rằng: f(7) f(1) là hợp số. 2) Tìm giá trị lớn nhất của biểu thức: = + + + 2 2 P x 4x 5 x 6x 13 Câu IV (2.0 điểm): Cho tam giác MNP có ba góc nhọn và các điểm A, B, C lần lợt là hình chiếu vuông góc của M, N, P trên NP, MP, MN. Trên các đoạn thẳng AC, AB lần lợt lấy D, E sao cho DE song song với NP. Trên tia AB lấy điểm K sao cho ã ã =DMK NMP . Chứng minh rằng: 1) MD = ME 2) Tứ giác MDEK nội tiếp. Từ đó suy ra điểm M là tâm của đờng tròn bàng tiếp góc DAK của tam giác DAK. Câu V (1.0 điểm): Trên đờng tròn (O) lấy hai điểm cố định A và C phân biệt. Tìm vị trí của các điểm B và D thuộc đờng tròn đó để chu vi tứ giác ABCD có giá trị lớn nhất. -----------------------Hết----------------------- Họ và tên thí sinh : Số báo danh : . Chữ kí của giám thị 1 : .Chữ kí của giám thị 2: Đề thi chính thức H ớng dẫn chấm Câu Phần nội dung Điểm câu I 2,5 điểm 1) 1,5điểm + + = + = 2 2 2 x y xy 3 (1) xy 3x 4 (2) Từ (2) x 0. Từ đó 2 4 3x y x = , thay vào (1) ta có: 0.25 2 2 2 2 4 3x 4 3x x x. 3 x x + + = ữ 0.25 4 2 7x 23x 16 0 + = 0.25 Giải ra ta đợc 2 2 16 x 1 hoặc x = 7 = 0.25 Từ 2 x 1 x 1 y 1= = = ; 2 16 4 7 5 7 x x y 7 7 7 = = = m 0.25 Vậy hệ có nghiệm (x; y) là (1; 1); (-1; -1); ữ ữ 4 7 5 7 ; 7 7 ; ữ ữ 4 7 5 7 ; 7 7 0.25 2) 1,0điểm Điều kiện để phơng trình có nghiệm: x ' 0 0.25 m 5m 6 0 (m 2)(m 3) 0 2 + . Vì (m - 2) > (m - 3) nên: x ' 0 m 2 0 và m 3 0 2 m 3, mà m Z m = 2 hoặc m = 3. 0.25 Khi m = 2 x ' = 0 x = -1 (thỏa mãn) Khi m = 3 x ' = 0 x = - 1,5 (loại). 0.25 Vậy m = 2. 0.25 câu II 2,5 điểm 1) 1,5điểm Đặt a 2 x; b 2 x (a, b 0) = + = 2 2 2 2 a b 4; a b 2x + = = 0.25 ( ) ( ) ( ) 3 3 2 2 2 ab a b 2 ab a b a b ab A 4 ab 4 ab + + + + = = + + 0.25 ( ) ( ) ( ) 2 ab a b 4 ab A 2 ab a b 4 ab + + = = + + 0.25 ( ) A 2 4 2ab a b = + 0.25 ( ) ( ) ( ) ( ) 2 2 A 2 a b 2ab a b a b a b = + + = + 0.25 2 2 A 2 a b 2x A x 2 = = = 0.25 2) 1,0điểm 3 2 3 a m b m c 0+ + = (1) Giả sử có (1) 3 2 3 b m c m am 0 (2) + + = Từ (1), (2) 2 2 3 (b ac) m (a m bc) = 0.25 Nếu 2 a m bc 0 2 3 2 a m bc m b ac = là số hữu tỉ. Trái với giả thiết! 2 3 2 2 b ac 0 b abc a m bc 0 bc am = = = = 0.25 3 3 3 b a m b a m = = . Nếu b 0 thì 3 b m a = là số hữu tỉ. Trái với giả thiết! a 0;b 0 = = . Từ đó ta tìm đợc c = 0. 0.25 Ngợc lại nếu a = b = c = 0 thì (1) luôn đúng. Vậy: a = b = c = 0 0.25 câu III 2 điểm 1) 1,0điểm Theo bài ra f(x) có dạng: f(x) = ax 3 + bx 2 + cx + d với a nguyên dơng. 0.25 Ta có: 2010 = f(5) - f(3) = (5 3 - 3 3 )a + (5 2 - 3 2 )b + (5 - 3)c = 98a + 16b + 2c 16b + 2c = (2010- 98a) 0.25 Ta có f(7) - f(1) = (7 3 - 1 3 )a + (7 2 - 1 2 )b + (7 - 1)c = 342a + 48b + 6c = 342a + 3(16b + 2c) = 342a + 3(2010- 98a)= 48a + 6030 = 3.