1. Trang chủ
  2. » Giáo án - Bài giảng

GIỚI HẠN CỦA DÃY SỐ

27 65 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,02 MB

Nội dung

Câu 1: [1D4-1-2] T  lim  (THPT Chuyên Hùng Vương-Gia Lai-2018) Tính giới hạn 16n 1  4n  16n 1  3n A T  B T   C T  D T  16 Lời giải Chọn C Ta có T  lim  lim   16n 1  4n  16n 1   lim 4n  3n 16.16   16.16  n n n n  lim 4n  3n 16n1  4n  16n1  3n 3 1   4 n n 1 3 16     16    4 4 n  1  44 (CỤM CÁC TRƯỜNG CHUYÊN ĐỒNG BẰNG SÔNG CỬU 3u  LONG-LẦN 2-2018) Cho dãy số  un  có lim un  Tính giới hạn lim n 2un  Câu 2: [1D4-1-2] A 1 B C D  Lời giải Chọn C Từ lim un  ta có lim 3un  3.2    2un  2.2  Câu 3: [1D4-1-2] (Sở GD ĐT Đà Nẵng-2017-2018 - BTN) Biết lim a tham số Khi a  a A 12 B 2 2n  n   với an  2 C D 6 Lời giải Chọn A 4  n3     2n  n  n n 21 Ta có lim  lim  2 an  a  n3  a   n   2 Suy a  Khi a  a    12 Câu 4: [1D4-1-2] (Lương Văn Chánh - Phú Yên – 2017 - 2018 - BTN) Tìm 1 1  L  lim         n   1 A L  B L   C L  D L  Lời giải Chọn C Ta có     k tổng cấp số cộng có u1  , d  nên     k   1  k  k 2 2    , k     k k  k  1 k k  *  2  2 2 2 2 L  lim              lim   n n 1  1 2 3  n 1  Câu 5: [1D4-1-2] (THPT Lê Quý Đôn - Hải Phòng - 2018 - BTN) Tính I  lim  n n   n       B I  A I   C I  1, 499 D I  Lời giải Chọn B Ta có: I  lim  n    3n n   n    lim  n   n2  3  lim  2 1  1 n n Câu 6: [1D4-1-2] (Sở Ninh Bình - Lần - 2018 - BTN) Trong giới hạn hữu hạn sau, giới hạn có giá trị khác với giới hạn lại? 3n  3n  n 1 lim n 1 A lim B lim 2n  2n  Lời giải Chọn C Ta có C lim 4n  3n  D 1 2 3n  n   lim  ; lim 2n   lim n   lim  lim n 3n  2n  3 2 n n lim  n 3 1 1 4n  n  lim  ; lim n   lim n  lim  lim  lim 1 n n 3n  n 1 3 1 n n 4 Câu 7: [1D4-1-2] (THPT Lê Quý Đôn - Quảng Trị - Lần - 2017 - 2018 - BTN) Tính lim n   4n   8n3  n A  C  B D Lời giải Chọn D Ta có: lim n  lim  n    4n   8n3  n  lim n          4n   2n  lim        12    12   n n      4n   2n   lim      2 n     3 3  4n  2n 8n  n  8n  n     1 3n n Ta có: lim n 2n  8n3  n  lim Vậy lim n   4n2   2n  2n  8n3  n   4n   2n  n 2n  8n3  n   Ta có: lim n  lim      n   8n  n   12   12  Câu 8: [1D4-1-2] (SỞ GD VÀ ĐT HƯNG YÊN NĂM 2018) Giới hạn lim (với a , b số nguyên dương A T  21 3n2  n a   3n   b a phân số tối giản) Tính T  a  b b C T  B T  11 D T  Lời giải Chọn B  1 n    n a  5 3n2  n  lim  lim   lim 4  3n    b  n6   n  Khi T  a  b  11 Câu 9: [1D4-1-2] Giới hạn dãy số  un  với un  A  3n  n là: 4n  B  C D Lời giải Chọn A    1  3n  n n lim un  lim  lim n     4n   4  n  1  Vì lim n3  ; lim n 4 n Câu 10: [1D4-1-2] Chọn kết lim A B n  2n  :  5n C  Lời giải Chọn D D      1     n  2n   n n  lim  lim  n      3  5n 5   n   5  1     n n  Vì lim n  ; lim  5 n Câu 11: [1D4-1-2] Giá trị lim  n  A 1 B   n   n   là:  C Lời giải D  Chọn C lim  n    n  n   n  1  n   n    lim    lim  n  n   