1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual vector mechanics engineers dynamics 8th beer chapter 19

219 312 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 219
Dung lượng 10,45 MB

Nội dung

2 2 10 lb 0.31056 lb s /ft32.2 ft/s n k m ⋅From free fall of the collar Now to simplify the analysis we measure the displacement from the position of static displacement of the spring, u

Trang 3

Simple Harmonic Motion

( )( )90 12

41.699 rad/s 220

32.2

n

k

f m

Trang 4

64.343 rad/s

=

20.90765 s

n n

πτω

n n

Trang 5

In Simple Harmonic Motion

Hz 4.6729 Hz 280.37 r/min Hz

Trang 6

v l

θω

For a simple pendulum

n

g l

n

g l

v l

θω

Trang 8

k m

6.2161Hz

n n

7.728 ft/s

0.24032.2 ft/s

m s

a g

Trang 9

k m

Trang 11

At both 600 rpm and 1200 rpm, the maximum acceleration is just equal to g

m

Trang 12

k m

Now x(0) = =0 x msin(0+φ)⇒φ = 0Then

(0) m ncos(0 0)

x& = x ω +

or 2.5 m/s =(x m)m(16.903 rad/s) ⇒ x m = 0.14790 mThen x =(0.14790 m sin 16.903 rad/s) ( )t

(a)

At x =0.06 m: 0.06 m =(0.14790 m) sin 16.903 rad/s( )t

or

1 0.06 msin

0.14790 m

0.02471 s16.903 rad/s

Trang 13

Referring to the figure of Problem 19.12

Trang 14

n n

πτω

Trang 15

4(1.25 ft) =5 ft Fifteen cycles take

15(0.09765 s/cycle) =1.46477 sThus, the total distance traveled is

Trang 16

Chapter 19, Solution 15

2 2

10 lb

0.31056 lb s /ft32.2 ft/s

n

k m

⋅From free fall of the collar

Now to simplify the analysis we measure the displacement from the position of static displacement of the spring, under the weight of the collar:

Note that the static deflection is:

Then mx+kx =0, where x is measured positively up from the

position of static deflection The solution is:

Trang 17

Trang 21

Determine the constant k of a single spring equivalent to the three springs shown

1 2

k kk

′ =+Where k′ is the spring constant of a single spring equivalent of springs 1 and 2

Springs k′ and 3 Deflection in each spring is the same

3

0.361 s4.11 10 N/m

f

τ

Trang 23

(a) First, calculate the spring constant

20.20279 s

n n

πτω

14.9312 Hz

n n

Trang 24

( )1

2

26.8 s

10 lb32.2 ft/s

6 lb32.2 ft/s

Trang 25

ττ

Trang 26

P k

m

0.517 s12.153

τω

Trang 27

( )T A min =12−1280 0.0125( )= − 4

Max Comp: 4 N !

Trang 28

k m

n

k m

Trang 29

The equivalent spring constant for springs in series is:

A A

Wmg

=

( ) ( )

0.12 s 6.22 10 N/m

2.2688 Ns /m 2.2688 kg2

Trang 31

Initially 2 1.6 s

A

k m

2

2.11.6

A B A

π

τ =

( ) ( ) ( )

2 2

2

19.373 lb32.2 ft/s2

Trang 32

2 2

hmh

Trang 33

(a) The equation of motion is:

mm

Trang 34

mm

Trang 36

129.57 10 lb/in.