(16a + 2010) 3M 0.25 Vì a nguyên dơng nên 16a + 2010>1 . Vậy f(7)-f(1) là hợp số 0.25 2) 1,0điểm ( ) ( ) = + + + 2 2 2 2 P x 2 1 x 3 2 Trên mặt phẳng tọa độ Oxy lấy các điểm A(x-2; 1), B(x+3; 2) 0.25 Ta chứng minh đợc: ( ) ( ) = + = + = 2 2 AB x 2 x 3 1 2 25 1 26 ( ) = + 2 2 OA x 2 1 , ( ) = + + 2 2 OB x 3 2 0.25 Mặt khác ta có: OA OB AB ( ) ( ) + + + 2 2 2 2 x 2 1 x 3 2 26 0.25 Dấu = xảy ra khi A thuộc đoạn OB hoặc B thuộc đoạn OA = = + x 2 1 x 7 x 3 2 .Thử lại x = 7 thì A(5; 1); B(10; 2) nên A thuộc đoạn OB. Vậy Max =P 26 khi x = 7. 0.25 câuIV 2 điểm 1) 0,75điểm Ta dễ dàng chứng minh tứ giác MBAN nội tiếp ã ã =MAB MNB , MCAP nội tiếp ã ã =CAM CPM . 0.25 Lại có ã ã =BNM CPM (cùng phụ góc NMP) ã ã =CAM BAM (1) 0.25 Do DE // NP mặt khác MA NP MA DE (2) Từ (1), (2) ADE cân tại A MA là trung trực của DE MD = ME 0.25 2) 1,25điểm 0.25 K E B C A N M P D K E B C A N M P D Do DE//NP nên ã ã =DEK NAB , mặt khác tứ giác MNAB nội tiếp nên: ã ã + = 0 NMB NAB 180 ã ã + = 0 NMB DEK 180 Theo giả thiết ã ã =DMK NMP ã ã + = 0 DMK DEK 180 Tứ giác MDEK nội tiếp 0.25 Do MA là trung trực của DE MEA MDA = 0.25 ã ã ã ã = = MEA MDA MEK MDC . 0.25 Vì ã ã ã ã = = MEK MDK MDK MDC DM là phân giác của góc CDK, kết hợp với AM là phân giác DAB M là tâm của đờng tròn bàng tiếp góc DAK của tam giác DAK. 0.25 câu V 1 điểm D' B' A' O C A B D Không mất tổng quát giả sử:AB AC. Gọi B là điểm chính giữa cung ẳ ABC =AB' CB' Trên tia đối của BC lấy điểm A sao cho BA = BA + =AB BC CA' 0.25 Ta có: ã ã ã = =B'BC B'AC B'CA (1) ; ã ã + = 0 B'CA B'BA 180 (2) ã ã + = 0 B'BC B'BA' 180 (3);Từ (1), (2), (3) ã ã =B'BA B'BA' 0.25 Hai tam giác ABB và ABB bằng nhau = A'B' B'A Ta có + = + B'A B'C B'A' B'C A'C = AB + BC ( BA + BC không đổi vì B, A, C cố định). Dấu = xảy ra khi B trùng với B. 0.25 Hoàn toàn tơng tự nếu gọi D là điểm chính giữa cung ẳ ADC thì ta cũng có AD + CD AD + CD. Dấu = xảy ra khi D trùng với D. Chu vi tứ giác ABCD lớn nhất khi B, D là các điểm chính giữa các 0.25 cung » AC cña ®êng trßn (O) Chó ý: NÕu thÝ sinh lµm theo c¸ch kh¸c, lêi gi¶i ®óng vÉn cho ®iÓm tèi ®a. SỞ GIÁO DỤC BÌNH ĐỊNH KỲ THI TUỶÊN SINH VÀO LỚP 10 BÌNH ĐỊNH TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN NĂM HỌC 2009-2010 Đề chính thức Môn thi:Toán (chuyên) Ngày thi:19/06/2009 Thời gian:150 phút Bài 1(1.5điểm) Cho a,b,c là độ dài ba cạnh của một tam giác.Chứng minh rằng: 1 2 a b c b c c a a b < + + < + + + Bài 2(2điểm) Cho 3 số phân biệt m,n,p.Chứng minh rằng phương trình 1 1 1 0 x m x n x p + + = - - - có hai nghiệm phân biệt. Bài 3(2điểm) Với số tự nhiên n, 3n ³ .