Các đường thẳng vuông góc với AB tại C và D cắt nửa đường tròn theo thứ tự tại E và F.. Chứng minh: a AE = BF ; b AE < EF Câu 6: Cho đường tròn tâm O đường kính AB và C là điểm chính gi
Trang 1ÔN TẬP HÌNH HOC CHƯƠNG III.
Câu 1: Từ điểm M ở ngoài đường tròn tâm O kẻ hai tiếp tuyến MA, MB đến đường tròn ( A, B (O) ) Cho AMB 600 Tính số đo của cung nhỏ AB và cung lớn AB
Câu 2: Cho đường tròn đường kính AB, tâm O Vẽ cung AC có số đo bằng 900 Tia phân giác của góc BOC cắt đường tròn tại D Kẻ đường kính DE Tìm số đo các cung nhỏ AE, AD; số đo các cung lớn BE và CE
Câu 3: Cho đường tròn O bán kính bằng 5cm Vẽ đường kính AB và góc AOC 900 Trên cung AC lấy điểm D sao cho Sd AD 300 Đường thẳng qua A song song với CDcắt đường tròn tại điểm thứ hai E Kẻ các đường vuông gócDH và EK từ D, E đến đường thẳng AB HAB K, AB
a) Tìm số đo các cung BE, DE
b) Tìm số đo các góc COE, DOE
c) Tính độ dài các đoạn thẳng DH, EK, AH, BK
Câu 4: Cho nửa đường tròn tâm O đường kính AB = 4cm Trên tia AB lấy điểm C và D sao cho AC = 1cm,
BD = 1cm Các đường thẳng vuông góc với AB tại C và D cắt nửa đường tròn theo thứ tự tại E và F
a) Chứng minh rằng EF song song với AB
b) Tìm chu vi tứ giác CDEF
Câu 5: Cho đường tròn tâm O bán kính bằng 2cm và AB là một dây cung của đường tròn O có độ dài
AB = 3cm Trên AB lấy các điểm C và D sao cho AC = CD = BD = 1cm Các tia OC, OD cắt đường tròn theo thứ tự tại E và Chứng minh:
a) AE = BF ; b) AE < EF
Câu 6: Cho đường tròn tâm O đường kính AB và C là điểm chính giữa của nửa đường tròn đường kính AB,
I là trung điểm của dây BC Tia OI cắt nửa đường tròn tại M
a) Tìm số đo các góc MAB, MBA
b) Tia AI cắt OC tại G, cắt đường tròn tại N Tính các tỉ số: OG NB,
OC NA
Câu 7: Cho nửa đường tròn đường kính AB = 2cm, dây CD song song với AB, C thuộc cung AD Biết chu
vi của hình thang ABCD bằng 5cm
a) Tính độ dài cạnh bên của hình thang;
b) Tính khoảng cách giữa hai dây AB và CD
Câu 8: Cho đường tròn tâm O bán kính R có dây cung BC sao cho BOC 1200 Các tiếp tuyến với đường tròn O tại B và C cắt nhau tại A
a) Chứng tỏ rằng tam giác ABC là tam giác đều
b) Tính độ dài các đoạn thẳng BC, OA theo R
Câu 9: Cho hai đường tròn (O) và (O’) ngoài nhau Đường thẳng OO’ cắt đường tròn (O) tại A và B, cắt
đường tròn (O’) tại C và D ( A, D nằm ngoài đoạn thẳng OO’ ) Đường tiếp tuyến chung ngoài của hai đường tròn tiếp xúc với (O) tại E và tiếp xúc với (O’) tại F Các đường thẳng AE, DF cắt nhau tại M, BE và
CF cắt nhau tại N Chứng minh:
a) MENF là hình chữ nhật
b) MN AB
Câu 10: Cho tam giác đều ABC nội tiếp trong đường tròn tâm O Điểm D nằm trên cung AC Gọi E là giao
điểm của AC và BD, F là giao điểm của AD và BC Chứng minh:
a) AFB ABD ; b) AE BF AB2
Trang 2Câu 11: Trên nửa đường tròn đường kính EF, tâm O, người ta lấy ba điểm A, B, C theo thứ tự E, A, B, C, F
Gọi M là điểm thuộc cung BC mà BM MC
a) Chứng minh AM 12AB AC
b) Chứng minh AOM 12AOB AOC
Câu 12: Từ một điểm A ở bên ngoài đường tròn (O) vẽ hai tiếp tuyến AM và AN, chúng tạo với nhau một
góc a 0
a) Tính số đo của cung lớn MN ;
b) Từ một điểm I trên cung nhỏ MN , vẽ tiếp tuyến với đường tròn cắt AM và AN lần lượt tại B và C Các tia OB và OC cắt đường tròn lần lượt tại D và E Chứng minh rằng số đo của cung nhỏ DE có giá trị không đổi khi điểm I chạy trên cung nhỏ MN