18 in

e

AE k L

81.272 Hz

e n

k m f

Trang 37

W k

δ

=

W m g

Trang 38

0.981 N4

x

dF

x dx

1.4372 Hz

e n

k m F

1.437 Hz

n

Trang 39

Using the Binomial Theorem we write

l

d g

l g

θ

Trang 42

Chapter 19, Solution 37

From Equation 19.20:

22

Trang 45

6 kg

5 kN/m

m r M k

Trang 46

( )( )

2 2

Trang 47

At equilibrium, spring tension=(20 lb sin15) °

0

20 lb sin15stretch

Trang 48

θ&& = −ω θ = −ω

( ) ( )

2 max

0.8

3 276

98.747 rad/s6

Trang 50

Now ( ) ( )

( )

2 2

Trang 51

k M m

++

Trang 52

++

Trang 53

2 2

42

0.021440 m16

2

r b

r r

π

ππ

n

πτω

(b)

2 2

Trang 54

πτω

Trang 55

12

n

g r

3

n n

r g g

r

τω

θ&&=

2

23

n

gb r

ω =

2

7.3816

2 1

93

n n

r g g

r

τω

π

+

!

Trang 57

( 2 2)

112

12

Trang 58

2 2

c b

Trang 59

Consider general pendulum of centroidal radius of gyration k

Trang 60

Chapter 19, Solution 51

2 2

2

26 12

32.2 ft/s 14.861 sft

πτω

1.630 s

n

Trang 61

1.689 s

n

Trang 63

See Solution to Problem 19.52 for derivation of

+ a minimum

2

2 2

Trang 64

Thus the length of the equivalent simple pendulum is the same as in Problem 19.52 It follows that the period is the same and that the new

center of oscillation is at O (Q.E.D)

Trang 65

mg k l m

Trang 67

2 2

Trang 68

(b) For τn → ∞ , ωn → oscillations will not occur 0

From Equation (1)

2 0.47266 2.6667

00.05873

Trang 69

π

Trang 71

Determine location of the centroid G

Then total mass m = ρ(2r+πr) = ρr(2+π)

π

=+

Trang 72

2 9.81 m/s2

Trang 73

( )2 2

Trang 74

( )vA max =lθ&max =lθ ωm n

=

( )vA max =3.50 in./s (b) For disk riveted at A (Iα included)

gll

ω =

+sin

Trang 75

( )1

0.332.2

Trang 76

θ&&+ θ =

n

K I

ττ

R S

I I

I k m

Trang 77

θ&&+ θ =

2

n

K I

Trang 78

T = Kθ = Kθ

2 1

=+

Trang 79

6.4ft,12

n

τω

0.400 s

(b) θ θ= 0sinωn t; θ θ ω& = 0 ncosωn t; θ&max =θ ω0 n

So vmax=bθ&max=bθ ω0 n

Trang 80

27 N m/rad 3.8 s

3.31 N m s4

Trang 81

Geometry

3

b l

θ

φ =

mg b F

Trang 82

(b)

3

mx&&= − F

mgx l

= −

2

n

g l

ω =

2 l

g

Trang 83

( 2 2) 2

12

T = m b +c θ&

2 2

12

2 2

0

maxv D =cω θn = 0.351 m/s

maxv D =0.351 m/s!

Trang 85

858

n

kl ml

ω =

5

k m

=

1 Hz

n

k f

m

π

Trang 86

Chapter 19, Solution 72

Equilibrium:

0 0 0

22

20 lb1ft9

k y T

9

n m

Trang 87

Datum at 1 Position 1

2

1 0

0

2 0

44

n

J mgr

ππ

Trang 88

Chapter 19, Solution 74

Find ωn as a function of c

Datum at 2 Position 1 T1 =0 V1= mgh

2 2

12

n

gc l c

Trang 89

2 2 2

2 2

212

0 12

l c

12

l

Trang 91

a a

b b

Trang 92

n

πτω

Trang 93

Since vibration takes place about the position of equilibrium, we shall neglect the effect of weight and the