n     n  1/ n   1/ n Câu 12: [1D4-1-2] lim A  5n  bằng: 3n  B C D  Lời giải Chọn A n 1 1   n 1 5 Ta có: lim n  lim n n 1 3 1     5 5 n n n n n  1  3 1  3 1 Nhưng lim 1       , lim             0, n   5  5 5 5 5   5n    Nên lim n 1 10 Câu 13: [1D4-1-2] lim bằng: n  n2  B 10 Lời giải A  Chọn C Ta có: lim * 10 n  n 1  lim n2 10 1 1  n n C D   1 Nhưng lim  Nên lim 1 10   lim  n n n 10 n4  n2   Câu 14: [1D4-1-2] lim 200  3n5  2n2 bằng: A B Lời giải Chọn D Ta có: lim 200  3n5  2n  lim n Nhưng lim D  C  200 3 n n 200    3  limn   n n Nên lim 200  3n5  2n2    1 Câu 15: [1D4-1-2] Tìm giá trị S  1      A 1   2n C 2 B    D D D Lời giải Chọn C 1  1  Ta có: S  1      n    2 2   1 Câu 16: [1D4-1-2] Tính giới hạn: lim A n 1  n 1  n C 1 B Lời giải Chọn B 1   n 1  n n n  0 Ta có: lim  lim n 1  n 1  1 n n Câu 17: [1D4-1-2] Chọn kết lim  A n2  1   n 2n B C Lời giải Chọn C 1 n2  1 n   310  lim   n  lim  2n 3 n  n2 4n  Câu 18: [1D4-1-2] Giá trị D  lim bằng: n2  3n  B  C Lời giải A  D Chọn D D4 Câu 19: [1D4-1-2] Giá trị A  lim A  2n2  3n  bằng: 3n2  n  B  C D Lời giải Chọn C  n n 2 Ta có: A  lim 3  n n 2 Câu 20: [1D4-1-2] Giá trị B  lim A  n2  2n n  3n2  bằng: B  C D 1 Lời giải Chọn D n2  n 1 n  n Ta có: B  lim  lim 1 n  3n2  1  n n  2n Câu 21: [1D4-1-2] Giá trị C  lim A  1  n  2 n17  B  bằng: C 16 Lời giải Chọn C D Ta có: C  lim 2 ) n (1  )9 (2  )4 (1  )9 n  lim n n n 1 n17 (1  17 )  17 n n n8 (2  Suy C  16 n2   3n3  Câu 22: [1D4-1-2] Giá trị D  lim A  2n4  n   n B  bằng: C 1 3 1 D Lời giải Chọn C   n 1  3    n n   3 Ta có: D  lim     1 n     1   n n   Câu 23: [1D4-1-2] Giá trị A  lim A    n2  6n  n bằng: B  C D Lời giải Chọn C Ta có A  lim   n2  6n  n  lim 6n  lim n2  6n  n  lim 6 1 1 n Câu 24: [1D4-1-2] Giá trị B  lim A   n2  n  n n2  n  n   n3  9n2  n bằng: B  C Lời giải Chọn D Ta có: B  lim  n3  9n2  n  9n2  lim n  9n2   n n3  9n2  n  lim  9 1 n   1 n     D 3.2 n  3n Câu 25: [1D4-1-2] Giá trị C  lim n1 n1 bằng: 3 A  C  B  D Lời giải Chọn C n 2    n n 3.2   Ta có: C  lim n1 n1  lim  n 3 2    3 Câu 26: [1D4-1-2] Giá trị D  lim A   n  2n  n3  2n B  C  bằng: D Lời giải Chọn C Ta có: D  lim  lim   n2  2n  n  lim 2n n2  2n  n  lim 1 1 n  lim n  2n  n ( n  2n )  n n  2n  n 2  lim  2n2 2 (1  )2    n n Câu 27: [1D4-1-2] Giá trị A  lim A      n2  2n   n bằng: B  C D Lời giải Chọn A   2 Ta có A  lim n          n n     2 Do lim n  ; lim         n n   Câu 28: [1D4-1-2] Giá trị B  lim A    2n2   n bằng: B  C Lời giải Chọn A D   Ta có: B  lim n         n   Câu 29: [1D4-1-2] Giá trị C  lim 3n3   n bằng: 2n4  3n   n B  C Lời giải A  D Chọn C 1   n 0 n n Chia tử mẫu cho n ta có C  lim 1 2   n n n (n  2)7 (2n  1)3 bằng: (n2  2)5 B  C Lời giải Câu 30: [1D4-1-2] Giá trị F  lim A  D Chọn C  2  1 1 n    n     8 Ta có: F  lim      n2    Câu 31: [1D4-1-2] Giá trị H  lim