Đặt ( ) ( ) ( ) ( ) 1 1 1 . 3 1 2 5 2 3 2 1 1 n S n n n = + + + + + + + + Chúng minhS n < 1 2 Bài 4(3điểm) Cho tam giác ABC nội tiếp tròn tâm O có độ dài các cạnh BC = a, AC = b, AB = c.E là điểm nằm trên cung BC không chứa điểm A sao cho cung EB bằng cung EC.AE cắt cạnh BC tại D. a.Chúng minh:AD 2 = AB.AC – DB.DC b.Tính độ dài AD theo a,b,c Bài 5(1.5điểm) Chứng minh rằng : ( ) 2 1 2 3 2 m n n - ³ + Với mọi số nguyên m,n. ********************************************** [...]... ABC nªn · ABM = MBC ⇒ ¼ = MN AM ¼ · · ⇒ MAE = MAN (1) V× M, N thc ®êng trßn ®êng kÝnh AB nªn · AMB = · ANB = 900 ⇒ · ANK = · AME = 900 , kÕt hỵp víi (1) ta cã tam gi¸c AME ®ång d¹ng víi tam gi¸c ANK AN AK ⇒ = AM AE ⇒ AN. AE = AM.AK (®pcm) V× tø gi¸c AMIN néi tiÕp nªn · ANM = · AIM V× tø gi¸c BMNC néi tiÕp nªn · ANM = · ABC ⇒· AIM = · ABC Suy ra tø gi¸c BOIM néi tiÕp Tõ chøng minh trªn suy ra tam gi¸c... là gaio điểm 3 đường trực của ∆BCE hoặc ∆BDE 2 1 A K x 2 2 1 / O b/ Từ (1) thay AE = AB ta có 2 C x AB 2 AC AD AC BC AB = = BD ÷ ÷ AD 2 = AD 2 = AD AD 1 E / = 12 j B 2 D 1 O' Së GD&§T NghƯ An K× thi TUN sinh VµO líp 10 trêng thpt chuyªn phan béi ch©u n¨m häc 2009 - 2010 §Ị thi chÝnh thøc Mơn thi: TỐN Thời gian: 150 phút, khơng kể thời gian giao đề Bài 1: (3.5 điểm) a) Giải phương... + c 2 + ab + bc + ca ≥ a + b + c 2 ≥ 1 ( ) 1 2009 + ≥ 670 dấu “=” sảy ra a = b = c = 1 2 2 a +b +c ab + bc + ca 1 · · · BOP = BAO + ABO = µ + B A µ 2 µ Bài 4 : a) ta có PNC = 1800 − C = 1 µ + B · A µ 2 2 · · ⇒ BOP = PNC vậy 2 ( ( ) ) => tứ giác BOPN nội tiếp +) tương tự tứ giác AOQM nội tiếp · · +) do tứ giác AOQM nội tiếp=> AQO = AMO = 900 · · tứ giác BOPN nội tiếp => BPO = BNO = 900 · · => AQB... sinh gi¶i c¸ch kh¸c ®óng cđa mçi c©u th× vÉn cho tèi ®a ®iĨm cđa c©u ®ã SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HỐ Đề chính thức KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUN LAM SƠN NĂM HỌC: 2009- 2010 MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tốn) Thời gian: 150 phút (khơng kể thời gian giao đề) Ngày thi: 19 tháng 6 năm 2009 Câu 1: (2,0 điểm) 1 Cho số x ( x ∈ R ; x > 0 ) thoả mãn điều kiện : x 2 + thức : A = x 3 +... sinh ………………………………… ……… SBD…………… * Thí sinh khơng được sử dụng tài liệu * Giám thị khơng giải thích gì thêm Së GD&§T NghƯ An K× thi TUN sinh VµO líp 10 trêng thpt chuyªn §Ị thi chÝnh thøc phan béi ch©u n¨m häc 2009 - 2010 