Rất hay
GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC RÈN LUYỆN KỶ NĂNG BIẾN ĐỔI LƯỢNG GIÁC A- CÁC VẤN ĐỀ VỀ LÍ THUYẾT . I- TÓM TẮC CÔNG THỨC LƯỢNG GIÁC HỆ THỐNG CÁC CÔNG THỨC LƯỢNG GIÁC: I- GÓC VÀ CUNG LƯỢNG GIÁC: 1. Công thức quy đổi độ – Rađian: 180 a α π = ( a tính bằng độ, α tính bằng rad) 2. Số đo góc và cung lượng giác theo độ và radian. sđ(ox, ot) = a 0 + k360 0 hoặc sđ(ox, ot) = α + k2 π , k ∈ Z. (với 0 0 ≤ a < 360 0 , 0 0 ≤ α < 2π) Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 1 0 π 6 π 4 π 3 π 2 π2 3 π3 4 π π3 2 π2 sin 0 1 2 2 2 3 2 1 3 2 2 2 0 –1 0 cos 1 3 2 2 2 1 2 0 − 1 2 − 2 2 –1 0 1 tan 0 3 3 1 3 P − 3 –1 0 P 0 cot P 3 1 3 3 0 − 3 3 –1 P 0 P GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC sđ AB = a 0 + k360 0 hoặc sđ AB = α + k2 π , k ∈ Z. ( với 0 0 ≤ a < 360 0 , 0 0 ≤ α < 2π) 3. Công thức tính độ dài cung: l = α .R ( α tính bằng rad) II.NHÓM CÔNG THỨC LƯỢNG GIÁC 1: 1. Hằng đẳng thức lượng giác: sin 2 x + cos 2 x = 1⇔ = − = − 2 2 2 2 sin x 1 cos x cos x 1 sin x ⇔ 2 2 1 1 = ± − = ± − x x x x sin cos cos sin 1+tan 2 x = 2 1 cos x ⇔ cos 2 x = + 2 1 1 tan x ⇔ cosx = ± + 2 1 1 tan x 1+cot 2 x = 2 1 sin x ⇔ sin 2 x = + 2 1 1 cot x ⇔ sinx = ± + 2 1 1 cot x tanx.cotx = 1 ⇔ tanx = = sin x 1 cos x cot x ⇔ cotx = = cos x 1 sin x tan x Chú ý: Trong các công thức có chứa dấu (±) , việc chọn dấu (+) hoặc dấu (–) cần nhận xét giá trị của cung x trên đường tròn lượng giác. 2. Cung liên kết: –x π – x π 2 – x π + x π 2 + x sin –sinx sinx cosx –sinx cosx cos cosx –cosx sinx –cosx –sinx tan –tanx –tanx cotx tanx –cotx cot –cotx –cotx tanx cotx –tanx 3. Chú ý: a + b = π ≡ 180 0 cosb = –cosa sinb = sina a + b = π 2 ≡ 90 0 cosb = sina sinb = cosa ∆ABC sin(B + C) = sinA cos(B + C) = – cosA tan(B + C) = – tanA + = B C A sin cos 2 2 + = B C A cos sin 2 2 + = B C A tan cot 2 2 sin(x + k2π) = sinx cos(x + k2π) = cosx tan(x + kπ) = tanx cot(x + kπ) = cotx III. NHÓM CÔNG THỨC LƯỢNG GIÁC 2: 1.Công thức cộng: cos(a ± b) = cosa.cosb m sina.sinb sin(a ± b) = sina.cosb ± sinb.cosa tan(a ± b) = ± m tana tanb 1 tana.tanb 2.Công thức nhân: cos2a = cos 2 a – sin 2 a = 2cos 2 a – 1 = 1 – 2sin 2 a = − + 2 2 1 tan a 1 tan a sin2a = 2sina.cosa = + 2 2 tana 1 tan a ; tan2a = − 2 2 tana 1 tan a 3.Công thức hạ bậc: Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 2 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC − = 2 1 cos2a sin a 2 ; + = 2 1 cos2a cos a 2 ; − = + 2 1 cos2a tan a 1 cos2a 4.Công thức tính theo t : = a t