2 2 10 lb 0.31056 lb s /ft32.2 ft/s n k m ⋅From free fall of the collar Now to simplify the analysis we measure the displacement from the position of static displacement of the spring, u
Trang 3Simple Harmonic Motion
( )( )90 12
41.699 rad/s 220
32.2
n
k
f m
Trang 464.343 rad/s
=
20.90765 s
n n
πτω
n n
Trang 5In Simple Harmonic Motion
Hz 4.6729 Hz 280.37 r/min Hz
Trang 6v l
θω
For a simple pendulum
n
g l
n
g l
v l
θω
Trang 8k m
6.2161Hz
n n
7.728 ft/s
0.24032.2 ft/s
m s
a g
Trang 9k m
Trang 11At both 600 rpm and 1200 rpm, the maximum acceleration is just equal to g
m
Trang 12k m
Now x(0) = =0 x msin(0+φ)⇒φ = 0Then
(0) m ncos(0 0)
x& = x ω +
or 2.5 m/s =(x m)m(16.903 rad/s) ⇒ x m = 0.14790 mThen x =(0.14790 m sin 16.903 rad/s) ( )t
(a)
At x =0.06 m: 0.06 m =(0.14790 m) sin 16.903 rad/s( )t
or
1 0.06 msin
0.14790 m
0.02471 s16.903 rad/s
Trang 13Referring to the figure of Problem 19.12
Trang 14n n
πτω
Trang 154(1.25 ft) =5 ft Fifteen cycles take
15(0.09765 s/cycle) =1.46477 sThus, the total distance traveled is
Trang 16Chapter 19, Solution 15
2 2
10 lb
0.31056 lb s /ft32.2 ft/s
n
k m
⋅From free fall of the collar
Now to simplify the analysis we measure the displacement from the position of static displacement of the spring, under the weight of the collar:
Note that the static deflection is:
Then mx+kx =0, where x is measured positively up from the
position of static deflection The solution is:
Trang 17−
Trang 21Determine the constant k of a single spring equivalent to the three springs shown
1 2
k kk
′ =+Where k′ is the spring constant of a single spring equivalent of springs 1 and 2
Springs k′ and 3 Deflection in each spring is the same
3
0.361 s4.11 10 N/m
f
τ
Trang 23(a) First, calculate the spring constant
20.20279 s
n n
πτω
14.9312 Hz
n n
Trang 24( )1
2
26.8 s
10 lb32.2 ft/s
6 lb32.2 ft/s
Trang 25ττ
Trang 26P k
m
0.517 s12.153
τω
Trang 27( )T A min =12−1280 0.0125( )= − 4
Max Comp: 4 N !
Trang 28k m
n
k m
Trang 29The equivalent spring constant for springs in series is:
A A
Wmg
=
( ) ( )
0.12 s 6.22 10 N/m
2.2688 Ns /m 2.2688 kg2
Trang 31Initially 2 1.6 s
A
k m
2
2.11.6
A B A
π
τ =
( ) ( ) ( )
2 2
2
19.373 lb32.2 ft/s2
Trang 322 2
hmh
Trang 33(a) The equation of motion is:
mm
Trang 34mm
Trang 36129.57 10 lb/in.
18 in
e
AE k L
81.272 Hz
e n
k m f
Trang 37W k
δ
=
W m g
Trang 380.981 N4
x
dF
x dx
1.4372 Hz
e n
k m F
1.437 Hz
n
Trang 39Using the Binomial Theorem we write
l
d g
l g
θ
Trang 42Chapter 19, Solution 37
From Equation 19.20:
22
Trang 456 kg
5 kN/m
m r M k
Trang 46( )( )
2 2
Trang 47At equilibrium, spring tension=(20 lb sin15) °
0
20 lb sin15stretch
Trang 48θ&& = −ω θ = −ω
( ) ( )
2 max
0.8
3 276
98.747 rad/s6
Trang 50Now ( ) ( )
( )
2 2
Trang 51k M m
++
Trang 52++
Trang 532 2
42
0.021440 m16
2
r b
r r
π
ππ
n
πτω
(b)
2 2
Trang 54πτω
Trang 5512
n
g r
3
n n
r g g
r
τω
θ&&=
2
23
n
gb r
ω =
2
7.3816
2 1
93
n n
r g g
r
τω
π
+
!
