Định lý Casey và ứng dụng (Luận văn thạc sĩ)

56 102 0
Định lý Casey và ứng dụng (Luận văn thạc sĩ)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Định lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụngĐịnh lý Casey và ứng dụng

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ĐỖ HOÀNG SƠN ĐỊNH CASEY ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ĐỖ HOÀNG SƠN ĐỊNH CASEY ỨNG DỤNG LUẬN VĂN THẠC SĨ TỐN HỌC Chun ngành: Phương pháp Tốn sơ cấp Mã số: 8460113 NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS TRỊNH THANH HẢI Thái Nguyên - 2018 i Mục lục Mở đầu ii Chương Một số kiến thức liên quan 1.1 Định lí Ptolemy 1.2 Một số ứng dụng Định lí Ptolemy 1.3 Bất đẳng thức Ptolemy 16 1.3.1 Bất đẳng thức Ptolemy 16 1.3.2 Áp dụng Bất đẳng thức Ptolemy để thiết lập bất đẳng thức 17 1.3.3 Một số toán đề nghị 22 Chương ĐịnhCasey ứng dụng 26 2.1 ĐịnhCasey 26 2.1.1 Định lí Feuerbach : Một mở rộng Định lí Ptolemy 26 2.1.2 ĐịnhCasey 32 2.2 Một số ứng dụng ĐịnhCasey 34 2.3 Bất đẳng thức Casey 47 2.4 Một số toán đề nghị 51 Kết luận 53 Tài liệu tham khảo 54 ii Mở đầu ĐịnhCasey đặt theo tên nhà toán học người Ireland John Casey, coi mở rộng Định lí Ptolemy Bài báo Luis González [3] giới thiệu ĐịnhCasey mở rộng Định lí Ptolemy Tiếp theo, Kin-Yin Li [5] tiếp tục giới thiệu định lí số ứng dụng Ở Việt Nam, Trần Quang Hùng công bố [4] bất đẳng thức Casey Trong thời gian qua có số đề thi học sinh giỏi nước quốc tế giải trọn vẹn sở ứng dụng ĐịnhCasey Với mong muốn trình bày lại cách có hệ thống nội dung hai báo giới thiệu thêm số ứng dụng ĐịnhCasey vào giải số tốn hình học dành cho học sinh giỏi, chúng tơi chọn đề tài “Định lí Casey ứng dụng” làm chủ đề cho luận văn thạc sĩ Luận văn phần mở đầu, kết luận, tài liệu tham khảo, trình bày hai chương • Chương Một số kiến thức liên quan • Chương ĐịnhCasey ứng dụng Luận văn thực Trường Đại học Khoa học - Đại học Thái Nguyên hoàn thành với hướng dẫn PGS.TS Trịnh Thanh Hải (Giảng viên Trường ĐH Khoa học - Đại học Thái Nguyên) Tác giả xin bày tỏ lòng biết ơn chân thành sâu sắc tới người hướng dẫn khoa học mình, người đặt tốn tận tình hướng dẫn để luận văn hoàn thành Tác giả xin trân trọng cảm ơn Ban Giám hiệu Trường Đại học Khoa học - Đại học Thái Nguyên, Ban Chủ nhiệm Khoa Toán – Tin, giảng viên tham gia giảng dạy, tạo điều kiện tốt để tác giả học tập nghiên cứu Tác giả xin cảm ơn tập thể lớp Cao học Tốn khóa 10 (2016-2018) động viên giúp đỡ tác giả nhiều suốt trình học tập Tác giả muốn gửi lời cảm ơn tốt đẹp đến nhà khoa học hội đồng đánh giá luận văn, đặc biệt đến phản biện đề tài Những góp ý, thảo luận họ giúp tác giả sửa chữa hoàn thiện luận văn Nhân dịp này, tác giả xin chân thành cảm ơn Sở Giáo dục Đào tạo Hải Phòng, Ban Giám hiệu đồng nghiệp Trường THPT Phạm Ngũ Lão tạo điều kiện cho tác giả hồn thành tốt nhiệm vụ học tập cơng tác Cuối cùng, tác giả muốn dành lời cảm ơn đặc biệt đến đại gia đình động viên chia sẻ khó khăn để tác giả hoàn thành luận văn Thái Nguyên, ngày 25 tháng 11 năm 2018 Tác giả Đỗ Hoàng Sơn Chương Một số kiến thức liên quan Trong chương chúng tơi trình bày Định lí Ptolemy ví dụ minh họa việc ứng dụng vào giải tập liên quan đến tứ giác nội tiếp đường tròn 1.1 Định lí Ptolemy Trước hết, mục chúng tơi trình bày nội dung Định lí mang tên nhà Tốn học người Hy Lạp Claudius Ptolemy1 số hệ quan trọng Định 1.1 (Định lí Ptolemy) Tứ giác lồi ABCD nội tiếp đường tròn tich hai đường chéo