tan 2 = + 2 2t sina 1 t − = + 2 2 1 t cos a 1 t = − 2 2t tana 1 t 5. Công thức biến đổi tích thành tổng: 2cosa.cosb = cos(a + b) + cos(a – b) 2sina.sinb = –[ cos(a + b) – cos(a – b) ] 2sina.cosb = sin(a + b) + sin(a – b) 6. Công thức biến đổi tổng thành tích: + − + = a b a b cos a cosb 2 cos cos 2 2 + − − = − a b a b cos a cosb 2 sin sin 2 2 tana + tanb = a b a b sin( ) cos .cos + + − + = a b a b sina sinb 2 sin cos 2 2 + − − = a b a b sina sinb 2 cos sin 2 2 tana – tanb = a b a b sin( ) cos .cos − Hệ quả: cosx + sinx = 2 sin( x) 2 cos( x) 4 4 π π + = − cosx – sinx = 2 sin( x) 2 cos( x) 4 4 π π − = + III. HỆ THỨC LƯỢNG TRONG ∆ ABC: 1. Định lý hàm số sin và cos: a b c 2R sinA sinB sinC = = = 2 2 2 a b c 2bc.cos A= + − 2 2 2 b a c 2ac.cosB= + − 2 2 2 c a b 2ab.cosC= + − 2. Chuyển cạnh sang góc: a = 2RsinA b = 2RsinB c = 2RsinC 3. Chuyển góc sang cạnh: a sinA 2R = 2 2 2 b c a cos A 2bc + − = 4. Công thức diện tích: = = = = = = a b c 1 1 1 1 1 1 S a.h b.h c.h bc sin A ac sinB ab sinC 2 2 2 2 2 2 abc S pr p(p a)(p b)(p c) 4R = = = − − − , với + + = a b c p 2 R: Bán kính đường tròn ngoại tiếp, r: Bán kính đường tròn nội tiếp ∆ABC 5. Công thức đường trung tuyến và phân giác trong các góc của ∆ ABC: + = − 2 2 2 2 a b c a m 2 4 + = − 2 2 2 2 b a c b m 2 4 + = − 2 2 2 2 c a b c m 2 4 (m a , m b , m c − độ dài trung tuyến) = + a 2bc A l cos b c 2 = + b 2ac B l cos a c 2 = + c 2ab C l cos a b 2 (l a , l b , l c − độ dài phân giác) B. BÀI TẬP . VẤN ĐỀ 1. CÁC BÀI TẬP CƠ BẢN VỀ BIẾN ĐỔI LƯỢNG GIÁC. 1. Tính giá trị lượng giác của cung sau. 1) sina = 3 5 với 0 < a < 2 π 2) tana = - 2 với < a < π 3) cosa = 5 1 với - 2 π < a < 0 4) sina = 3 1 với a ∈ ( 2 π , π ) 5) tana = 2 với a∈ (π, 2 3 π ) 2. Chứng minh các đẳng thức sau: 1) sin 2 x + tan 2 x = 2 1 cos x - cos 2 x 2) tan 2 x - sin 2 x = tan 2 xsin 2 x 3) 2 2 tan3 3 tan tan 1 3tan x x x x − = − Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 3 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC 4) 2 2 2 2 cos sin cot tan x x x x − − = sin 2 xcos 2 x 5) 2 2 2 1 (1 cot )( 1) cos 1 tan x x x + − + = 1 6) cosx + cos(2π/3 - x) + cos(2π/3 - x) = 0 7) sin(a + b)sin(a - b) = sin 2 a -sin 2 b = cos 2 b - cos 2 a 8) 2 2 2 2 tan tan 1 tan tan a b a b − − = tan(a +b)tan(a - b) 9) cos 3 xsinx - sin 3 xcosx = 1 4 sin4x 10) cos sin cos sin x x x x − + = 1 cos2x - tan2x 11) sin 2 2sin sin 2 2sin x x x x − + = -tan 2 2 x 12) sin3xcos 3 x + sin 3 xcos3x = 3 4 sin4x 13) sinx - sin2x +sin3x = 4cos 3 2 x cosxsin 