Trang 57( 2 2)
112
12
Trang 582 2
c b
Trang 59Consider general pendulum of centroidal radius of gyration k
Trang 60Chapter 19, Solution 51
2 2
2
26 12
32.2 ft/s 14.861 sft
πτω
1.630 s
n
Trang 611.689 s
n
Trang 63See Solution to Problem 19.52 for derivation of
+ a minimum
2
2 2
Trang 64Thus the length of the equivalent simple pendulum is the same as in Problem 19.52 It follows that the period is the same and that the new
center of oscillation is at O (Q.E.D)
Trang 65mg k l m
Trang 672 2
Trang 68(b) For τn → ∞ , ωn → oscillations will not occur 0
From Equation (1)
2 0.47266 2.6667
00.05873
Trang 69π
Trang 71Determine location of the centroid G
Then total mass m = ρ(2r+πr) = ρr(2+π)
π
=+
Trang 722 9.81 m/s2
Trang 73( )2 2
Trang 74( )vA max =lθ&max =lθ ωm n
=
( )vA max =3.50 in./s (b) For disk riveted at A (Iα included)
gll
ω =
+sin
Trang 75( )1
0.332.2
Trang 76θ&&+ θ =
n
K I
ττ
R S
I I
I k m
Trang 77θ&&+ θ =
2
n
K I
Trang 78T = Kθ = Kθ
2 1
=+
Trang 796.4ft,12
n
τω
0.400 s
(b) θ θ= 0sinωn t; θ θ ω& = 0 ncosωn t; θ&max =θ ω0 n
So vmax=bθ&max=bθ ω0 n
Trang 8027 N m/rad 3.8 s
3.31 N m s4
Trang 81Geometry
3
b l
θ
φ =
mg b F
Trang 82(b)
3
mx&&= − F
mgx l
= −
2
n
g l
ω =
2 l
g
Trang 83( 2 2) 2
12
T = m b +c θ&
2 2
12
2 2
0
maxv D =cω θn = 0.351 m/s
maxv D =0.351 m/s!
Trang 85858
n
kl ml
ω =
5
k m
=
1 Hz
n
k f
m
π
Trang 86Chapter 19, Solution 72
Equilibrium:
0 0 0
22
20 lb1ft9
k y T
9
n m
Trang 87Datum at 1 Position 1
2
1 0
0
2 0
44
n
J mgr
ππ
Trang 88Chapter 19, Solution 74
Find ωn as a function of c
Datum at 2 Position 1 T1 =0 V1= mgh
2 2
12
n
gc l c
Trang 892 2 2
2 2
212
0 12
l c
12
l
Trang 91a a
b b
2π
Trang 92n
πτω
Trang 93Since vibration takes place about the position of equilibrium, we shall neglect the effect of weight and the
Trang 94Note: Result is independent of length of the rod
6 lb32.2 ft/s
Trang 95= &
Then
2 2
2
316
Trang 972
12
2 2
3 7 kg
n n
τω
Trang 98Chapter 19, Solution 80
sinθ θ≈
2 2
Trang 996g 4g 2 2
55
l
g g
n n
Trang 100πτω
Trang 101Let m be the mass of rod and m C be mass of each collar
2 2
C n
C
kl
m l ml
k
m m
n
πτω
Trang 10260.75 m5
n
τω
Trang 104With
2 2
n n
τω
1.627 s
n
Trang 1065cos cos
5cos 1
n
g l
n n
Trang 10712
Trang 108R n
R n
Trang 1133 376
n
mg k
l m
Trang 116Chapter 19, Solution 92
With 4 lb 2, 6 lb 2, 20 lb/ft, 40 ft
1232.2 ft/s 32.2 ft/s
Trang 1182 2
1024
ω =
1 32
n
g f
l
π
Trang 1202
41
ππ
r r
ω
ππ
Trang 121(rsinθm)sinθm ≈rθm2(1 cos ) 2
2
m m
Position 1 maximum deflection T1= 0
2 1
2
m m
π
Trang 1221 1 62.4 lb/ft 4 4 in.
0.15032 lb s /ft
2 2 32.2 ft/s 3 12 in./ft
r V
40 lb/ft
220.54 s
1 lb
0.15032 lb s /ft32.2 ft/s
n n
πτω
Trang 123Eq (19.33)
2
1
m m
f n
P k x
ωω
Trang 124Chapter 19, Solution 99
Eq (19.33)
2
2, 1
m
f n
P
k k
x
m
ωωω
k
−
Trang 125Eq (19.33)
2 2
1
m m
f n
P k x
ωω
31
st
st f n
ωω
≥
−
2 2
11
3
f n
ωω
2 2
23
f n
ω
ω >
Also
2 2
31
st
st f
n
ωω
ω
ωω
Trang 126P l mb
Trang 127Referring to the figure and solution for Problem 19.101
2 2
32140
4032.2
m m
n f
P l mb b
b =
Upper frequency 3.00533b = −9.3499+2.625b2
2
2.625b −3.00533b−9.3499 = 02.5446 ft
b =
16.80 in.< <b 30.5 in.!
