1. Trang chủ
  2. » Giáo án - Bài giảng

Tuyen chọn cac bai Hinh thi vao L10

6 922 3
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 76,5 KB

Nội dung

Đờng thẳng qua A vuông góc với AE cắt cạnh CD kéo dài ở F 1Chứng minh góc FED = góc EAB và AE = AF 1đ 2Vẽ đờng trung tuyến AI của tam giác AEF, kéó dài cắt CD tại K.. 2Chứng minh AH vuôn

Trang 1

Chuyên đề chứng minh hình học lớp

Bài tập 1: Cho Hình Vuông ABCD, điểm E thuộc cạnh BC Qua B kẻ đợng thẳng vuông góc với DE, đờng thẳng này cắt các đơng thẳng DE và DC theo thứ tự ở H và K

a)Chứng minh rằng BHCD là tứ giác nội tiếp;

b)Tính góc CHD?

c)Chứng minh KC.KD = KH.KB;

d)Khi E di chuyển trên cạnh BC thì điểm H di chuyển trên đờng nào ?

Bài tập 2 Cho nửa đờng tròn tâm O đờng kính AB Trên nửa mặt phẳng bờ AB cha nửa đờng tròn đã cho ngời ta

kẻ tiếp tuyến Axvà dây cung AC Tia phân giác của góc CAx cắt nửa đờng tròn tại D Các tia AD và BC cắt nhau

ở E, tia BD và Ax cắt nhau ở F AC và BD cắt nhau ở K

a Chứng minh rằng BD là phân giác của góc ABE và tam giác ABE cân?

b Chứng minh EK vuông góc với AB và tứ giác AKEF là hình thoi?

c Khi dây AC thay đổi ( C chạy trên nửa đờng tròn đã cho) Tìm tập hợp điểm E

( Thi lớp 10 năm học 94-95 )

Bài tập 1 Cho nửa đờng tròn đờng kính AB C là điểm chạy trên nửa đờng tròn ( Không trùng với A và B ) CH

là đờng cao của tam giác ACB I và K lần lợt là chân đờng vuông góc hạ từ H xuống AC và BC, M và N lần lợt là trung điểm AH và HB

1)Tứ giác CIHK là hình gì ?, so sánh CH và IK

2)Chứng minh tứ giác AIKB là tứ giác nội tiếp

3)Xác định vị trí của C để:

a)Chu vi tứ giác MIKN lớn nhất b)Diện tích tứ giác MIKN lớn nhất

( Thi lớp 10 năm học 95-96 )

Bài tập Cho đờng tròn tâm O bàn kính R Hai đờng kính AB và CD vuông góc với nhau E là điểm chạy trên cung nhỏ CB Trên tia đối của tia EA lấy điểm M sao cho EM = EB

a) Tứ giác ACBD là hình gì?

b) Chứng minh ED là phân giác của góc AEB và đờng CE vuông góc với BM

c) Khi E thay đổi, chứng minh M chạy trên một đờng tròn Xác định tâm và bán kính của đờng tròn đó

( Thi lớp 10 năm học 95-96 )

Bài tập Cho tam giác cân ABC(AB=AC>BC) nội tiếp trong đờng tròn tâm O M là điểm bất kì trên cung nhỏ AC của đờng tròn Tia Bx vuông góc với AM cắt đờng thẳng CM ở D

a Chứng minh góc AMD = góc ABC=góc AMB và MB = MD

b Chứng minh khi M di động thì D chạy trên một đờng tròn cố định Xác định tâm và bán kính của đờng tròn đó

c Xác định vị trí của M để tứ giác ABMD là hình thoi

( Thi lớp 10 năm học 96-97 )

Bài tập Cho hình vuông ABCD E là điểm thuộc cạnh BC Đờng thẳng qua A vuông góc với AE cắt cạnh CD kéo dài ở F

1)Chứng minh góc FED = góc EAB và AE = AF (1đ)

2)Vẽ đờng trung tuyến AI của tam giác AEF, kéó dài cắt CD tại K Đờng thẳng qua E song song với AB cắt AI tại G Tứ giác FKEG là hình gì ?(1đ)

