Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P.. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P.. Vector Mechanics for Engineers: Statics
Trang 1Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Chapter 18, Solution 1
Total length of rod l =2a+2b=1.8 m
1.8
m l
Trang 3Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 4Chapter 18, Solution 3
23.6
Trang 5Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Pr incipal moments of inertia:
9.7
θ = ° !
Trang 7Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 8θ = ° !
Trang 9Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 11Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Chapter 18, Solution 9
2
601.86335 lb s /ft, 2.4 in 0.2 ft, 10 in 0.83333 ft
G x x
x
H I
0.013910 rad/s1.29400
G y y
y
H I
ωω
(a) Rate of spin
Trang 13Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 14Note that u must be either perpendicular to λ or equal to zero But, if u is perpendicular to
λ, × uλ cannot be equal to zero
/
rG A is parallel to λ and point G lies on the fixed axis
Trang 15Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 17Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 18( ) 12.5664cos
13.9085
θ = A z =
A H
Trang 19Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 20( ) 12.5664cos
13.9085
θ = − A z = −
A H
Trang 21Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Chapter 18, Solution 17
210
0.31056 lb s /ft32.2
W m g
Trang 22Chapter 18, Solution 18
210
0.31056 lb s /ft32.2
W m g
Trang 23Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Chapter 18, Solution 19
Since the body lies in the xy plane, I yz= 0
( )I mass=ρ( )I area.For the pairs of area elements shown,
Trang 24Angular velocity ωx=20 rad/s, ωy=ωz= 0
Angular momentum about G
Trang 25Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 26Impulse-momentum principle: Before impact, v =0, HG = 0
Solving, ωx = −3.6087 rad/s, ωy = −3.1952 rad/s, ωz = 9.5855 rad/s
(3.61 rad/s) (3.20 rad/s) (9.59 rad/s)
Trang 27Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 28Impulse-momentum principle: Before impact, v =0, HG = 0
Trang 29Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 30Linear momentum components
Trang 31Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 32Linear momentum components
Trang 33Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 34Constraint of the supporting cable: v y = 0
Impulse-momentum principle: Before impact, v =0, HG =0
(a) Linear momentum: F( )∆ + ∆ =t T tj mv Resolve into components
Trang 35Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
( )H G x = I x xω −I xy yω −I xz zω =0.35ma2ωx +0.3ma2ωy −0.2ma2ωz
( )H G y = −I xy xω +I y yω −I yz zω = 0.3ma2ωx +0.66667ma2ωy +0.2ma2ωz
( )H G z = −I xz xω −I yz zω +I z zω = −0.2ma2ωx +0.1ma2ωy +0.75ma2ωz
Trang 36Constraint of the supporting cable: v y = 0
Impulse-momentum principle: Before impact, v =0, HG =0
(a) Linear momentum: F( )∆ + ∆ =t T tj mv Resolve in components
Trang 37Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 39Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 41Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
about the origin for a system of particles consisting of the probe plus the meteorite:
Trang 42Initial linear momentum of the space probe, (kg m/s :⋅ ) m′ ′ =v0 0
Final linear momentum of the space probe, (kg m/s :⋅ )
Trang 43Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Conservation of linear momentum of the probe plus the meteorite, (kg m/s :⋅ )
Trang 45Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Substitute values for , , and I I x y I and resolve into components z
Trang 47Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Substitute values for , , and I I x y I and resolve into components z
2ma ωz
=
k ωz = 0Solving (1), (2) and (3) simultaneously for ω ωx, y and B t∆ ,
∆ = −
Trang 48Positions of jets A and B relative to mass center
Trang 49Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Solving (1) and (2) simultaneously,
F t t
F t t
Trang 50Chapter 18, Solution 34
Data from Problem 18.33
Mass of satellite:m=1200 kg
Initial angular velocity: ω0=(0.050 rad/s) (i + 0.075 rad/s)j
Principal radii of gyration:
Jet thrust =50 N parallel to the y axis
Principal moments of inertia
Positions of jet B relative to mass center rB G/ =(1.2 m) (i − 1.6 m)j
Trang 51Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Since (F t∆)B is negative, the 50-N thrust of jet B acts in the negative y direction
(a) Operating time of jet B
F t t
Trang 521:
3m c a ωy
2 0
1:
amv = ma ω −mav
Trang 53Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
After using (2) to eliminate ,v (3) and (4) become y 4 0
3cωx +aωz = v
0
43
Trang 541:
2 0
1:
Trang 55Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
After using (2) to eliminate v y, (3) and (4) become 4 0
3cωx +aωz = v
04
Trang 56But T >0, 0, 0H0 > ω >
cosθ >0 θ <90°
Trang 57Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
(b) Each particle of mass ( )∆m idescribes a circle of radius ρi
The speed of the particle is v i = ρ ωi
Its kinetic energy is ( ) 1( ) 2 1( ) 2 2
Trang 59Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
T = ma ω "
Trang 60Chapter 18, Solution 41
23.6
= 0.1118 lb s /ft 24 in 2 ft32.2
(1200 2)( )
125.664 rad/s60
Trang 61Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
T = mr ω "
Trang 62T = ma ω "
Trang 63Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 642 20.203
T = maω "
Trang 65Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 67Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 68Chapter 18, Solution 48
2
100.31056 lb s /ft32.2
W m g
6.47 ft lb
Trang 69Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 70F t T
m
∆
Trang 71Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Let HA be the angular momentum of the probe and m′ be its mass Conservation of angular momentum
about the origin for a system of particles consisting of the probe plus the meteorite:
Trang 72Its moment about the origin, ( 2 )
kg m /s :⋅
A× m = − v y − v z − v x + v y
Initial linear momentum of the space probe, (kg m/s :⋅ ) m′ ′ =v0 0
Final linear momentum of the space probe, (kg m/s :⋅ )
Trang 73Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 742ma ωz
=
Trang 75Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Solving (1), (2) and (3) simultaneously for ω ωx, y and B t∆
0
1,6
Trang 761:
2 0
1:
Trang 77Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
After using (2) to eliminate v y,(3) and (4) become
04
3cωx +aωz =v
04
Trang 79Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
A = maω
H& i!
Trang 80Chapter 18, Solution 57
23.6
0.1118 lb s /ft 24 in 2 ft32.2
(1200)( )2
125.664 rad/s60
Trang 81Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
sin cos
2 21
sin cos4
G = mr ω β β
Trang 83Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 85Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Trang 87Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
Chapter 18, Solution 63
Area of sheet metal: 1 2 2 2 1 2 3 2 0.0432 m2
Trang 88For calculation ofI xz,use pairs of elements dA and 1 dA2: dA2 = dA 1.
Trang 89Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
2 3
Trang 90Chapter 18, Solution 64
34.722 kg/m mass per unit area
Trang 91Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
For calculation ofI xz,use pairs of elements dA1 and dA2: dA2 =dA1
Trang 92( ) ( )
2 3
Trang 93Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
2 2
y
mr A
Trang 942 2
Trang 95Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P Beer, E Russell Johnston, Jr.,
Elliot R Eisenberg, William E Clausen, David Mazurek, Phillip J Cornwell
© 2007 The McGraw-Hill Companies
12
0.0020940 lb s ft2.76106
Trang 96Chapter 18, Solution 67
The mass center G lies on fixed axis of rotation so that a=0