2 x 14) sinx +2sin3x + sin5x = 4sin3xcos 2 x 15) 4 4 2 2 2 sin cos cos cos 2(1 cos ) 2 x x x x x − + = − 3. Rút gọn các biểu thức sau: 1) A = sin(x + 5 2 π ) - 3cos(x - 7 2 π ) + 2sin(x + π ) 2) B= ( ) 11 sin cos 5sin 2 2 x x x π π π − + − − + ÷ ÷ 3) ( ) ( ) ( ) os os 2 sin os 2 C c c c π α π α π α π α = + + − + − + + ÷ 4) D= 2cosa-3cos(π+a)-5sin(π/2-a)+cot( 3 2 π - a) 5) cos(π - a) - 2sin(3π/2 + a) + tan( 3 2 π - a ) + cot(2π - a) 4. Chứng minh rằng các biểu thức sau không phụ thuộc vào a. 1) A = cos 4 a + cos 2 asin 2 a +sin 2 a 2) B = cos4a - sin4a + 2sin 2 a 3) C = 2(sin 6 a + cos 6 a) - 3(sin 4 a + cos 4 a) 4) D = 1 cot 1 cot a a + − - 2 tan 1a − 5) E = 2 sin 4 4cosa a+ + 4 2 cos 4sina a+ 6) F = cos 2 a + sin(30 0 + a)sin(30 0 - a) 7) G = sin 6 a + cos 6 a + 3sin 2 acos 2 a 8) H = 4 4 6 6 sin cos 1 sin cos 1 a a a a + − + − 9) m là mọt số cho trước, chứng minh rằng nếu: m.sin(a + b) = cos(a - b) Trong đó a - b ≠ kπ và m ≠ ± 1 thì biểu thức: A = 1 1 sin 2m a− + 1 1 sin 2m b− (m là hằng số không phụ thuộc vào a, b ). 5. Tính các biểu thức đại số. 1) Tính sin 3 a -cos 3 a biết sina -cosa = m 2) Biết sina + cosa = m hãy tính theo m giá trị của biểu thức: A = 1 cos2 cot tan 2 2 a a a + − 3) Biết cos( ) cos( ) a b a b + − = p q . Tính tana.tanb 4) Biết sina + sinb = 2sin(a + b) với (a + b) ≠ k2π tính tan 2 a .tan 2 b Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 4 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC 5) Tính sin2x nếu: 5tan 2 x - 12tanx - 5 = 0 ( 4 π < x < 2 π ) 6. Không dùng máy tính hãy tính giá trị các biểu thức : 1) A = cos20 0 cos40 0 cos60 0 cos80 0 2) B = cos 7 π .cos 4 7 π .cos 5 7 π 3) C = sin6 0 .sin42 0 .sin66 0 .sin78 0 4) Tính: E = sin5 0 .sin15 0 sin25 0 .sin35 0 . sin85 0 5) Tính: F = sin 18 π .sin 3 18 π .sin 5 18 π .sin 7 18 π . sin 9 18 π 6) A = sin37 0 .cos53 0 + sin127 0 .cos397 0 7) A = tan110 0 + cot20 0 8) Tính sin15 0 và cos15 0 8) A = tan20 o .tan40 o .tan60 o .tan80 o b) B = 1 2sin10 o - 2sin70 o , M = cos 5 π - cos 2 5 π c) C = sin 4 16 π + sin 4 3 16 π + sin 4 5 16 π + sin 4 7 16 π d) D = tan 2 12 π + tan 2 3 12 π + tan 2 5 12 π e) E = tan9 o - tan27 o - tan63 o + tan81 o . f) F = cos 6 16 π + cos 6 3 16 π + cos 6 5 16 π + cos 6 7 16 π g) G 1 = sin18 o .cos18 o ; G 2 = sin36 o .cos36 o h) H = cos 2 7 π + cos 4 7 π + cos 6 7 π i) I = sin 5 π + sin 23 5 π + sin 6 π + cos 13 5 π k) K = cos 5 π + cos 2 5 π + cos 3 5 π + cos 4 5 π 9. Với a ≠ kπ (k ∈ Z) chứng minh: a) cosa.cos2a.cos4a .cos16a = sin32 32.sin a a b) cosa.cos2a.cos4a cos2 n a = 1 1 sin 2 2 sin n n a a + + 10. Tính: A = cos20 o .cos40 o .cos60 o . 