3)Chứng minh AF2 KF CF (1đ)

( Thi lớp 10 năm học 96-97 )

Bài tập Cho tam giác ABC có góc A = 450, hai góc B và C đều nhọn Đờng tròn tâm O đờng kính BC cắt AB ở D

và AC ở E BE cắt CD tại H

1)Tính các góc BDC, BEC, ACD và so sánh hai đoạn thẳng AD và CD

2)Chứng minh AH vuông góc với BC

3)Chứng minh OE là tiếp tuyến của đờng tròn ngoại tiếp tam giác ADE

( Thi lớp 10 năm học 97-98 )

Trang 2

Bài tập Cho nửa đờng tròn tâm O đờng kính AB, C thuộc nửa đờng tròn, CH vuông góc với AB I và K lần lợt là tâm các đờng tròn nội tiếp các tam giác CAH và CBH Đờng thẳng Ik cắt CA, CB lần lợt tại M, N

a Chứng minh CM=CN( tgnt,tgđ d)

b Tìm vị trí của C để tứ giác ABNM nội tiếp

c Vẽ CD vuông góc vơí MN CMR CD luôn đi qua một điểm cố định khi C di động trên cung AB (CDgvới O)

d Tìm vị trí của C để diện tích tam giác CMN lớn nhất (CM=CH)

Bài tập Cho đờng tròn tâm O bán kính R và điểm A ở ngoài đờng tròn AC và AB là hai tiếp tuyến của đờng tròn O, B và C là tiếp điểm Vẽ CH vuông góc với AB tạ H và cắt OA tại D

1) Chứng minh CH // OB, COD = BOD = CDO và so sánh hai đoạn thẳng CO và Cd

2) Tứ giác CDBO là hình gì? tại sao ?

Trong trờng hợp đặc biệt điểm D nằm trên đờng tròn (O), hãy tính diện tích tứ giác ABOC theo R

( Thi lớp 10 năm học 97-98 )

Bài tập Xét tam giác vuông ABC nội tiếp nửa đờng tròn tâm O, đờng kính BC Kẻ đờng cao AH, đờng tròn tâm I

đờng kính AH cắt nửa đờng tròn tại điểm thứ hai là G, cắt AB, AC lần lợt tại D và E

a Chứng minh rằng tứ giác BCED nội tiếp

b các tiếp tuyến tại D và E của đờng tròn tâm I lần lợt cắt BC tại M, N Chứng minh rằng M, N lần lợt là trung điểm của BH và CH

c Chứng minh rằng AG, DE, BC đồng quy

( Thi lớp 10 năm học 97-98 )

Bài tập Cho tam giác đều ABC nội tiếp trong đờng tròn tâm O P là một điểm trên cung BC Trên tia PA lấy điểm

Q sao cho PQ = PB

a)Tính góc BPQ

b)Chứng minh BQA = BPC từ đó suy ra PA = PB + PC

c)Qua P dựng các đờng thẳng song song với các cạnh của ABC Đờng thẳng song song với BC cắt AB ở

D, đờng thẳng song song với AC cắt BC ở E, Đờng thẳng song song với AB cắt AC ở F Chứng minh các tứ giác PCFE, BDPE là các tứ giác nội tiếp

d)Chứng minh 3 điểm D, E và F thẳng hàng

( Thi lớp 10 năm học1999-2000 )

Bài tập Cho tam giác ABC (góc A < 900 ) nội tiếp trong đờng tròn tâm O Các tiếp tuyến với đờng tròn (O) ở B

và C cắt nhau tại N

a) Chứng minh tứ giác OBNC nội tiếp một đờng tròn

b) Gọi I là điểm chính giữa của cung BC Chứng minh I là tâm đờng tròn nội tiếp tam giác NBC

c) Gọi H là trực tâm tam giác NBC Chứng minh hai điểm O và H đối xứng với nhau qua BC

d) Qua A dựng đờng thẳng song song với BC cắt đờng tròn (O) tại M Gọi D là trung điểm của BC, đờng thẳng AD cắt đờng tròn (O) tại điểm thứ hai là K Chứng minh