Trang 1292
245.25 s0.040 m
e n
1245.42
Trang 131From Eq (19.33′ ) 2
1
m m
f n
ωω
158.5
Trang 132Chapter 19, Solution 106
2 2
1
m m
f n
ωω
n
k m
f n
ωω
12 in.ft
f n
ωω
1 f 0.68241
n
ωω
− >
2
2 1 0.68241 0.31579
f n
Trang 133There is no value of x m for which
30 lb when and are out of phase
m
Trang 135450 225 s
m m
n f
k ml
δθ
Trang 136c m
f n
x
δωω
Trang 137m m
<
(Impossible)
Trang 138Chapter 19, Solution 111
From Eq (19.33'):
2
11
m m
Trang 139f n
mrMx
ωωωω
2
30 10 m1.5 mm: 0.0015
1
f m
n f
n
ωω
f n
ωω
ω
ω ≤
Trang 14030 10 m1.5 mm: 0.0015
1
f m
n f
n
ωω
Trang 14118 kg
Four springs each of constant 40 kN/m
We note that the motor is constrained to move vertically
n
P k x
ωω
n
P x k
ωω
Trang 142We have found: P m=186.4 N
For an unbalanced rotor of mass m R=4 kg, rotating at ω =1200 rpm=125.664 rad/s, with the mass
center at a distance r from the axis of rotation, we have,
P r
Trang 143f n
m r M x
ωωωω
1
f m
f n
mr k x
ωωω
ft12
n s
n
2 2
0.9lb
16 0.0017469 lb s /ft32.2 ft/s
ω′ =
′
Since amplitude of vibration is to be less than 2.16×10−3in for motor speeds above 300 rpm
Trang 144( 9 2) 2
1 3
2
2151.64 10 ft s 300
60 s2.16 10
ft
300601
ππ
2
149.663 10: 0.18 10
986.961
′
7200
13.361538.89
Trang 145f n
p k x
ωω
n
mr p
f n m
f n
m M x
ω ω ω
=
−
!
Trang 146We also note that the amplitude δm of the displacement of the base remains constant
Referring to Sec 19.7, Fig 19.9, we note that, since ( ) ( )2 1 ( ) ( )
Trang 1472 1
2
1 1
ω
ωω
n
ωω
δωω
11.2
1 2
n n
ωωωω
2.2 1.13.4 1.7
n
ωω
Trang 148Points corresponding to the two solutions are indicated below:
Trang 149We also note that the amplitude δm of the displacement of the base remains constant
Referring to Sec 19.7, Fig 19.9, we note that, since ( ) ( )2 1
ωω
Trang 150Dividing (1) by (2), member by member:
2
2 1
2
1 1
4
51
n
n n
ω
ωω
1
1.8 mm 1.286 mm4
1 3
m m
n
ωω
2 Assuming ( )xm 1< 0:
For one collar, we have now:
2 1
9 mm
1
δωω
Dividing (3) by (2), member by member:
2
1 2 1
1 231
n n
ωωωω
2
n
ωω
=
Trang 152ωω
2 2
mrkx
ωω
ωω
2 2 2
0.00077640.4 ft/s
Trang 153k k
2
12
f
f
mr kx
M k
f m
f
M kx
k r
m
ωω
Trang 154f n
P k x
ωω
P k
ωω
f n
ωω
Trang 155G describes a circle about the axis AB of radius r + e.
1
f n f n
e r
ωωωω
1400 rpm
n f
Trang 156(b) ( ) 2
6
6 2
1200
150 10 m
1399.6
416.28 10 m1200
11399.6
Trang 157Total spring constant k = 2 350 lb/ft( ) =700 lb/ft
n
k m
f n
ωω
145.08
m
−
!
Trang 158Chapter 19, Solution 123
In steady state vibration, block A does not move and therefore remains in
its original equilibrium position
Trang 1592 2
sin1
m
f f
n
ωω
sin1
m
f n
ωω
11
f m n
1.041724
11
106.1 Hz
n
Trang 160Chapter 19, Solution 125
From Problem 19.124
2
2 2
a
ωω
f n
ωω
z a
−
Error =8.03%!
Trang 161Sincec > c c we use equation (19.42), where
Thus a positive solution for t > for Equation (3) cannot exist since it would require that e raised to a 0
positive power be less than 1, which is impossible Thus x is never 0
The x− curve for t
this case is shown
!
Trang 162(b) t =0, x =0, v =v0 Equations (1) and (2), yield
The x− curve t
for this motion is
as shown
!