11. Tính: A = sin6 o .sin42 o .sin66 o .sin78 o . 12. Tính: A = cos 7 π . cos 4 7 π . cos 5 7 π . 13. Tính: cos 65 π . cos 2 65 π . cos 4 65 π . cos 8 65 π . cos 16 65 π . cos 32 65 π . 14.Tính: sin 18 π .sin 3 18 π .sin 5 18 π .sin 7 18 π . sin 9 18 π . 15. Tính: cos 15 π .cos 2 15 π .cos 3 15 π .cos 4 15 π cos 7 15 π . 16. Tính: sin5 o . sin15 o .sin25 o . sin85 o . 17. Tính: 96 3 .sin 48 π .cos 48 π . cos 24 π . cos 12 π . cos 6 π . 18. Tính: 16.sin10 o .sin30 o .sin50 o .sin70 o . 19. Tính: sin10 o .sin20 o .sin30 o sin80 o . 20. Tính: cos9 o . cos27 o . cos45 o . cos63 o . cos81 o . cos99 o . cos117 o . cos135 o . cos153 o . cos171 o . 21. Tính: A = cos 5 π + cos 2 5 π B = cos 5 π + cos 3 5 π 7. Chú ý các công thức sau: 1) 4sinx.sin( 3 π - x)sin( 3 π + x) = sin3x 2) 4cosx.cos( 3 π - x)cos( 3 π + x) = cos3x 3) tanx.tan( 3 π - x)tan( 3 π + x) = tan3x 4) cosa.cos2a.cos4a cos2na = 1 1 sin 2 . 2 sin n n a a + + 5) Để tính S = cosa - cos(a + x) + cos(a +2x) + +(-1) n . cos(a +nx). Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 5 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC thì nhân 2 vế với 2cos 2 x nếu cos 2 x ≠ 0. 8.Các bài tập khác: 1. Chứng minh rằng : a) cos15 sin15 cos15 sin15 o o o o + − = 3 b) sin 75 cos75 cos75 sin 75 o o o o − + = 1 3 2. Rút gọn các biểu thức sau: a) A = sin3x.sin 3 x + cos3x.cos 3 x b) B = 1 cos sin x x + [1 + 2 2 (1 cos ) sin x x − ] c) C = cos3x.cos 3 x - sin3x.sin 3 x 3. Chứng minh rằng : a) 4.cosx.cos( 3 π - x).cos( 3 π + x) = cos3x. b) 4.sinx.sin( 3 π - x).sin( 3 π + x) = sin3x. c) tanx.tan( 3 π - x).tan( 3 π + x) = tan3x. Áp dụng tính: A = sin20 o .sin40 o .sin80 o . B = cos10 o .cos20 o .cos30 o cos80 o . C = tan20 o .tan40 o .tan60 o .tan80 o . 4. Chứng minh rằng : a) sin 6 x + cos 6 x = 5 8 + 3 8 cos2x b) tanx = 1 cos2 sin 2 x x − Áp dụng tính: A = sin 6 ( 24 π ) + cos 6 ( 24 π ) B = tan 2 ( 12 π ) + tan 2 (3. 12 π ) + tan 2 (5. 12 π ) 5. Chứng minh rằng: a) sin 4 x = 3 1 1 cos2 cos4 8 2 8 x x− + b) sin 8 x + cos 8 x = 35 7 1 cos4 cos 64 16 16 x x+ + Áp dụng tính A = sin 8 ( 24 π ) + cos 8 ( 24 π ) B = sin 4 ( 16 π ) + sin 4 (3. 16 π ) + sin 4 (5. 16 π ) + sin 4 (7. 