CK

CM BK

BM

( Thi lớp 10 năm học 1999-2000 )

Bài tập Cho tam giác ABC vuông ở C (CA>CB) I là điểm thuộc cạnh AB Trên nửa mặt phẳng bờ Ab có chứa

điểm c vẽ các tia Ax, By vuông góc với AB Đờng thẳng vuông góc với IC vẽ qua C cắt Ax và By lần lợt tại M và

N

a) Chứng minh tứ giác BNCI nội tiếp; Góc MIN = 900

b) Chứng minh tam giác CAI đồng dạng với tam giác CBN, tam giác ABC đồng dạng với tam giác MNI c) Tìm vị trí của điểm I sao cho diện tích tam giác MIN gấp đôi diện tích tam giác ABC

( Thi lớp 10 năm học2000-2001 )

Bài tập Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O) Các đờng cao BD, CE của tam giác cắt nhau tại

H và cắt đờng tròn (O) tại điểm thứ hai theo thứ tự tại N và M

a)Chứng minh tứ giác EBCD nội tiếp

b)Chứng minh : MN//ED

Trang 3

c)Chứng minh OA ED

d)A di động trên cung lớn BC của đờng tròn (O), chứng minh rằng đờng tròn ngoại tiếp tứ giác AEHD có

đờng kính không đổi

( Thi lớp 10 năm học2001-2002 )

Bài tập Cho tam giác ABC có 3 góc nhọn, trực tâm H Vẽ hình bình hành BHCD, I là trung điềm của BC

a/ Chứng minh rằng tứ giác ABCD nội tiếp đờng tròn đờng kính AD

b/ Chứng minh : góc CAD = góc BAH

c/ Gọi G là trọng tâm của tam giác ABC, O là tâm đờng tròn ngoại tiếp tứ giác ABCD Chứng minh ba

điểm H, G , O thẳng hàng và OH = 3OG

( Thi lớp 10 năm học2001-2002 )

Bài tập Cho tam giác ABC có các góc đều nhọn nội tiếp đờng tròn tâm O Trên cung nhỏ AC lấy một điểm M ( M không trùng với A và C ) Từ M hạ MD vuông góc với BC; ME vuông góc với AC (D thuộc BC; E thuộc AC)

a)Chứng minh tứ giác DCME nội tiếp đợc trong một đờng tròn

b)Chứng minh tam giác AMB đồng dạng với tam giác EMD

c)Gọi I và J lần lợt là trung điểm của AB, ED Chứng minh IJ vuông góc với MJ

( Thi lớp 10 năm học2001-2002 )

Bài tậpCho tam giác ABC nội tiếp đờng tròn tâm (O) M và N theo thứ tự là điểm chính giữa của các cung AB và

AC Gọi giao điểm của MN với AB , Ac theo thứ tự là H và K

a)Chứng minh rằng tam giác AHK là tam giác cân tại đỉnh A

b)Gọi I là giao điểm của BN và CM Chứng minh rằng AIMN

c)Chứng minh rằng CNKI là tứ giác nội tiếp

d)Tam giác ABC có thêm điều kiện gì để AI song song với NC

( Thi lớp 10 năm học2002-2003 )

Bài tập Cho nửa đờng tròn đờng kính AB = 2R C là trung điểm của cung AB Trên cung AC lấy điểm F bất kỳ Trên dây BF lấy điểm E sao cho BE = AF

a) Chứng minh AFC = BEC

b)Gọi D là giao điểm của đờng thẳng AC với tiếp tuyến tại B của đờng tròn Chứng minh tứ giác BECD nội tiếp

c)Giả sử F di động trên cung AC Chứng minh rằng khi đó E chuyển động trên một cung tròn Hãy xác

định cung tròn và bán kính của cung tròn đó

( Thi lớp 10 năm học2002-2003 )

Bài tập Cho đờng tròn tâm O bán kính R, hai điểm C và D thuộc đờng tròn, B là trung điểm của cung nhỏ CD Kẻ