Trang 94

Note: Result is independent of length of the rod

6 lb32.2 ft/s

Trang 95

= &

Then

2 2

2

316

Trang 97

2

12

2 2

3 7 kg

n n

τω

Trang 98

Chapter 19, Solution 80

sinθ θ≈

2 2

Trang 99

6g 4g  2 2 

55

l

g g

n n

Trang 100

πτω

Trang 101

Let m be the mass of rod and m C be mass of each collar

2 2

C n

C

kl

m l ml

k

m m

n

πτω

Trang 102

60.75 m5

n

τω

Trang 104

With

2 2

n n

τω

1.627 s

n

Trang 106

5cos cos

5cos 1

n

g l

n n

Trang 107

12

Trang 108

R n

R n

Trang 113

3 376

n

mg k

l m

Trang 116

Chapter 19, Solution 92

With 4 lb 2, 6 lb 2, 20 lb/ft, 40 ft

1232.2 ft/s 32.2 ft/s

Trang 118

2 2

1024

ω =

1 32

n

g f

l

π

Trang 120

2

41

ππ

r r

ω

ππ

Trang 121

(rsinθm)sinθmrθm2(1 cos ) 2

2

m m

Position 1 maximum deflection T1= 0

2 1

2

m m

π

Trang 122

1 1 62.4 lb/ft 4 4 in.

0.15032 lb s /ft

2 2 32.2 ft/s 3 12 in./ft

r V

40 lb/ft

220.54 s

1 lb

0.15032 lb s /ft32.2 ft/s

n n

πτω

Trang 123

Eq (19.33)

2

1

m m

f n

P k x

ωω

Trang 124

Chapter 19, Solution 99

Eq (19.33)

2

2, 1

m

f n

P

k k

x

m

ωωω

k

Trang 125

Eq (19.33)

2 2

1

m m

f n

P k x

ωω

31

st

st f n

ωω

2 2

11

3

f n

ωω

2 2

23

f n

ω

ω >

Also

2 2

31

st

st f

n

ωω

ω

ωω

Trang 126

P l mb

Trang 127

Referring to the figure and solution for Problem 19.101

2 2

32140

4032.2

m m

n f

P l mb b

b =

Upper frequency 3.00533b = −9.3499+2.625b2

2

2.625b −3.00533b−9.3499 = 02.5446 ft

b =

16.80 in.< <b 30.5 in.!

Trang 129

2

245.25 s0.040 m

e n

1245.42

Trang 131

From Eq (19.33′ ) 2

1

m m

f n

ωω

158.5

Trang 132

Chapter 19, Solution 106

2 2

1

m m

f n

ωω

n

k m

f n

ωω

12 in.ft

f n

ωω

1 f 0.68241

n

ωω

− >

2

2 1 0.68241 0.31579

f n

Trang 133

There is no value of x m for which

30 lb when and are out of phase

m

Trang 135

450 225 s

m m

n f

k ml

δθ

Trang 136

c m

f n

x

δωω

Trang 137

m m

<

  (Impossible)

Trang 138

Chapter 19, Solution 111

From Eq (19.33'):

2

11

m m

Trang 139

f n

mrMx

ωωωω

2

30 10 m1.5 mm: 0.0015

1

f m

n f

n

ωω

f n

ωω

ω

ω ≤

Trang 140

30 10 m1.5 mm: 0.0015

1

f m

n f

n

ωω

Trang 141

18 kg

Four springs each of constant 40 kN/m

We note that the motor is constrained to move vertically

n

P k x

ωω

n

P x k

ωω

Trang 142

We have found: P m=186.4 N

For an unbalanced rotor of mass m R=4 kg, rotating at ω =1200 rpm=125.664 rad/s, with the mass

center at a distance r from the axis of rotation, we have,

P r

Trang 143

f n

m r M x

ωωωω

1

f m

f n

mr k x

ωωω

ft12

n s

n

2 2

0.9lb

16 0.0017469 lb s /ft32.2 ft/s

ω′ =

Since amplitude of vibration is to be less than 2.16×10−3in for motor speeds above 300 rpm

Trang 144

( 9 2) 2

1 3

2

2151.64 10 ft s 300

60 s2.16 10

ft

300601

ππ

2

149.663 10: 0.18 10

986.961

7200

13.361538.89

Trang 145

f n

p k x

ωω

n

mr p

f n m

f n

m M x

ω ω ω

=

!