tổng tích cạnh đối diện, tức AC.BD = AB.CD + BC.AD (1.1) Chứng minh Chọn điểm E nằm tứ giác ABCD cho ABE = ACD BAE = CAD Xét cặp tam giác đồng dạng ABE ACD, ABC AED, suy AB.CD = BC.AD = AC(BE + ED), sau tìm điều kiện cần đủ để điểm E nằm đoạn thẳng BD (Claudius Ptolemy : 100-187 TCN) Định lí 1.1.1 Bài tốn 1.2.3 B B da E dc A P db A C D tốn 1.2.3 Bài Định lí 1.1.1 B Bài tốn 1.2.4 B Hệ lí1.1.2 Định Ptolemy xem khái qt hóa Định lí Pythagoras da trường hợp tứ giác ABCD hình BE chữ nhật, lúc AC 2d = AB + BC A c P db Định lí 1.1 có hệ sau đây: A B C ∆ABC đều, ta có Hệ 1.1 Cho tứ giác nội tiếp ABCD với C D BD = AD + CD Bài toán 1.2.4 Hệ 1.1.2 A P C B A D Hệ 1.1.3 A B P C A D Hệ 1.1.3 Chứng minh Vì tứ giác ABCD nội tiếp nên theo Định lí Ptolemy ta có B AB · CD + AD · BC = AC · BD Vì AB = BC = CA nên ta suy B C A CA · CD + AD · CA = AC · BD C A Vậy CD + AD = BD D D C B C A D Hệ 1.2 Cho tứ giác nội tiếp ABCD với ABC = ADC = 90◦ , ta có BD = AC sin BAD Chứng minh Ta có AC sin BAD = AC sin BAC + DAC = AC sin BAC + DAC = AC sin BAC · cos DAC + cos BAC · sin DAC BC AD DC AB · + · AC AC AC AC BC · AD + DC · AB = AC · AC = BC · AD + DC · AB = AC = BD Vậy phép chứng minh hoàn thành Thực ra, Hệ 1.2 A, B, C, D nằm đường tròn (với thứ tự tùy ý) ABC = ADC = 90◦ , BD từ Định lí sine ta có đường kính AC đường tròn ngoại tiếp sin BAD ∆BAD 1.2 Một số ứng dụng Định lí Ptolemy Trong mục này, luận văn trình bày vài ứng dụng Định lí Ptolemy thơng qua số tốn thi Olympic thi học sinh giỏi Bài toán 1.1 (IMO 1995) Cho ABCDEF lục giác lồi với AB = BC = CD, DE = EF = F A, BCD = EF A = 60◦ Gọi G H hai điểm lục giác thỏa mãn AGB = DHE = 120◦ Chứng minh AG + GB + GH + DH + HE ≥ CF Giải Gọi X, Y điểm nằm lục giác thỏa mãn ∆ABX ∆DEY Vậy DBXAEY ảnh ABCDEF qua phép đối xứng trục BE Suy CF = XY Khi ta có AXB + AGB = DY E + DHE = 180◦ Như AXBG DHEY tứ giác nội tiếp Theo Hệ 1.1 ta có XG = AG + GB HY = DH + HE Vì AG + GB + GH + DH + HE = XG + GH + HY ≥ XY = CF Bài toán 1.2 (IMO 1996) Cho P điểm nằm ∆ABC thỏa mãn AP B − ACB = AP C − ABC Gọi D, E tâm vòng tròn nội tiếp ∆AP B, ∆AP C Chứng minh AP , BD CE cắt điểm Giải Trước hết, ta phải phân giác BD, CE tương ứng góc ABP , ACP cắt điểm AP Gọi chân đường vng góc hạ từ P xuống BC, CA, AB X, Y , Z Vậy AZP Y , BXP Z, CY P X tứ giác nội tiếp Ta có AP B − ACB = Y AP + XBY = Y ZP + XZP = Y ZX B Z X D P E C A Y Chứng minh tương tự ta có AP C − ABC = XY Z Tam giác XY Z có góc Y ZX = XY Z nên XZ = XY Theo Hệ 1.2 ta có XZ = BP sin ABC XY = CP sin ACB Vì XZ = XY nên BP sin ABC = CP sin ACB Ta có BP sin ACB = CP sin ABC (1.2) Áp dụng Định lí sine cho tam giác ABC ta có AB sin ACB = AC sin ABC Suy sin ACB sin ABC = AB AC (1.3) Từ (1.2) (1.3) suy AB AC = BP CP (1.4) Gọi H giao điểm BD AP Vì BH đường phân giác góc ABP nên AB HA = (1.5) BP HP Gọi K giao điểm CE AP Vì CK đường phân giác góc ACP nên KA AC = (1.6) CP KP ... báo giới thiệu thêm số ứng dụng Định lí Casey vào giải số tốn hình học dành cho học sinh giỏi, chọn đề tài Định lí Casey ứng dụng làm chủ đề cho luận văn thạc sĩ Luận văn phần mở đầu, kết luận,... 26 2.1.1 Định lí Feuerbach : Một mở rộng Định lí Ptolemy 26 2.1.2 Định lí Casey 32 2.2 Một số ứng dụng Định lí Casey ... Ireland John Casey, coi mở rộng Định lí Ptolemy Bài báo Luis González [3] giới thiệu Định lí Casey mở rộng Định lí Ptolemy Tiếp theo, Kin-Yin Li [5] tiếp tục giới thiệu định lí số ứng dụng Ở Việt

Ngày đăng: 07/03/2019, 14:16