đờng kính BA Trên tia đối của tia AB lấy điểm S Nối S với C cắt (O) tại M, MD cắt AB tại K, MB cắt AC tại H

a)Chứng minh góc BMD bằng góc BAC, từ đó suy ra tứ giác AMHK nội tiếp

b)Chứng minh : HK // CD

c) Chứng minh : OK.OS = R2

( Thi lớp 10 năm học 2003-2004 )

Bài tập Cho tam giác ABC có ba góc nhọn nôi tiếp trong đờng tròn tâm O Các đờng cao BD và CE của tam giác cắt nhau tại H

a Chứng minh rằng tứ giác BDCE nội tiếp

b Chứng minh: AB.ED = AD.BC

c Dựng đờng tròn tâm (H, HA) cắt các đờng thẳng AB, AC lần lợt ở M và N Chứng minh rằng AO vuông góc với MN

( Thi lớp 10 năm học 2003-2004 )

Bài tập Cho đờng tròn (O, R), hai đờng kính AB và CD vuông góc với nhau M là một điểm thay đổi trên đoạn thẳng AO ( M khác O và A), CM cắt đờng tròn (O, R) tại điểm thứ hai là N Từ N vẽ tiếp tuyến với đờng tròn và

từ M vẽ đờng thẳng vuông góc với AB chúng cắt nhau tại E

a Chứng minh góc CMB = góc CDN

Trang 4

b Chứng minh các tứ giác DNMO và DENO là các tứ giác nội tiếp.

c Gọi I là một điểm trên đờng kính CD, MI cắt đờng tròn (O, R) tại hai điểm R và S (MR< MS) Chứng minh rằng

MI MS

MR

1 1

1

 biết góc MCO = 30o

( Thi lớp 10 năm học 2004-2005 )

Bài tập Cho tam giác ABC vuông tại A, đờng cao AH ve đờng tròn tâm O đờng kính AH, đờng tròn này cắt AB,

AC lần lợt tại E và F

a Chứng minh tứ giác AEHF là hình chữ nhật

b Chứng minh BEFC là tứ giác nội tiếp

c Gọi K là trung điểm của HC Đờng vuông góc với EC tại C cắt FK tại P Chứng minh rằng BP song song với AC

( Thi lớp 10 năm học 2004-2005 )

Bài tập Cho tam giác ABC ( góc A< 90 ) nội tiếp trong đờng tròn (O) Các đờng cao BD và CE ( D AC, E 

AB ) lần lợt cắt đờng tròn ( O ) tại các điểm D’ và E’ Gọi I là trung điểm của đoạn thẳng BC và O’ là tâm đờng tròn ngoại tiếp tam giác AED Chứng minh rằng:

a) Tứ giác BCED nội tiếp đợc trong một đờng tròn

b) DE// D’E’

c) OA ED

d) Tứ giác OIO’A là hình bình hành

Bài tập Từ một điểm A ở bên ngoài đờng tròn (O) kẻ hai tiếp tuyến AB và AC với đờng tròn (B, C thuộc đờng tròn (O) ) Gọi M là trung điểm của AB, I là giao điểm của đờng thẳng MC với đờng tròn (O), D là giao điểm thứ hai của đờng thẳng AI với đờng tròn (O) Chứng minh rằng

a) Tứ giác ABOC nội tiếp đợc trong một đờng tròn

b) MB2 = MI MC

c) Tam giác BCD cân

( Thi lớp 10 năm học 2005-2006 )

Bài tập Cho đờng tròn (O;R), đờng kính AB Dây MN vuông góc với AB tại I (I≠A) sao cho IA<IB Trên đoạn

MI lấy điểm E (E≠M, E≠I) Tia AE cắt đờng tròn (O) tại điểm thứ hai là K

1) Chứng minh tứ giác IEKB nội tiếp đợc trong một đờng tròn

2) Chứng minh AE.AK=AI.AB

3) Chứng minh tích AE.AK +BI.BA không đổi

4) Khi MN di động hãy tìm giá trị lớn nhất của chu vi tam giác IMO

( Thi lớp 10 năm học 2005-2006 )

