1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual vector mechanics engineers dynamics 8th beer chapter 16

218 195 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 218
Dung lượng 15,19 MB

Nội dung

Analysis of linkage Since members ACE and DCB are of negligible mass, their effective forces may also be neglected and the methods of statics may be applied to their analysis... Kinemat

Trang 1

or μ=0.0848!

Trang 3

20.675 lb2.9282

Trang 5

(a) If rear-wheel brakes fail to operate:

Trang 7

(a) Four-wheel drive:

continued

Trang 9

(a) Sliding impends:

Trang 15

Analysis of linkage

Since members ACE and DCB are of negligible

mass, their effective forces may also be neglected and the methods of statics may be applied to their analysis

Free body: Entire linkage:

0:

D M

Trang 16

(a) + 60° Σ − ∑F t ( )F t eff:

(B yA)cos30°− B xsin 30° +W cos30°=ma

Recalling equation (2), we have,

Trang 17

Bar AB

N 4 9.81 sin 30 43

x

21.5717 m/s

4 1.5717 0.15 11.772

20.841 N0.866 0.6

AB

or T AB=20.8 N!

Trang 18

Chapter 16, Solution 14

Bar AC

0

C M

Trang 19

We will need the acceleration of the center of gravity of the bar and since it is translating let’s find the

B Bn

a =a =rω =

271.061 m/s

Trang 23

From Problem 16.15 a G =71.061 m/s2 60°

261.541 m/s

From symmetry B y =C y =194.0 N (Same as what we got for Prob 16.15)

Max value of bending moment occurs at G where V = 0

max

M = Area under V – Diagram from B to G

1194.0 N 0.375 m2

36.4 N m

max

Trang 24

Thus, the moment about G of ma must also be zero, which means that its line of action passes through G and

that it may be attached at G

Trang 25

For centroidal rotation: ( ) ( ) 2

Since G is the mass center, Σ Δ( )m r i i′ = 0

effective forces reduce to a couple, summing moments about G

Trang 27

( )2

1000.69813

Trang 28

Belt Friction: We recall equation (8.14), page 351 of Statics Using μk insted of μs, since the band brake is

slipping, and noting that T1 = P and T2 = T:

( )

0.35 2 2

Trang 29

T e T

Trang 30

Substituting for T2 from (4) into (1):

4T −2.5663T =250 N T =174.38 NFrom (1): T2 =4 174.38( )−250 T2=447.51 N

Substituting for T1andT2into (2):

Trang 31

( )( )2 ( 2)

1

10 kg 0.225 m 0.25313 kg m2

2.2474 rad/s0.25313

Trang 32

Chapter 16, Solution 26

1

10 kg 0.225 m 16 rad/s 4.05 N m2

0.25 176.4 N

or F =176.4 N 44°!

Trang 36

or I = 20.3 lb ft s⋅ ⋅ !

Trang 37

Disk A 2

12

B =

Trang 38

Iα ⎛ ⎞ ⎛ ⎞ α

= =⎜ ⎟ ⎜ ⎟

412

A A

a = r α =⎛⎜ ⎞⎟α

⎝ ⎠

812

Trang 39

Kinematics: Since the tangential accelerations of the outside of the disks are equal,

Trang 40

Substitute for F from Eq (3) into Eq (2):

Trang 41

Kinematics: Since the tangential acceleration of the outside of the disks are equal

Trang 42

Substitute for αA from Eq (1), and 1 2

Trang 44

α =

Trang 45

G k B

2 k N B mr

g r

Trang 46

Chapter 16, Solution 37

21sin

φ

Trang 47

While slipping occurs: F = µk N = µk P

Trang 48

Substitute from Eqs (1) + (2): 0

m m

m (QED)

Trang 49

(a) Angular accelerations

While slipping occurs:

Trang 51

Based on the solution for P16.39

( )0 ( )0

20; 750 rpm 25 rpm

Trang 52

Chapter 16, Solution 41

We know that the system of effective forces can be reduced to the vector ma at G and the couple Iα We further know from Chapter 3 of statics that a force-couple system in a plane can be further reduced to a single force