16 π ) 6. Tính: cos( 2 7 π ) + cos( 4 7 π ) + cos( 6 7 π ) 22. Tính cos( 5 π ) + cos( 2 5 π ) + cos( 3 5 π ) + cos( 4 5 π ) 7. Cho: sin2a + sin2b = 2sin2(a + b). Tính: tana.tanb. 24. CMR: 0 0 0 0 sin 75 cos75 sin 75 cos75 − + = 1 3 VẤN ĐỀ 2. BÀI TOÁN LƯỢNG GIÁC TRONG TAM GIÁC. I. CÁC KIẾN THỨC CƠ BẢN. + A + B + C = π + a b− < c < a + b + a 2 = b 2 + c 2 - 2a.b.cosC + 2 sin sin sin a b c R A B C = = = + S = 1 1 . .sin ( ) . 2 2 4 a a abc a h ab C pr p a r R = = = = − S = ( )( )( )p p a p b p c− − − Trong đó: p = 2 a b c+ + r: bán kính đường tròn nội tiếp r a : bán kính đường tròn bàng tiếp trong góc A. + Đường trung tuyến : Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 6 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC m a 2 = 2 2 2 2 4 b c a+ − m b 2 = 2 2 2 2 4 a c b+ − m c 2 = 2 2 2 2 4 b a c+ − + Đường phân giác: l a = 2 .cos 2 A bc b c+ l b = 2 .cos 2 B ac a c+ l a = 2 .cos 2 C ab a b+ + Mở rộng định lí sin và cosin: cotA = 2 2 2 4 b c a s + − cotB = 2 2 2 4 a c b s + − cotC = 2 2 2 4 a b c s + − II-BÀI TẬP : CHỨNG MINH ĐẲNG THỨC CƠ BẢN TRONG TAM GIÁC. 1. sinA + sinB + sinC = 4cos 2 A .cos 2 B .cos 2 C . 2. sin2A + sin2B + sin2C = 4sinA.sinB.sinC. 3. sin3A+sin3B+sin3C = -4cos 3 2 A cos 3 2 B cos 3 2 C . 4. sin4A+sin4B+sin4C = -4sin2A.sin2B.sin2C. 5. cosA + cosB + cosC = 1+ 4sin 2 A .4sin 2 B .4sin 2 C . 6. cos2A+cos2B+cos2C = -1-4cosA.cosB.cosC. 7. cos3A+cos3B+cos3C =1- 4sin 3 2 A sin 3 2 B sin 3 2 C . 8. tanA + tanB + tanC = tanA.tanB.tanC. 9. cos4A+cos4B+cos4C = -1+ 4cos2Acos2Bcos2C. 10. tan2A +tan2B + tan2C = tan2A.tan2B.tan2C. 11. cotA.cotB + cotB.cotgC + cotC.cotA = 1 12. tan 2 A tan 2 B + tan 2 B tan 2 C + tan 2 C tan 2 A =1 13. cot 2 A +cot 2 B + cot 2 C = cot 2 A cot 2 B cot 2 C . 14. cos 2 A + cos 2 B + cos 2 C = 1 - 2cosA.cosB.cosC. 15. cos 2 2A + cos 2 2B + cos 2 2C = 1 + 2cos2A.cos2B.cos2C. 16. 2 a m + 2 b m + 2 c m = 3 4 (a 2 + b 2 + c 2 ). 17. la = 2 .cos 2 A bc b c+ = 2 bc . . .( )b c p p a− . 18. r = p.tan 2 A tan 2 B tan 2 C = sin sin 2 2 cos 2 B C a A . 19. R = C 4.cos .cos .cos 2 2 2 p A B . 20. r = 4R.cos 2 A . cos 2 B . cos 2 C . III. CÁC BÀI TOÁN VỀ ĐẲNG THỨC TRONG TAM GIÁC. 1. Chứng minh rằng diện tích tam giác có thể tính theo các công thức sau: S = 2 2 ( ).sin .sin 2.sin( ) a b A B A B − − = 1 4 (a 2 sin2B + b 2 sin2A) = p 2 .tan 2 A tan 2 B tan 2 C = 2R 2 .sinA.sinB.sinC. 2. Chứng minh các đẳng thức sau: a) a.sin(B - C) + b.sin(C - A) + c.sin(A - B) = 0 b) (b - c)cot 2 A +(c - a)cot 2 B + (a - b)cot 2 C = 0. c) (b 2 - c 2 )cotA +(c 2 - a 2 )cotB+(a 2 - b 2 )cotC = 0. d) 2p = (a + b)cosC + (a + c)cosB+(a + b)cosC. e) sin 2 B C− = b c a − cos 2 A . f) cos 2 B C − = b c a + sin 2 A . g) b.cosB + c.cosC = a.cos(B - C). Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 7 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC h) cosA + cosB = 2 a b c + sin 2 2 C . i) 1 r = 1 a h + 1 b h + 1 c h . 3. Tam giác ABC có 2a = b + c chứng minh rằng: a) 2sinA = sinB + sinC. b) tan 2 B . tan 2 C = 1 3 . 4. Gọi I là tâm đường tròn nội tiếp tam giác ABC. R, r là bán kính đường tròn ngoại tiếp, nội tiếp của tam giác. Chứng minh rằng: a) r = 4R.cos 2 A . cos 2 B . cos 2 C .b) IA.IB.IC = 4Rr 2 . c) cosA + cosB + cosC = 1 + r R 5. Các cạnh a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh rằng công sai của cấp số cộng đó được xác định theo công thức sau: d = 3 2 r(tan 2 C - tan 2 A ) 6. Tam giác ABC có hai đường trung tuyến BM và CN vuông góc. CMR : b 2 + c 2 = 5a 2 . 7. Chứng minh rằng: cos 2 a A l + cos 2 b B l cos 2 c C l = 1 a + 1 b + 1 c . 8. Ch. minh rằng các trung tuyến AA' và BB' vuông góc với nhau khi: cotC = 2(cotA + cotB). 9. Cho c b = b c m m ≠ 1 chứng minh rằng : 2cotA = cotB + cotC. 10. Cho tam giác ABC và AM là trung tuyến. gọi α = AMB . Chứng minh rằng: a) cotα = 2 2 4 b c s − . b) cotα = cotC - cotB. c) cotα = 2sin( ) 2sin sin B c B C − 11. Chứng minh rằng c b là nghiệm của phương trình: (1 + x 2 -2xcosA)(b 2 - bc) = a 2 (1 - x). 12. Tam giác có 3 cạnh lần lượt là: (x2 +2); (x 2 - 2x +2); (x 2 + 2x + 2). Với giá trị nào của x (dương) thì tam giác đó tồn tại. 13. Cho m a = c. Chứng minh rằng: a) bcosC = 3cosB. b) tanB = 3tanC. c) sinA = 2sin(B - C). 14. Gọi H là trực tâm tam giác ABC. H chia đường cao xuất phất từ A theo tỉ số k cho trước. CMR :a) tanB.tanC = 1 + k. b) tanB + tanC = ktanA c) cos(B - C) = (1+ 2 k )cosA. 15. Cho tam giác ABC có các cạnh a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh rằng : cot 2 A cot 2 C = 3. 16. Tam giác ABC thỏa mãn điều kiện: tanA.tanB = 6; tan tan A C =3. Chứng tỏ rằng: tanA, tanB, tanC theo thứ tự đó lập 1 cấp số cộng. 17. Tam giác ABC có cot 2 A , cot 2 B , cot 2 C theo thứ tự lập một cấp số cộng. CMR : a, b, c theo thứ tự cũng lập một cấp số cộng. 18. Tam giác ABC có: cotA, cotB, cotC hteo thứ tự lập một cấp số cộng. Chứng minh rằng a 2 , b 2 , c 2 theo thứ tự đó cũng lập một cấp số cộng. 19. Cho tam giác ABC thỏa mãn: 2tanA = tanB + tanC. Chứng minh rằng : a) tanB.tanC = 3. b) cos(B- C) = 2cosA. Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 8 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC IV – ĐỊNH DẠNG TAM GIÁC CÂN. A. Chứng minh rằng tam giác cân khi và chỉ khi: 1. atanA+btanB =(a+b)tan 2 A B+ 2. 