Bài tập Cho đờng tròn (O;R) dây cung AB (AB≠2R) Lấy điểm C thuộc tia AB sao cho AB < AC Từ C kẻ hai tiếp tuyến CD và CE với đờng tròn (O) (D, E là tiếp điểm) Gọi F là trung điểm của đoạn AB

a) Chứng minh bốn điểm C, D, E, F nằm trên một đờng tròn

b) Gọi H là trực tâm của CDE Tính EH theo R

c) Giả sử AD // CE Chứng minh tia đối của tia BE là phân giác của góc CBD

( Thi lớp 10 năm học 2005-2006 )

Bài tập Cho đờng tròn (O) và một đờng thẳng a không có điểm chung với đờng tròn (O) Từ một điểm A thuộc đ-ờng thẳng a, kẻ hai tiếp tuyến AB và AC với đđ-ờng tròn (O) (B, C thuộc đđ-ờng tròn (O)) Từ O kẻ OH vuông góc với đờng thẳng a tại H Dây BC cắt OA tại D và cắt OH tại E

1 Chứng minh tứ giác ABOC nội tiếp đợc trong một đờng tròn

2 Gọi R là bán kính của đờng tròn (O) Chứng minh OH.OE = R2

3 Khi A di chuyển trên đờng thẳng a, chứng minh BC luôn đi qua một điểm cố định

( Thi lớp 10 năm học 2006-2007 )

Bài tập Cho đờng tròn (O) đờng kính AB Một dây CD cắt AB tại H Tiếp tuyến tại B của đờng tròn (O) cắt tia

AC, AD lần lợt tại M và N

1 Chứng minh tam giác ACB đồng dạng với tam giác ABM

2 Các tiếp tuyến tại C và D của đờng tròn (O) cắt MN lần lợt tại E và F Chứng minh rằng EF = MN

2 1

Trang 5

3.Xác định vị trí của dây CD để tam giác AMN là tam giác đều.

( Thi lớp 10 năm học 2006-2007 )

Bài tập Cho đờng tròn tâm ( O,R) đờng kính BC; A là một điểm nằm trên đờng tròn ( A không trùng với B,C) Đ-ờng phân giác trong AD ( D thuộc BC ) của tam giác ABC cắt đĐ-ờng tròn tâm (O) tại điểm thứ hai M, vẽ đĐ-ờng thằng DE vuông góc với AB (E thuộc AB), DF vuông góc với AC (F thuộc AC)

1.Cm tứ giác AEDF nội tiếp

2.Chứng minh AB.AC= AM.AD

3.Khi điểm A di động trên nửa đờng tròn đờng kính BC Tìm vị trí của điểm A để diện tích tứ giác AEM lớn nhất.

( Thi lớp 10 năm học 2007-2008 )

Bài tập Cho tam giác ABC có 3 góc nhọn nội tiếp đờng tròn tâm O; Các đờng cao AD và CE của tam giác ABC cắt nhau tại H Vẽ đờng kính BM của đờng tròn tâm O

1 Cm EHDB là tứ giác nội tiếp

2 Cm tứ giác AHCM là hình bình hành

3 Cho số đo góc ABC bằng 600 Chứng minh BH=BO

( Thi lớp 10 năm học 2007-2008 )

Bài tập Cho đoạn thẳng AB và điểm M nằm giữa A và B Trên một nửa mặt phẳng bờ AB vẽ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm C, từ M kẻ MD vuông góc với MC ( D thuộc By ) Đ ờng tròn đờng kính MC cắt CD tại E AE cắt CM tại I ; BE cắt DM tại K

1) Chứng minh tam giác AEB đồng dạng với tam giác CDM

2)Chứng minh IMKE là tứ giác nội tiếp

3) Chứng minh IK là tiếp tuyến của đờng tròn ngoại tiếp tam giác EDK

4) Giả sử A,B,C cố định Hãy xác định vị trí điểm M sao cho diện tích tứ giác ABCD có giá trị lớn nhất Bài tập Cho hai đờng tròn (O) và (O’) cắt nhau tại A và B (góc OAO’ > 900) Tiếp tuyến tại A của (O’)cắt (O) tại