A    n2  n   n bằng: B  C D Lời giải Chọn C n1 n Ta có: H  lim  lim  2 1 n n1 n 1  1 n n 1 Câu 32: [1D4-1-2] Giá trị M  lim A  12    n2  8n3  2n bằng: B  C Lời giải Chọn A D n 2 3   K  lim  n  2 2   3 2n3  sin 2n  bằng: n3  B  C Lời giải Câu 43: [1D4-1-2] Giá trị A  lim A  D Chọn C A  lim 2 sin 2n  n3  1 n 3.3n  4n bằng: 3n 1  n 1 Câu 44: [1D4-1-2] Giá trị C  lim A  B C D Lời giải Chọn B C Câu 45: [1D4-1-2] Giá trị D  lim A  n1 n2 ( 3n2   3n2  1) B  C bằng: D Lời giải Chọn C D Câu 46: [1D4-1-2] Giá trị E  lim( n2  n   2n) bằng: A  B  C Lời giải D Chọn B E   Câu 47: [1D4-1-2] Giá trị F  lim A   B   n   n bằng: C D Lời giải Chọn A F   p Câu 48: [1D4-1-2] Giá trị H  lim( k n2   n2  1) bằng: A  B  C Đáp án khác Lời giải D Chọn C Xét trường hợp TH1: k  p  H   TH 2: k  p  H   TH 3: k  p  H  A    n2   n bằng: B  C Câu 49: [1D4-1-2] Giá trị K  lim n D Lời giải Chọn C K Câu 50: [1D4-1-2] Tính giới hạn dãy số C  lim A    4n2  n   2n : B  C D Lời giải Chọn D 1 n Ta có: C  lim  lim  1 n2  n   n 4  2 n n n1 1 n     (2n  1) 2n  1 B  C Lời giải Câu 51: [1D4-1-2] Tìm lim un biết un  A  Chọn C Ta có:     2n   n nên lim un  D Câu 52: [1D4-1-2] Tìm lim un biết un  2 B  A  n dau can C D Lời giải Chọn C Ta có: un  1 1  2 1    n 22 n 2 1 1  2 n , nên lim un  lim Câu 53: [1D4-1-2] Cho dãy số  un  với un   n un1  Chọn giá trị lim un n un số sau: A B C D Lời giải Chọn C Chứng minh phương pháp quy nạp toán học ta có n  2n , n  n n n 1 Nên ta có : n   n   n n  n  n    2 2 2 n n n n 1 1 Suy :  un    , mà lim     lim un  2 2  5n  Câu 54: [1D4-1-2] Kết lim n là:  2.5n A  B  50 Lời giải C D  25 Chọn B 1  0 n 25 25   lim n  lim n 25  n  2.5 02 50 3    5 n2 Câu 55: [1D4-1-2] Kết lim A  B   n  2n  3n4  : C  Lời giải D Chọn A lim  n  2n  3n   1  / n  1/ n   1      lim 3 / n 3 Câu 56: [1D4-1-2] Giới hạn dãy số  un  với un  A  3n  n là: 4n  B  C D Lời giải Chọn A lim un  lim 3n  n / n3   lim n3   4n  45/ n / n3  1  Vì lim n  ; lim 45/ n Câu 57: [1D4-1-2] lim A  3n  4.2n 1  bằng: 3.2n  4n B  C D Lời giải Chọn C n n  2 1  1         3    3n  4.2n 1  3n  2.2n   lim  lim  lim 3.2n  4n 3.2n  4n   n  n     1  4    n n n  2 1         n   3  3  3   lim   0 n  2  4     1  4  n3  2n  Câu 58: [1D4-1-2] Chọn kết lim  5n A B C  Lời giải Chọn D D  n  2n  lim  lim n  5n Vì lim n  ;lim 1  / n  / n3  3/ n5 1  / n  / n3  3/ n5 Câu 59: [1D4-1-2] Giá trị lim      n   3n  là: B  A  C D Lời giải Chọn B lim   n   3n   lim n Vì lim n  ;lim     1/ n   / n     1/ n   / n    Câu 60: [1D4-1-2] Giá trị lim  3n  5n  là: A  B  C D 2 C 2 D  Lời giải Chọn B   n  lim  3n  5n   lim 5n     1          n  Vì lim  ;lim     1  1      n n   Câu 61: [1D4-1-2] lim  n2 sin  2n3  bằng:   A  B Lời giải Chọn C n   sin  n        lim  n sin  2n3   lim n3      n    n   sin     2 Vì lim n3  ;lim    n    n n   