The perpendicular distance d from G to the line of action of the single vector ma is expressed by writing

α

Trang 53

Kinematics The acceleration of P is i

( ) ( ) ( )( ) ( ) 2

a = ∆ a+ ∆ α r× − ∆The sum of the effective forces is

Trang 54

Since G is the mass center, Σ ∆rim i = 0

Also, for each particle, ri′× =ri′ 0

Thus,

( im i i) i′ ( i i′) m i

Σ r × ∆ a = Σr × α ×r ∆ Since α ⊥ ,ri′ we have ( ) 2

Trang 55

28.05 ft/s

Trang 56

2 wr

t Pg

Trang 58

2(1.200 rad/s )

(b) With all rockets except D:

2 eff

= −

eff( G) : 3

G

3(16.20 N)(0.8 m) = 43.2α α =−(0.900 rad/s )2 j !

Trang 59

1 lb , 2.6833 ft/s32.2

Trang 60

Chapter 16, Solution 48

23.5603 rad/s

α=

22.6833 ft/s

1.5110 3.5603 0.42441(3.560 1(3.5603)

Trang 62

Chapter 16, Solution 50

2 2

2800 lb lb s

ft32.2 ft/s

Trang 63

See solution of Prob 16.50 for diagram and derivation of equations (1) and (2):

Trang 66

μ

= +

Trang 67

See Problem 16.54

2

4 0.12 11 lb4

12 lb 3.2

ft1232.2 ft/s

k P mr

32.2 ft/s

12 lb32.2 ft/s

Trang 68

2.11 m/s2 3.3

11(0.3) = 3.3 11(0.3) = 3.3

Trang 69

1.81 m/s2,

3 m/s2

Trang 70

g

=

a !

Trang 71

B

g

=

a !

Trang 73

(b) Acceleration of A:

/

30.866 + 0.5

20.866

Trang 74

Chapter 16, Solution 61

112

2

16

g b

Trang 76

Chapter 16, Solution 62

2

21

⎛ ⎞

+ ⎜ ⎟

⎝ ⎠ ; aB = g "

Trang 77

B = g

a "

Trang 79

2 0

0

52

v r

µ

= "

(c) Eq (4)

2 0

v s

g

µ

= "

Trang 80

k g r

k k

k k

Trang 83

k g r

7 k

v t

v r

=

ω "

Trang 85

1 2

k k

µµ

2 1

k k

g

µω

Note: We check that v = −v1 ωr

Trang 86

k g r

k C

k C

Trang 87

1 0

2

5

k k

v

g

µµ

25

2

25 k

v S

g

µ

Trang 88

Chapter 16, Solution 70

t

OG =r a =rα

We first observe that the sum of the vectors is the same in both figures To have the same sum of moments

about G, we must have

( )( ):

( )2

mk α = mrα GP

2

k GP r

Trang 89

1

Trang 90

Chapter 16, Solution 72

(a)

21

2 12

L

P = mLα

21

6 15 lb

96.6 rad/s

10 lb

3 ft32.2 ft/s

Trang 91

21

L

PL = ma +Iα

21

211.67 rad/s

Trang 92

Chapter 16, Solution 74

(b)

21

Trang 93

= −  0.30282 ft= −And 2 2 10 ft 0.53052 ft

12

r z

Trang 96

Chapter 16, Solution 77

Determination of mass center of disk

We determine the centroid of the composite area:

xA x A x

Trang 97

Axm1g

m2g

=

2 12

r

Trang 98

Chapter 16, Solution 79

0

2

L a

Amg = − mg

1

;4

Trang 99

112

mgS =m L +S α

2 2

Differentiate with respect to S

Trang 100

Set numerator equal to zero

Trang 101

g r

Trang 102

Chapter 16, Solution 82

/: B = A+ B A

g L

Trang 103

We represent the effective forces of the disk by a couple I Dαα and the effective forces of the rod by vectors m a R( )R t and m a R( )R n attached at C and a couple I Rα We have, α.