C, tiếp tuyến tại A của (O) cắt (O’) tại D Kẻ đờng kính COE của (O) và DO’F của (O’) Chứng minh:

a)AB2 = BC.BD

b)gócAOC = gócAO’D

c)5 điểm B, O, E, F, O’ cùng thuộc một đờng tròn

Bài tập Cho tam giác ABC (góc A =900, AB <AC) nội tiếp trong nửa đờng tròn (O) đờng kính BC Kẻ đờng cao

AH, trên nửa mặt phẳng bờ BC có chứa điểm A, vẽ nửa đờng tròn (I) đờng kính BH và nửa đờng tròn (K) đờng kính CH

a)Chứng minh tứ giác AMHN là hình chữ nhật

b)Chứng minh BMNC là một tứ giác nội tiếp

c)Cho biết BC = 50cm, MN = 20cm Tính diện tích hình đợc giới hạn bởi ba nửa đờng tròn (O), (I) và (K) Bài tập Cho tam giác ABC (AC > AB), góc BAC > 900) Vẽ đờng tròn (O1) đờng kính AB và đờng tròn (O2) đờng kính AC (O1) cắt (O2) tại điểm thứ 2 là D Đờng thẳng AB cắt (O2)tại điểm thứ 2 là E, đờng thẳng AC cắt (O1) tại

điểm thứ 2 là F, DF kéo dài cắt đờng tròn ngoại tiếp tam giác AFE tại G Chứng minh rằng :

a) Tứ giác BCEF nội tiếp đợc trong một đờng tròn

b) Các đờng thẳng AD, CE và BF đồng quy

c) DE = DG

Bài tập Cho tam giác ABC có ba góc nhọn, các đờng cao BD và CE cắt nhau tại H (D AC, E AB ) Gọi I là trung điểm của BC, F là trung điểm của AH và K là điểm đối xứng với H qua I Chứng minh rằng :

a) Tứ giác BHCK là hình bình hành

b) Tứ giác ABKC là tứ giác nội tiếp

c) EF là tiếp tuyến của đờng tròn đờng kính BC

Trang 6

Bài tập Cho tam giác ABC vuông tại A (AB > AC), đờng cao AH Trên nửa mặt phẳng bờ BC chứa A vẽ nửa đờng tròn đờng kính BH cắt AB tại E và nửa đờng tròn đờng kính CH cắt AC tại F Chứng minh rằng:

a) Tứ giác AEHF là hình chữ nhật

b) EF là tiếp tuyến chung của hai đờng tròn đờng kính BH và CH

c) Tứ giác BCEF nội tiếp

Bài tập Cho tam giác ABC (AB khác AC) Đờng trung trực của đoạn BC cắt BC tại M và cắt tia phân giác của góc BAC tại I

a) Chứng minh rằng 4 điểm A, B, I, C cùng thuộc một đờng tròn

b) Gọi H, K theo thứ tự là hình chiếu của I lên AB, AC Chứng minh rằng ba điểm H, M, K thẳng hàng c)Khi góc A khác 900, gọi E, F lần lợt là giao điểm của các đờng thẳng IK với AB và IH với AC Chứng tỏ: 2góc KEF=góc BAC

Bài tập Cho tam giác ABC cân (AB = AC) nội tiếp trong đờng tròn (O) M là điểm bất kì thuộc cạnh đáy BC Qua

M dựng đờng tròn (D) tiếp xúc với AB tại tại B và đờng tròn (E) tiếp xúc với AC tại C Gọi N là giao điểm thứ hai của hai đờng tròn đó

a) Chứng minh N nằm trên đờng tròn (O) và MN luôn đi qua một điểm cố định

b) Chứng minh rằng tổng hai bán kính của các đờng tròn (D) và (E) là không đổi

c) Tìm tập hợp trung điểm I của đoạn DE khi M chạy trên cạnh đáy BC

Ngày đăng: 17/08/2013, 17:10

TỪ KHÓA LIÊN QUAN

w