2tanB + tanC = tan 2 B.tC. 3. sin sin 1 (tan tan ) cos cos 2 A B A B A B + = + + 4. 2 2 2 2 2 2 cos cos 1 (cot cot ) sin sin 2 A B A B A B + = + + 5. 2sin .sin cot 2 sin C A B C = 6. sin 3 3 .cos sin .cos 2 2 2 2 A B B A = 7. (p - b)cot .tan 2 2 C B p= 8. 2 2 1 cos 2 sin 4 B a c B a c + + = − 9. a 2 sin2B +b 2 sin2A=c 2 cot 2 C 10. a.sin(B - C)+b.sin(C - A) = 0 11. sin 3 3 .cos sin .cos 2 2 2 2 A B B A = 12. a = 2b.cosC. Chứng minh ∆ ABC cân tại A. B. Tam giác ABC có đặc điểm gì nếu : 1. 2 2 sin tan sin tan B B C C = 2. (b 2 + c 2 )sin(C-B) = (C 2 - B 2 )sin(B- C) 3. 2 2 ( ) 1 cos( ) 2. 1 cos2 b c B C b B − − − = − 4. sin(B - C)= 2 2 2 b c a − V. NHẬN DẠNG TAM GIÁC VUÔNG. A. Chứng minh điều kiện cần và đủ để tam giác vuông là: 1. cos2a + cos2B + cos2C = -12. tan2A + tan2B + tan2C = 0 3. sinA + sinB + sinC = 1 + cosA + cosB + cosC B. Chứng minh tam giác vuông khi: 1. cos cos sin .sin b c a B C B C + = 2. cot 2 B = a c b + 3. 1 cot ( ) sin a A c b A c b + = ≠ − 4. 1 cot sin b c A A a + + = 5. cot2C = 1 (cot cot ) 2 C B− 6. cos( ) tan sin sin( ) B C B A C B − = + − 7. sin cos sin cos A B tgA B A + = + 8. sin 2 B = 2 a c a − 9. cos 2 2 B c a a + = 10. tan 2 B c a c a − = + Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 9 GV: Nguyễn Văn Huy ( 093.2421.725 ) Trung tâm gia sư MINH ĐỨC 11. cos(B - C) = 2 2bc a 12. S = 2 1 sin 2 4 a B 13. sin sin sin .cos .cos 1 1 cos cos B C A B C B C + = + 14. 1 + cot(45 0 - B) = 2 1 cot A− 15. sin 4 C + 2sin 4 A + 2sin 4 B = 2sin 2 C(sin 2 A + sin 2 B) 16. 3(cosB + 2sinC) + 4(sinB + 2cosC) = 15 17. cos2A + cos2B + cos2C + 1 = 0 C. Tam giác ABC có đặc điểm gì khi thỏa mãn các điều kiện sau. 1. sin3A + sin3B + sin3C = 0 2. sin4A + sin4B + sin4C = 0 3. sin5A + sin5B + sin5C + sin2A + sin2B = 4sinA.sinB 4. a 3 = b 3 + c 3 5. c = Ccos2B + Bsin2B 6. (1+cotA)(1 + cotB) = 2 7. sin 2 A + sin 2 B =5sin 2 C 8. 1 1 1 a b c l + = 9. sin 2 A + sin 2 B + sin 2 C ≤ 2 10. cos 2 A + cos 2 B + cos 2 C ≤ 1 11. Ch.minh nếu ∆ ABC có: sin 2 A = sin 2 B .sin 2 C thì tan 2 B . tan 2 C = 1 2 và ngược lại. 12. Chứng minh rằng nếu a = 2c thì a 2 = bc + c 2 13 Trong tam giác ABC có đường cao CB cắt đường cao AD tại trung điểm H của AD. Chứng minh rằng tanB.tanC = 2. 14. Cho tam giác ABC vuông tại A cạnh huyền có độ dài bằng a. Chứng minh rằng: sin 2 B .sin 2 C = l b . 2 4 c l a Tài liệu rèn kỷ năng biến đổi lượng giác dùng cho HS khá giỏi 10NC 10