1(3 kg)(0.120 m) 21.6 10 kg m2

Trang 104

(a) making α =36 rad/s in (1):2

Trang 105

(4 lb)(0.5 ft) (4 lb)(1.25 ft) 6 lb ft

A M

Trang 109

92

Trang 111

Eq (2) reduces to ΣM C = I Cα when rG C/ ×maC =0; that is, when rG C/ and aC are collinear

Referring to the first diagram, we note that this will occur only when points G, O, and C lie in a straight line

(Q.E.D.) !

Trang 113

I = mk

m =rα( )eff: ( sin ) ( )

s

r g

k

β = μ +

2tan s 1 r

Trang 116

80 lb 80

lb s /ft32.2

s F N

Trang 117

( )

8

ft 0.66667 ft12

a = rα =⎛⎜ ⎞⎟α = α

2 2

2

10 lb 6

ft1232.2 ft/s

20.07764 lb ft s

10 lb 83.3333 lb ft ft 0.07764 lb ft s

α = or α =15.46 rad/s2 !

ft 15.4558 rad/s 10.3039 ft/s12

Trang 118

Chapter 16, Solution 94

8

ft 0.66667 ft12

a =rα =⎛⎜ ⎞⎟α = α

2 2

2

10 lb 6

ft1232.2 ft/s

I = mk =⎛⎜ ⎞⎛⎟⎜⎝ ⎞⎟⎠

20.07764 lb ft s

( )eff ( )

12: 5 lb ft

s

F N

( )μs min =0.020!

Trang 119

ft 0.6666712

a =rα =⎛⎜ ⎞⎟α = α

2 2

2

10 lb 6

ft1232.2 ft/s

I =mk =⎛⎜ ⎞⎛⎟⎜⎝ ⎞⎟⎠

20.07764 lb ft s

( )eff ( )

4: 5 lb ft

α =

or α = 7.73 rad/s2 !

ft 7.7280 rad/s 5.1520 ft/s12

( )minμs =0.340!

Trang 120

Chapter 16, Solution 96

8

ft 0.66667 ft12

a = rα =⎛⎜ ⎞⎟α = α

2 2

2

10 lb 6

ft1232.2 ft/s

I = mk =⎛⎜ ⎞⎛⎟⎜⎝ ⎞⎟⎠

20.07764 lb ft s

α =

or α =7.73 rad/s2 !

ft 7.7280 rad/s 5.15201 ft/s12

Trang 121

Assume disk rolls: a =rα =(0.16 m)α

( )( )2

2 5 kg 0.12 m

I = mk =

20.072 kg m

Trang 122

(0.16 m 24 rad/s) ( 2) 3.84 m/s2

23.84 m/s

Trang 125

Assume disk rolls: a = rα =(0.16 m)α

( )( )2 2

5 kg 0.12 m

I = mk =

20.072 kg m

Trang 126

Chapter 16, Solution 101

(a)

10 832.2 12

Trang 128

Chapter 16, Solution 102

From 16.101, For BE, equation (1)

20.7071−0.6667R =0.01380α (1)

(35.706) 23.804 ft/s12

Trang 130

Bar AB and gear C

2

12

2

1(3 kg)(0.2 m)12

Trang 132

Bar AB and gear C

Trang 133

r mg

m

θα

g r

θ

Trang 134

9 32

318

θπα

Trang 135

2 2

Trang 136

Chapter 16, Solution 108

2

2

41

P mr

Trang 138

3 15 0.899551

r

Note: In this Problem and the next we cannot use the equation M A=I Aα, since points A, O, and G

are not aligned

Trang 139

Kinematics: Choose positive v and B a to left B

Trans with B + Rotation Abt B = Rolling motion

Trang 140

ft 0.25 ft12

2.2

ft 0.18333 ft12

( )2

0.075 ft 3.5 lb3.5 lb

Trang 141

g L

α= ⎛⎜⎝ ⎞⎟⎠

232.2 ft/s , 3 ft,

(0.7071)2

x

m L mL

2

g L

Trang 142

Chapter 16, Solution 112

y components

16sin 30 sin 60

G

12

( ) 16 30.5

=

2 2

Trang 143

g r

πα

=

(b)