Câu 13: Cho tứ giác ABCD nội tiếp trong đường tròn (O) S là điểm chính giứa cung AB, SC và SD cắt AB
ở E và F
a) Chứng minh tứ giác CDEF nội tiếp được
b) Chứng minh SO là phân giác của góc ASB
c) DE và CF kéo dài cắt (O) ở N và M Chứng minh SO vuông góc với MN
Câu 14: Cho đường tròn (O) đường kính AB và một cung AC có số đo nhỏ hơn 90 Vẽ dây 0 CDAB và dây DE // AB Chứng minh rằng :
a/ AC BE ;
b/ Ba điểm C, O, E thẳng hàng
Câu 15: Cho tam giác ABC nội tiếp trong đường tròn (O) Một đường thẳng song song với tiếp tuyến tại A
gặp các cạnh AB, AC theo thứ tự tại D, E và cắt đường thẳng BC tại F
a) Chứng minh tứ giác BDEC nội tiếp
b) Chứng minh: AB AD = AC AE và FB.FC = FD.FE
c) Đường thẳng FD cắt (O) tại I, J Chứng minh rằng FI FJ = FD FE
Câu 16: Cho đường tròn (O;R) và dây cung AB không đi qua tâm O Gọi M, N lần lượt là điểm chính giữa
của cung nhỏ AB và cung lớn AB
a) Chứng minh rằng đường thẳng MN là đường trung trực của AB và MN đi qua O
b) AB cắt MN tại H Chứng minh: HM HN HA2 HB2;
c) Trường hợp AB R 2 Tính các AOB, độ dài OH, AM, AN theo R
Câu17: Cho hai đường tròn (O) và (O’) cắt nhau tại A và B Qua A kẻ một đường thẳng vuông góc với AB
cắt (O) tại C và (O’) tại D Tia CB cắt (O’) tại F, tia DB cắt (O) tại E
Chứng minh rằng AB là tia phân giác của góc EAB
Câu 18: Cho tam giác cân ABC ( AB = AC) nội tiếp trong đường tròn tâm O Vẽ đường kính AD, lấy điểm
M là điểm tuỳ ý chạy trên cung nhỏ AC Trên tia đối của tia MB lấy điểm E sao cho ME = MC
a) Chứng minh MD là tia phân giác của góc BMC
b) Chứng minh AM CE;
c) Khi M chạy trên cung nhỏ AC thì E chạy trên đường nào?
ÔN TẬP HÌNH HỌC CHƯƠNG III ( KHÓ )
Trang 3Câu 1: a) Cho tam giác ABC có diện tích là S, bán kính đường tròn ngoại tiếp tam giác là R và các cạnh
tam giác a, b, c Chứng minh công thức:
4
abc S R
b) Cho tam giác ABC có ba góc nhọn Điểm I nằm ở trong tam giác, gọi x, y, z lần lượt là khoảng cách từ I đến các cạnh BC, AB và AC của tam giác Chứng minh:
2 2 2 2
a b c
x y z
R
Câu 2: Cho hai đường tròn (O) và (O’) cắt nhau tại A và B Vẽ dây BC của đường tròn (O) tiếp xúc với
đường tròn (O’) Vẽ dây BD của đường tròn (O’) tiếp xúc với đường tròn (O) Chứng minh rằng:
a) AB2 AC AD
b) BC AC
BD AD
Câu 3: Từ điểm P ở ngoài đường tròn O, vẽ hai tiếp tuyến PA, PB Qua B kẻ Bx // PA nó cắt tiếp tuyến
đường tròn (O) tại C Gọi E là giao điểm thứ hai của PC với đường tròn (O) Gọi F là giao điểm của BE với
PA
a) Chứng minh rằng: tam giác PFB đồng dạng tam giác EFP, tam giác AFE đồng dạng tam giác BFA b) Chứng minh rằng: PF = FA
Câu 4: Từ một điểm M trên đường tròn ngoại tiếp tam giác ABC hạ các đường thẳng MD, ME, MF lần lượt
vuông góc với các đường thẳng BC, CA, AB
a) Chứng minh các tứ giác AFME, CMED nội tiếp;
b) Chứng minh ba điểm F, E và D thẳng hàng
Câu 5: Cho đường tròn tâm O đường kính AB Trên tiếp tuyến của đường tròn tại A lấy điểm M khác A Từ
M kẻ cát tuyến MCD ( C nằm giữa M và D) Kẻ hai tiếp tuyến MI và Bx ( Bx và MA nằm trên hai nửa mặt phẳng đối nhau bờ AB) Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F Chứng minh: a) Các tứ giác AOIM, MICE nội tiếp
b) MAE xBF ;
c) OE = OF
Câu 6: Cho nửa đường tròn tâm O, đường kính AB M là một điểm bất kì trên cung AB Kẻ MD vuông góc
