1. Trang chủ
  2. » Trung học cơ sở - phổ thông

001 đề HSG toán 8 bắc giang 2017 2018

6 141 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 246,64 KB

Nội dung

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO TP BẮC GIANG ĐỀ THI CHỌN HỌC SINH GIỎI VĂN HÓA CẤP THÀNH PHỐ NĂM HỌC 2017-2018 MƠN THI: TỐN Thời gian: 150 phút không kể thời gian giao đề Bài 1: (5,0 điểm) x4  x2  x2    Cho biểu thức M  x  x4  x2  x4  x2  a) Rút gọn M b) Tìm giá trị lớn M  2x  y  1 Cho x, y số hữu tỉ khác thỏa mãn 1 x 1 y Chứng minh M  x  y  xy bình phương số hữu tỷ Bài (4,0 điểm) Tìm số dư phép chia  x  3 x  5 x   x    2033 cho x2  12 x  30 Cho x, y, z thỏa mãn x  y  z  7; x  y  z  23; xyz  1   Tính giá trị biểu thức H  xy  z  yz  x  zx  y  Bài (4,0 điểm) Tìm tất cặp số nguyên  x; y  thỏa mãn 3x2  3xy  17  x  y Giải phương trình:  3x   x  1  3x  8  16 Bài (6 điểm) Cho hình vng ABCD có hai đường chéo AC BD cắt O Trên cạnh AB lấy M   MB  MA cạnh BC lấy N cho MON  900 Gọi E giao điểm AN với DC, gọi K giao điểm ON với BE 1) Chứng minh MON vuông cân 2) Chứng minh MN song song với BE 3) Chứng minh CK vng góc với BE 4) Qua K vẽ đường song song với OM cắt BC H Chứng minh: KC KN CN   1 KB KH BH Bài (1,0 điểm) 24 Cho x, y  thỏa mãn x  y  Tìm giá trị nhỏ H  x  y   x y ĐÁP ÁN Bài 1 a) x4  x2  x2  M    x  1 x4  x  1 x4  x2   x  1 x  3 x4  x2  1    2  x  1 x  x  1 x  x  x   x    x  1 x  1   x  x  1 x  1 x  x  1 x4   x4   x4  x2    x  1 x  x  1 x  x  1 x4  x2 x2     x  1 x4  x2  1  x2  1 x  x  1 x4  x2  x2 với x x4  x2  x2 b) Ta có : M  với x x  x2  - Nếu x  ta có M  Vậy M  - Nếu x  , chia tử mẫu M cho x ta có: M  1 x2   x 1 1 1   Ta có: x     x  2.x      x     x x x  x    Dấu "  " xảy x  Nên ta có: M  x  x 1 Vậy M lớn M  x   2x  y    1  x 1  y   1  y 1  x   1  x 1  y  1 x 1 y Ta có 3xy    y  x  xy   x  y  xy   x  y  xy  x  y  2 2  3xy    3xy   2 Ta có : M  x  y  xy   x  y   3xy     3xy         Vì x, y  nên 3xy  số hữu tỷ , Vậy M bình phương số hữu tỷ Bài 1) Ta có:  x  3 x  5 x   x    2033    x  12 x  27  x  12 x  35  2033 Đặt x2  12 x  30  t , ta có:  x  3 x  5 x   x    2033   t  3 t  5  2033  t  2t  15  2033  t  t    2018 Vậy ta có  x  3 x  5 x   x    2033   x  12 x  30  x  12 x  32  2018 Vậy số dư phép chia  x  3 x  5 x   x    2033 cho x2  12 x  30 2018 2) Vì x  y  z   z   x  y   xy  z    xy  x  y    x  1 y  1 Tương tự ta có: yz  x    y  1 z  1 ; zx  y    z  1 y  1 1 z 1  x 1  y 1 Vậy H      x  1 y  1  y  1 z  1  z  1 x  1  x  1 y  1 z  1  x  y  z  73 Ta   xyz   xy  yz  xz    x  y  z     xy  yz  xz      xy  yz  xz  có:  x  y  z   x  y  z   xy  yz  xz   72  23   xy  yz  xz    xy  yz  xz  13 Vậy H   1  13 Bài 1) Ta có: 3x  3xy  17  x  y  3xy  y  3x  x  17  3x   y  3x  x  17 Vì x nguyên nên x   nên ta có: 3x  x  17 3x  x  x   11 y  3x  2  x  3x     3x    11 11   x   3x  3x  11 Vì x, y ngun nên ta có ngun  11 3x   3x   1; 11 3x  - Xét trường hợp ta tìm x  1; y  1; x  3; y  thỏa mãn kết luận 2) Ta có:  3x   x  1  3x  8  16   3x   3x  3  3x  8  144 Đặt 3x   t  3x   t  5;3x   t  2 Ta có phương trình:  t  5 t  t  5  144  t  25t  144    t   t  16   t  t  3   t  5 t  16 Xét trường hợp ta tìm x  0; x  2; x  ; x   3 Bài M A O B N K D C E H 1) Ta có : BOC  900  CON  BON  900 ; MON  900  BOM  BON  900  BOM  CON BOC  450 Ta có BD phân giác ABC  MBO  CBO  BOC  450 Vậy ta có : MBO  NCO Xét OBM OCN có OB  OC; BOM  CON ; MBO  NCO  OBM  OCN  OM  ON Xét MON có MON  900 ; OM  ON  MON vuông cân 2) OBM  OCN  MB  NC mà AB  BC  AB  MB  BC  NC AM BN  AM  BM   MB NC AN BN Ta có: AB / /CD  AM / / CE   NE NC AM AN Vậy ta có:    MN / / BE (Theo định lý Talet đảo) MB NE 3) Vì MN / / BE  BKN  MNO  450 (đồng vị có tam giác MON vng cân) NB NO  BNK ONC (vì có BNK  ONK ; BKN  OCN  450 )   NK NC NB NO - Xét BNO; KNC có BNO  CNK ;   BNO KNC NK NC  NKC  NBO  450 Vậy ta có: BKC  BKN  CKN  450  450  900  CK  BE Tương tự ta có: NCO  DCO  4) – Vì KH / /OM mà MK  OK  MK  KH  NKH  900 mà NKC  450  CKH  450  BKN  NKC  CKH  450 Xét BKC có BKN  NKC  KN phân giác BKC , mà KH  KN KC HC   KH phân giác BKC  KB HB KN BN  Chứng minh tương tự ta có : KH BH KC KN NC HC BN CN BH        1 Vậy ta có KB KH BH HB BH BH BH Bài 24 Ta có: H  x  y   x y  1   24   x  x  1   y  y  8    x      y  24    x  y   17 x   y    x  1   y   2  x  1  x       17  22 6 y  2    x  y   17 y  y  2 Dấu "  " xảy   x  1   y     x  y  x y  x  y  Vậy H nhỏ H  22  x  1, y  2  x  1  2

Ngày đăng: 25/07/2019, 15:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w