Trang 146

We also note that the amplitude δm of the displacement of the base remains constant

Referring to Sec 19.7, Fig 19.9, we note that, since ( ) ( )2 1 ( ) ( )

Trang 147

2 1

2

1 1

ω

ωω

n

ωω

δωω

11.2

1 2

n n

ωωωω

2.2 1.13.4 1.7

n

ωω

Trang 148

Points corresponding to the two solutions are indicated below:

Trang 149

We also note that the amplitude δm of the displacement of the base remains constant

Referring to Sec 19.7, Fig 19.9, we note that, since ( ) ( )2 1

ωω

Trang 150

Dividing (1) by (2), member by member:

2

2 1

2

1 1

4

51

n

n n

ω

ωω

1

1.8 mm 1.286 mm4

1 3

m m

n

ωω

2 Assuming ( )xm 1< 0:

For one collar, we have now:

2 1

9 mm

1

δωω

Dividing (3) by (2), member by member:

2

1 2 1

1 231

n n

ωωωω

2

n

ωω

=

Trang 152

ωω

2 2

mrkx

ωω

ωω

2 2 2

0.00077640.4 ft/s

Trang 153

k k

2

12

f

f

mr kx

M k

f m

f

M kx

k r

m

ωω

Trang 154

f n

P k x

ωω

P k

ωω

f n

ωω

Trang 155

G describes a circle about the axis AB of radius r + e.

1

f n f n

e r

ωωωω

1400 rpm

n f

Trang 156

(b) ( ) 2

6

6 2

1200

150 10 m

1399.6

416.28 10 m1200

11399.6

Trang 157

Total spring constant k = 2 350 lb/ft( ) =700 lb/ft

n

k m

f n

ωω

145.08

m

!

Trang 158

Chapter 19, Solution 123

In steady state vibration, block A does not move and therefore remains in

its original equilibrium position

Trang 159

2 2

sin1

m

f f

n

ωω

sin1

m

f n

ωω

11

f m n

1.041724

11

106.1 Hz

n

Trang 160

Chapter 19, Solution 125

From Problem 19.124

2

2 2

a

ωω

f n

ωω

z a

Error =8.03%!

Trang 161

Sincec > c c we use equation (19.42), where

Thus a positive solution for t > for Equation (3) cannot exist since it would require that e raised to a 0

positive power be less than 1, which is impossible Thus x is never 0

The x− curve for t

this case is shown

!

Trang 162

(b) t =0, x =0, v =v0 Equations (1) and (2), yield

The x− curve t

for this motion is

as shown

!

Trang 163

Substitute the initial conditions, t = 0, x = x0, v =v0 in Equations (1) and (2) of Problem 19.126

Trang 164

+ +

− +

ω =ω −   

 

2

12

c D

ω = −    

Trang 165

As in Problem 19.128, for maximum displacements x n and x n k+ at t n and , t n k+ sin(ω0t n+φ) = 1

0 0

c n

n n k m c

n k m

t

t t n

t

n k

e x

x e

− +

+

Comparing with Equation (2)

1log decrement ln n Q.E.D

n k

x

Trang 166

D

mct

Trang 167

1 1

2

D

mct

(c) The first maxima occurs at 1, (ωDt1+φ)

The first zero occurs at (ωD( )t1 0 +φ) = π

From the above plot ( D( )t1 0 ) ( Dt1 ) 2

Trang 168

Chapter 19, Solution 131

(a) From Problem 19.128,

2 1

2ln

1

c n

n

c

ccx

Trang 169

3 0.0384 m 38.4 mm

Trang 170

c k m

Trang 171

From the given data

Trang 173

For small angles:

sinθ θ! , cosθ !10.15 , 0.45 , 0.15

Trang 174

Since the roots are complex conjugates (light damping) the solution of the differential equation is:

Trang 175

40.6

Trang 176

c c

1

m m

x

c c

Trang 177

P k x

c c

For part (a) with P m =125 lb and ω ω= n

Trang 178

c c

P k x

c c

For part (a) with P m =125 lband ω ω= n

Trang 179

c

cc

ωω

and the magnification factor will decrease as

c

c

Trang 180

Chapter 19, Solution 141

From Eq (19.53′)

( )2 2 ( ) ( ) 2

1Magnification factor

ω

ω for which m

m

x P k

ωω

Trang 181

From Eq (19.52)

m m

P x

st

W k

Trang 182

c c

n st

f n

ωω

2 2

0.11067 10 m0.25 10 m

1 0.60365 4 0.60365

c

c c

Trang 183

From solution of Prob 19.113, we have

P k x

c c

4 kg 125.664 rad/s

m m

Trang 184

4 2 2

2 2 2

2

10.009

4

m

n f n c

P k c

c

ωωω

Trang 185

From Eq (19.52)

m m

P x

Trang 186

Chapter 19, Solution 147

From Equation (19.48), the motion of the machine is,x = x msin(ωf t −φ)

The force transmitted to the foundation is,

c c

Trang 187

( )

2

2 2

c P

k F

c c

ωω

ωω

Trang 188

3.28462.7735

f n

Trang 189

Energy is dissipated by the dashpot

From Equation (19.48) the deflection of the system isx = x msin(ωf t −φ)

The force on the dashpot, F D = & cx

π ω

Trang 190

ωτ

Trang 191

f m

Trang 192

Chapter 19, Solution 151

Since the origins of coordinates are chosen from the equilibrium position, we may omit the initial spring

compressions and the effect of gravity

Trang 193

For a mechanical system oscillations take place if c c< c(lightly damped)

But from Equation (19.41),

< 

Trang 194

Chapter 19, Solution 153

The mechanical analogue of closing a switch S is the sudden application of a constant force of magnitude P to

the mass

(a) Final value of the current corresponds to the final velocity of the mass, and since the capacitance is zero,

the spring constant is also zero

FΣ = ma

2 2

C

=

Trang 195

2 2

Trang 196

Chapter 19, Solution 154

We note that both the spring and the dashpot affect the motion of point A Thus one loop in the electrical circuit should consist of a capacitor 1

kc

 and a resistance (c ⇒ R)

The other loop consists of (Pmsinωft sin→ Em ωft), an inductor

(m → L)and the resistor (c→ R)

Since the resistor is common to both loops, the circuit is



Trang 198

x→ q

P → E

Trang 201

For simple harmonic motion and 1= 40 in.=3.333 ft:

2

32.2 ft/s 3.1082 rad/s3.333 ft

n

g l

Trang 203

(a) First, calculate the spring constant

Trang 206

(b) θ θ= msin(ωnt +φ), θ θ ω& = m ncos(ωnt +φ)

Trang 207

α θ= &&

2

12

0

44

Trang 208

2 2

Trang 210

AB n

2

0 0

11

22

n

AB AB

132.2 ft/s 25 lb/ft 0.33333 ft 6 lb 1.25 ft

πτω

0.831 s

n

Trang 214

mg

Trang 215

Pk

ωω

1000 lb/ft 22.43 s

64 lb32.2 ft/s

Trang 216

 

&&

From Equation (19.31 and 19.33 )′

2 2

1

m m

f n

ωω

Trang 217

Deflection of the cord is xm −δm =0.21070 0.20 0.01070 mm− =Which is less than the static deflection of 50.5 mm

211 mm

m

Trang 218

Chapter 19, Solution 169

In equilibrium the force in the spring is mg

For small angles

sinθ θ≈ cosθ ≈ 1

2

B

l y

(b) Substituting θ =eλt into the differential equation obtained in (a),

we obtain the characteristic equation,

04

Ngày đăng: 13/09/2018, 13:42

TỪ KHÓA LIÊN QUAN

w