với AB Qua một điểm C trên cung MB, kẻ tiếp tuyến Cx cắt DM tại I, DM cắt AC ở E và cắt BC kéo dài ở
F Chứng minh rằng:
a) Các tứ giác BCED và ADCF nội tiếp;
b) MECABC;
c) I là tâm của đường tròn ngoại tiếp tam giác FEC
Câu 7: Cho tam giác ABC vuông tại A và M là một điểm trên AC Đường tròn đường kính MC cắt BC tại
N; BM cắt đường tròn tại D; AD cắt đường tròn tại S; CD cắt AB tại J Chứng minh rằng:
a) Tứ giác ABCD nội tiếp;
b) CA là tia phân giác của SCB ;
c) J, M, N thẳng hàng
Câu 8: Cho đường tròn tâm O và đường thẳng xy nằm ngoài đường tròn đó Từ O kẻ OA vuông góc với xy
( A xy ) Qua A kẻ cát tuyến cắt đường tròn tại B và C Tiếp tuyến với (O) ở B và C cắt đường thẳng xy theo thứ tự ở D và E Chứng minh rằng: AD = AE
Trang 4Câu 9: Cho tam giác ABC vuông ở A Vẽ hai nửa đường tròn đường kính AB và AC ra phía ngoài
của tam giác Qua A vẽ cát tuyến MAN ( M thuộc nửa đường tròn đường kính AB, N thuộc nửa đường tròn đường kính AC)
a) Tứ giác BMNC là hình gì?
b) Tìm quỹ tích trung điểm I của MN khi cát tuyến MAN quay quanh A
Câu 10: Cho đưòng tròn (O;R) Từ một điểm P ở bên ngoài đường tròn, vẽ cát tuyến PAB với
đường tròn Tìm quỹ tích trung điểm H của dây AB
Câu 11: Xét đoạn thẳng AB Trên nửa mặt phẳng bờ AB kẻ các tia Ax và By song song với nhau
Một đường tròn tâm M tiếp xúc với AB, Ax, By theo thứ tự tại C, D, E
a) Nêu cách dựng đường tròn (M);
c) Tìm tập hợp điểm M
Câu 12: Cho một góc vuông xOy và một điểm cố định A nằm trong góc đó Một góc vuông có đỉnh
A và quay quanh A cắt Ox tại B và cắt Oy tại C Tìm quỹ tích trung điểm M của BC
Câu 13: Cho hai điểm A và B cố định Tìm quỹ tích tâm của những đường tròn mà từ A và B ta có
thể vẽ được hai tiếp tuyến AM và BN bằng nhau ( M và N là các tiếp điểm )
Câu 14: Cho một đường tròn tâm O và một đường thẳng d cắt đường tròn (O) tại hai điểm cố định
A và B Từ điểm M di động trên đường thẳng d ở ngoài đường tròn (O), ta kẻ hai tiếp tuyến MP và
MQ với đường tròn (O) Tìm quỹ tích tâm các đường tròn ngoại tiếp tam giác MPQ
Câu 15: Cho đường tròn (O) đường kính AB Vẽ đường thẳng d vuông góc với AB tại I cố định
Gọi M là điểm di động trên đường tròn (O) nhưng không trùng với hai điểm A hoặc B; nối MA và
MB cắt đường thẳng d tại C và D Tìm quỹ tích tâm của đường tròn qua A, C và D
Câu 16: Cho đường tròn (O) với AB và CD là hai đường kính vuông góc Gọi M là điểm di động
thuộc cung nhỏ AC; BM cắt CD tgại N Tìm quỹ tích tâm đường tròn ngoại tiếp tứ giác AMNO
Câu17: Cho đường tròn (O) và tiếp tuyến Ax với đường tròn tại A Từ điểm M di động trên tiếp
tuyến Ax, kẻ tiếp tuyến MB với đường tròn Tìm quỹ tích tâm I của đường tròn ngoại tiếp tam giác MAB
Câu 18: Cho nửa đường tròn tâm O, đường kính AB = 2R; Ax là tia di động quay quanh A và cắt
đường tròn tại C Trên tia Cx lấy CD = CB Tìm quỹ tích của D
Câu 19: Cho tam giác ABC đều nội tiếp trong đường tròn (O) Gọi D là một điểm di động trên
cung nhỏ BC Trên DA lấy điểm K sao cho DK = DB Tìm quỹ tích của K khi D di động trên cung nhỏ BC
Câu 20: Cho đường tròn (O) cố định, BC là dây cung cố định của đường tròn (O); A là điểm di
động trên cung lớn BC sao cho tam giác ABC luôn luôn có ba góc nhọn, M là điểm chính giữa của cung nhỏ BC Tìm quỹ tích trung điểm N của AM khi A di động