2212

1

83

Trang 144

=

Trang 145

Law of sines: , sin 60 (1.5 m) 1.4333 m

sin 60 sin 65 sin 65

Trang 146

25.321 1.2287− B=7.046 16.214 14.184+ −

Trang 148

59.5 N

=

P "

Trang 149

Kinematics: Crank AB:

B BD

v BC

Trang 150

Translation with B and rotation about D = Planar motion

1012

2 12

 +   

Trang 152

Chapter 16, Solution 118

Kinematics: ωAB=12 rad/s , αAB=80 rad/s2

Same analysis as for Prob 16.117 except that αα , ABResulting in ( )aB t Eq (1) must be replaced by,

Trang 154

( )( ) ( )

10.75 62

0.75 6

33

D y BD

v BD

=

continued

Trang 156

°

1.25 rad/s

CD

Trang 157

Kinematics: From Prob 16.120

21.25 rad/s

29.5873 rad/s

Trang 158

rα = α

2 2

Trang 159

Crank BC:

( ) ( ) 5 ( 2) 2

ft 15 rad/s 6.25 ft/s12

Trang 161

0.44 m

cos 1.7181 cos0.44 m 0.25 m

A

A a

d

a d

Trang 163

Given data: ωf = 2 rad/s

2 =3.4362a Aa A =1.1641 m/s

or a A =1.164 m/s2 !

Trang 165

3

Trang 167

=

Trang 172

ft12

B BD

v BD

Trang 174

ft12

B BD

v BD

Trang 178

Chapter 16, Solution 135

Kinematics: We resolve the acceleration of G into the acceleration of A

and the acceleration of G relative to A:

Trang 179

Substitute for a A from (3) into (2):

=

Trang 180

(b) Substitute data into equation (5):

2

4(9.81)sin 20 13.4209

9.93451.35093

Trang 181

1( ) : (0.25 m) = (6 kg) (0.25 m)

2

Σ = Σ

Bar: x-Dir :− +B1 (19.62 N) cos 45°=(2 kg) (0.25 m)α +(cos 45 ) (2 kg) (0.375 m)° αBD

y-Dir :B2+(19.62 N) sin 45 = sin 45 (2 kg) (0.375 m)° ° αBD

Six equations and six unknowns:

Trang 182

continued

Trang 184

a r

Trang 185

P a

A

P m

Trang 186

PB =m L α + Lα 

continued

Trang 187

P mL

α = − − 

 

307

BC

P mL

Data: L =25 in.= 2.0833 ft

2 2

6 lb 0.18634 lb s /ft32.2 ft/s

Trang 189

65

Pb mL

P L mL

 

611

P mL

2 2

6 lb

0.18634 lb s /ft32.2 ft/s

Trang 190

Chapter 16, Solution 141

Since ωABBC=0: ( )aA x=( )aB x=( )aB x=(aBC x) =a C

1( )

Trang 192

g L

Trang 193

External forces: A W x, ,AJ axial force F shear J, V and bending moment J, M J

Effective forces: Since acceleration at any point is proportional to distance from A, effective forces are linearly

distributed Since mass per unit length is m/L, at point J we find

Trang 195

From answers to Prob 16.79:

External forces : Reaction A, distributed load per unit length mg/L, shear V bending moment J, M J

Effective forces: Since : , a x the effective forces are linearly distributed The effective force per unit length

Trang 198

( )eff: ( )cos 60 cos30 cos 60

Trang 199

Lever ABC: Static Equilibrium (Friction Force )

θ =

1786.77094 125.22 rev

Trang 202

3 12.075 ft/s

6 lb32.2 ft/s

0.75 lb

4.025 ft/s

6 lb32.2 ft/s

Trang 212

g r

Trang 214

0.90 m

g L

2

Trang 216

( ) ( ) ( ) ( 2) 2 / 0.15 m 46.266 rad/s 6.9399 m/s

Trang 217

Kinematics: Bar AC Rotation about C

Ngày đăng: 13/09/2018, 13:42

TỪ KHÓA LIÊN QUAN

w