sin  1  ;lim   lim    2   n n n  n    sin Câu 62: [1D4-1-2] Giá trị lim  n  A 1 B   n   n   là:  C Lời giải D  Chọn C lim  n    n  n   n  1  n   n    lim    lim  n  n   n     n  1/ n   1/ n Câu 63: [1D4-1-2] Cho dãy số un với un   n  1 2n  Chọn kết n  n2  lim un là: A  B C D  C D  Lời giải Chọn B Ta có: lim un  lim  n  1 2n  n  n2   n  1  2n  2  lim n4  n2  2n  2n  2n   lim n4  n2  ` 2 2  2 3  lim n n n n  1 1  n n Câu 64: [1D4-1-2] lim A  5n  : 3n  B Lời giải Chọn A n 1 1   n 1 5 Ta có: lim n  lim n n 1 3 1      5 5  1 n n n n   n   3 1  3 1 Nhưng lim 1       , lim             n   5  5 5 5 5   n 1   Nên lim n 1 * 10 Câu 65: [1D4-1-2] lim : n4  n2  B 10 Lời giải A  C D  C  D  Chọn C 10 Ta có: lim n4  n2  Nhưng lim  Nên lim n2 10 1   lim  n n n 10 n  n2  10 1 1  n n  lim  Câu 66: [1D4-1-2] lim 200  3n5  2n2 : A B Lời giải Chọn D Ta có: lim 200  3n5  2n  lim n Nhưng lim 200 3 n n 200    3  limn   n n Nên lim 200  3n5  2n2    u1  Câu 67: [1D4-1-2] Cho dãy sốgiới hạn (un) xác định :  Tìm kết un 1  , n   un  lim un A C 1 B Lời giải Chọn B Ta có: u1  ; u2  ; u3  ; u4  ; u5  ; D Dự đoán un  n với n  n 1 * Dễ dàng chứng minh dự đoán phương pháp quy nạp Từ lim un  lim n  lim  1 n 1 1 n  1  Câu 68: [1D4-1-2] Tìm giá trị S  1      n     A 1 B C 2 D Lời giải Chọn C 1  1  Ta có: S  1      n    2 2   1 Câu 69: [1D4-1-2] lim A 4n  2n1 : 3n  4n B Lời giải C D  Chọn B n Ta có: lim n 4n  2n1 3n  4n 1    1 n 1 2   lim  lim n n 3 3 2   4   4 4 4 n 1 3 Vì lim    0; lim    2  4 Câu 70: [1D4-1-2] Tính giới hạn lim A n 1  n 1  n C 1 B Lời giải Chọn B 1   n 1  n n n  0 Ta có: lim  lim n 1  n 1  1 n n D      2n  1 3n  B C 3 Lời giải Câu 71: [1D4-1-2] Tính giới hạn lim A D Chọn B 1      2n  1 n n n   lim  lim Ta có: lim 3n  3n  3 n 1  1  Câu 72: [1D4-1-2] Tính giới hạn lim      n  n  1  1.2 2.3 A B C D Khơng có giới hạn Lời giải Chọn B 1 1 1 n 1         1     Đặt : A  2 n n 1 n 1 n 1 1.2 2.3 n  n  1  1  n  lim      lim 1   lim 1.2 2.3 n n  n      1 n   1 Câu 73: [1D4-1-2] Tính giới hạn lim      1.3 3.5 n n      A B C Lời giải Chọn B Đặt: A 1    1.3 3.5 n  2n  1  2A  2    1.3 3.5 n  2n  1 1 1 1  A          3 5 n 2n  1 2n  2A  1  2n  2n  n  A 2n  D   1 n 1    lim  Nên lim     lim n  2n  1  2n  1.3 3.5 2 n   1 Câu 74: [1D4-1-2] Tính giới hạn lim      1.3 2.4 n n      A B C Lời giải Chọn A D    1 1 2 Ta có : lim         lim    n  n  2  1.3 2.4 n n  2  1.3 2.4 1 1 1 1   lim 1         2 n n2 1 1   lim 1    2 n2  1  Câu 75: [1D4-1-2] Tính giới hạn: lim     n(n  3)  1.4 2.5 A 11 18 B C D Lời giải Chọn A Cách 1:  1  1  1 1 1  lim      lim  1           n(n  3)  n n   3  1.4 2.5 1  1 1   lim  1         n  n  n     3n  12n  11  11 11  lim   18   n  1 n   n  3  18 100 Cách 2: Bấm máy tính sau:  x  x  3 so đáp án (có thể thay 100 số nhỏ lớn hơn) Câu 76: [1D4-1-2] (THPT