M«n thi: To¸n Híng dÉn chÊm thi B¶n híng dÉn chÊm gåm 03 trang Néi dung ®¸p ¸n §iĨm 3,5 ® 2,0® Bµi 1 a 3 x+2 + 3 7− x =3 ⇔ x + 2 + 7 − x + 3 3 x + 2 3 7 − x ( 3 ) x + 2 + 3 7 − x =... ơ đen bằng 1005 2009 là một số lẻ sau mối phép thực hiện thao tác T tổng số sỏi ở các ơ đen ln là số lẻ vậy khơng thể chuyển tất cả viên sỏi trên bẳng ơ vng về cùng một ơ sau một số hữu hạn các phép thưc hiện thao tác T m m m Së gi¸o dơc-®µo t¹o Hµ nam m Kú thi tun sinh vµo líp 10 THPT chuyªn N¨m häc 2009- 2010 M«n thi : to¸n(®Ị chuyªn) Thêi gian lµm bµi: 120 phót(kh«ng kĨ thêi gian giao ®Ị) ®Ị chÝnh... ( 3+ 2 ) ************************************************ SỞ GD&ĐT VĨNH PHÚC —————— KỲ THI VÀO LỚP 10 THPT CHUN NĂM HỌC 2009- 2010 ĐỀ THI MƠN: TỐN ĐỀ CHÍNH THỨC Dành cho các thí sinh thi vào lớp chun Tốn Thời gian làm bài: 150 phút, khơng kể thời gian giao đề ————————— (Đề có 01 trang) Câu 1: (3,0 điểm) a) 1 1 9 x + y + x + y = 2 Giải hệ phương trình: xy + 1 = 5 xy 2 b) Giải và biện luận... DE < 1 Câu 5: (1,0 điểm) Cho biểu thức P = a2 + b2 + c2 + d2 + ac + bd , trong đó ad – bc = 1 Chứng minh rằng: P ≥ 3 Hết Họ và tên thí sinh: ………………………………… Số báo danh: …………………… së gi¸o dơc - ®µo t¹o hµ nam ®Ị chÝnh thøc Bµi 1 (2 ®iĨm) Cho biĨu thøc P = x ( kú thi tun sinh vµo líp 10 thpt chuyªn N¨m häc 2009 - 2010 M«n thi : to¸n(§Ị chung) Thêi gian... nhÊy cđa P lµ 49/16 0,2 0,5 0,2 0,2 SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH NINH BÌNH ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH VÀO LỚP 10 CHUN NĂM HỌC 2009 – 2010 Mơn Tốn – Vòng 1 (Dùng cho tất cả các thí sinh) Thời gian làm bài 120 phút (Khơng kể thời gian giao đề) Đề thi gồm 05 câu trong 01 trang Câu 1: (2 điểm) Tính giá trị biểu thức: x = 5 2 + 2 5 5 − 250 ( y= ) 3 3 − 3 −1 3 +1 x x+y y x− y x − xy + y Câu 2: (2,5 điểm)... tiếp cùng chắn cung AC) nên ΔBAD ΔEAC BA AE Þ = Þ AB AC = AE.AD(1) AD AC · · · · Ta có ADC = BDC(§èi ®Ønh) vµ CAD = DBE (2 góc nội tiếp cùng chắn cung CE) nên ΔACD ΔBDE ư 1 ÷ ÷ < ÷ ÷ n + 1ø 2 1 C a E O b D B c A AD DB = Þ AD .DE = DB.DChay DC DE Þ AD(AE-AD) = DB.DC Hay AD2 = AD.AE - DB.DC=AB.AC – DB.DC (do (1)) 4b)Theo tính chất đường phân giác ta có DC DB DC DB DC + DB a = hay = = = AC AB b c b+ c b+ c . MA DE (2) Từ (1), (2) ADE cân tại A MA là trung trực của DE MD = ME 0.25 2) 1,25điểm 0.25 K E B C A N M P D K E B C A N M P D Do DE/ /NP nên ã ã =DEK. chuyên nguyễn trãi - Năm học 2009- 2010 Môn thi : toán Thời gian làm bài: 150 phút Ngày thi 08 tháng 7 năm 2009 (Đề thi gồm: 01 trang) Câu I (2.5 điểm): 1)