Trang 163Substitute the initial conditions, t = 0, x = x0, v =v0 in Equations (1) and (2) of Problem 19.126
Trang 164+ +
− +
ω =ω −
2
12
c D
ω = −
Trang 165As in Problem 19.128, for maximum displacements x n and x n k+ at t n and , t n k+ sin(ω0t n+φ) = 1
0 0
c n
n n k m c
n k m
t
t t n
t
n k
e x
x e
−
− +
+
Comparing with Equation (2)
1log decrement ln n Q.E.D
n k
x
Trang 166D
mct
Trang 1671 1
2
D
mct
(c) The first maxima occurs at 1, (ωDt1+φ)
The first zero occurs at (ωD( )t1 0 +φ) = π
From the above plot ( D( )t1 0 ) ( Dt1 ) 2
Trang 168Chapter 19, Solution 131
(a) From Problem 19.128,
2 1
2ln
1
c n
n
c
ccx
Trang 1693 0.0384 m 38.4 mm
Trang 170c k m
Trang 171From the given data
Trang 173For small angles:
sinθ θ! , cosθ !10.15 , 0.45 , 0.15
Trang 174Since the roots are complex conjugates (light damping) the solution of the differential equation is:
Trang 17540.6
Trang 176c c
1
m m
x
c c
Trang 177P k x
c c
For part (a) with P m =125 lb and ω ω= n
Trang 178c c
P k x
c c
For part (a) with P m =125 lband ω ω= n
Trang 179c
cc
ωω
and the magnification factor will decrease as
c
c
Trang 180Chapter 19, Solution 141
From Eq (19.53′)
( )2 2 ( ) ( ) 2
1Magnification factor
ω
ω for which m
m
x P k
ωω
Trang 181From Eq (19.52)
m m
P x
st
W k
Trang 182c c
n st
f n
ωω
2 2
0.11067 10 m0.25 10 m
1 0.60365 4 0.60365
c
c c
Trang 183From solution of Prob 19.113, we have
P k x
c c
4 kg 125.664 rad/s
m m
Trang 1844 2 2
2 2 2
2
10.009
4
m
n f n c
P k c
c
ωωω
Trang 185From Eq (19.52)
m m
P x
Trang 186Chapter 19, Solution 147
From Equation (19.48), the motion of the machine is,x = x msin(ωf t −φ)
The force transmitted to the foundation is,
c c
Trang 187( )
2
2 2
c P
k F
c c
ωω
ωω
Trang 1883.28462.7735
f n
Trang 189Energy is dissipated by the dashpot
From Equation (19.48) the deflection of the system isx = x msin(ωf t −φ)
The force on the dashpot, F D = & cx
π ω
Trang 190ωτ
Trang 191f m
Trang 192Chapter 19, Solution 151
Since the origins of coordinates are chosen from the equilibrium position, we may omit the initial spring
compressions and the effect of gravity
Trang 193For a mechanical system oscillations take place if c c< c(lightly damped)
But from Equation (19.41),
<
Trang 194Chapter 19, Solution 153
The mechanical analogue of closing a switch S is the sudden application of a constant force of magnitude P to
the mass
(a) Final value of the current corresponds to the final velocity of the mass, and since the capacitance is zero,
the spring constant is also zero
FΣ = ma
2 2
C
=
Trang 1952 2
Trang 196Chapter 19, Solution 154
We note that both the spring and the dashpot affect the motion of point A Thus one loop in the electrical circuit should consist of a capacitor 1
kc
and a resistance (c ⇒ R)
The other loop consists of (Pmsinωft sin→ Em ωft), an inductor
(m → L)and the resistor (c→ R)
Since the resistor is common to both loops, the circuit is
Trang 198
x→ q
P → E
Trang 201For simple harmonic motion and 1= 40 in.=3.333 ft:
2
32.2 ft/s 3.1082 rad/s3.333 ft
n
g l
Trang 203(a) First, calculate the spring constant
Trang 206(b) θ θ= msin(ωnt +φ), θ θ ω& = m ncos(ωnt +φ)
Trang 207α θ= &&
2
12
0
44
Trang 2082 2
Trang 210AB n
2
0 0
11
22
n
AB AB
132.2 ft/s 25 lb/ft 0.33333 ft 6 lb 1.25 ft
πτω
0.831 s
n
Trang 214
mg
Trang 215Pk
ωω
1000 lb/ft 22.43 s
64 lb32.2 ft/s
Trang 216
&&
From Equation (19.31 and 19.33 )′
2 2
1
m m
f n
ωω
Trang 217Deflection of the cord is xm −δm =0.21070 0.20 0.01070 mm− =Which is less than the static deflection of 50.5 mm
211 mm
m
Trang 218Chapter 19, Solution 169
In equilibrium the force in the spring is mg
For small angles
sinθ θ≈ cosθ ≈ 1
2
B
l y
(b) Substituting θ =eλt into the differential equation obtained in (a),
we obtain the characteristic equation,
04