Chu Văn An - Hà Nội - Lần - 2017 - 2018 - BTN) Giới hạn sin x  lim x  x A  C  B D Lời giải Chọn D 1  sin x  1  sin x  0    x x x x x sin x  Mà lim  nên lim  x  x x  x Ta có: Câu 77: [1D4-1-2] Chọn mệnh đề mệnh đề sau: A Nếu lim un   , lim un   B Nếu lim un   , lim un   D Nếu lim un  a , lim un  a C Nếu lim un  , lim un  Lời giải Chọn C Theo nội dung định lý  5n  3n  2.5n B  50 Lời giải Câu 78: [1D4-1-2] Kết lim A  C D  D 25 Chọn B 1  0 n  5n  25   lim n  lim n 25  n  2.5 02 50 3   2 5 Câu 79: [1D4-1-2] Giới hạn dãy số  un  A  3n  n với un  là: 4n  B  C Lời giải Chọn A   1   3n  n lim un  lim  lim n3  n    4n   4  n  1 3 n  Vì lim n  ; lim 4 n Câu 80: [1D4-1-2] Chọn kết lim A B n  2n   5n C  D  Lời giải Chọn D     1     n  2n   n n  lim  lim  n      3  5n 5   n   5  1     n n  Vì lim n  ; lim  5 n Câu 81: [1D4-1-2] Giá trị lim  n  A 1 B   n   n   là:  C Lời giải D  Chọn C lim  n    n  n   n  1  n   n    lim    lim  n  n   n     n  1/ n   1/ n Câu 82: [1D4-1-2] lim A  5n  bằng: 3n  B C Lời giải Chọn A n 1 1   n 1 5 Ta có: lim n  lim n n 1 3 1     5 5 D   1 n n n n   n  3 1  3 1 Nhưng lim 1       , lim             0, n   5  5 5 5 5   5n    Nên lim n 1 * 10 Câu 83: [1D4-1-2] lim bằng: n4  n2  B 10 Lời giải A  C D  C  D  Chọn C 10 Ta có: lim n  n 1 Nhưng lim  Nên lim 10 1 1  n n  lim n2 1 10   lim  n n n 10 n4  n2   Câu 84: [1D4-1-2] lim 200  3n5  2n2 bằng: A B Lời giải Chọn D Ta có: lim 200  3n5  2n  lim n Nhưng lim 200 3 n n 200    3  limn   n n Nên lim 200  3n5  2n2    1 Câu 85: [1D4-1-2] Tìm giá trị S  1      A 1   2n C 2 B Lời giải Chọn C 1  1  Ta có: S  1      n    2 2   1 Câu 86: [1D4-1-2] Tính giới hạn: lim n 1  n 1  n    D C 1 B A D D Lời giải Chọn B 1   n 1  n n n  0 Ta có: lim  lim n 1  n 1  1 n n Câu 87: [1D4-1-2] Chọn kết lim  n2  1   n 2n B A C Lời giải Chọn C 1 n2  1 n   310  lim   n  lim  2n 3 n  n Câu 88: [1D4-1-2] (THPT Hà Huy Tập - Hà Tĩnh - Lần - 2017 - 2018 - BTN) 4n   n  lim 2n  3 A B 2 C D  Lời giải Chọn C 4n   n   lim Ta có: lim 2n  4 1   n n n2    2 n Câu 89: [1D4-1-2] (THPT Phan Chu Trinh - ĐăkLăk - 2017 - 2018 - BTN) Tính 2n  2n  3n  A I   I  lim C I   B I  Lời giải Chọn B D I  2  n2     2n  n n   n n 0  lim I  lim  lim 3  2n  3n  2 2  n 2   n n n n   ... 1  1 n n Câu 6: [1D4-1-2] (Sở Ninh Bình - Lần - 2018 - BTN) Trong giới hạn hữu hạn sau, giới hạn có giá trị khác với giới hạn lại? 3n  3n  n 1 lim n 1 A lim B lim 2n  2n  Lời giải Chọn... hạn lim A D Chọn B 1      2n  1 n n n   lim  lim Ta có: lim 3n  3n  3 n 1  1  Câu 72: [1D4-1-2] Tính giới hạn lim      n  n  1  1.2 2.3 A B C D Khơng có giới hạn. ..  lim  lim   lim 4  3n    b  n6   n  Khi T  a  b  11 Câu 9: [1D4-1-2] Giới hạn dãy số  un  với un  A  3n  n là: 4n  B  C D Lời giải Chọn A    1  3n  n n

Ngày đăng: 17/02/2019, 18:43

TỪ KHÓA LIÊN QUAN

w