Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,07 MB
Nội dung
Câu (GV Nguyễn Thanh Tùng 2018)Cho hình lăng trụ tam giác có diện tích đáy 10cm2 chiều cao 6cm Thể tích V khối lăng trụ A V = 20cm3 B V = 40cm3 C V = 60cm3 D V = 80cm3 Đáp án C Ta tích khối lăng trụ: V= h.Sđáy= 6.10 = 60 cm → Đáp án C Câu (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABC có đáy ABC tam giác cạnh a thể tích khối chóp a Chiều cao h hình S.ABC ứng với đỉnh S bao nhiêu? A h = 4a B h = 4a C h = a D h = a Đáp án A Do ABC tam giác cạnh a a Þ SV ABC = V= a2 Khi 3V 3a3 h.SV ABC Þ h = = = 4a → Đáp án A SV ABC a (GV Nguyễn Thanh Tùng 2018) Cho tứ diện ABCD Câu cạnh a Gọi M trung điểm CD (như hình vẽ) Tính cosin góc tạo hai đường thẳng AC BM A B C D Đáp án D Câu (GV Nguyễn Thanh Tùng 2018)Cho hình lăng trụ đứng ABC.A'B'C' có tam giác ABC vuông cân B Biết AB = a AA ' = a Khi diện tích xung quanh hình trụ ngoại tiếp hình lăng trụ đứng cho B 2a A a C 4a D a Đáp án B Hình trụ ngoại tiếp hình lăng trụ ABC.A’B’C’ có chiều cao AA’; tâm đáy trung điểm AC nên R= AC AB = = a Diện tích xung quang hình trụ là: 2 Sxq = 2Rh = 2.a.a = 2a Câu (GV Nguyễn Thanh Tùng 2018) Một khối trụ tích cm Cắt hình trụ theo đường sinh trải mặt phẳng thu hình vng Diện tích hình vng C 4 cm2 B 2cm2 A 4cm2 D 2 cm2 Đáp án A Cắt khối trụ theo đường sinh trải mặt phẳng hình vng nên h = Pđáy → h = 2R → R = Câu h h3 → V = Sh = R h = = → h = → Shv = 22 = 2 4 (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABCD có đáy ABCD hình thang cân, SA = 2a SA vng góc với mặt đáy (ABCD) Biết AD = 2a, AB = BC = CD = a Diện tích S mặt cầu ngoại tiếp hình chóp S.ABCD bao nhiêu? A S = 8a 8a B S = C S = 4a D S = 2a Đáp án A ABCD hình cân có AB = BC = CD = a; AD = 2a nên M tâm đáy ABCD SA = AD = 2a; SA ⊥ ( ABCD ) → tam giác SAD vuông cân A nên tâm mặt cầu ngoại tiếp hình →R = Câu chóp S.ABCD trung điểm SD SA = = a → Smc = 4R = 8a 2 (GV Nguyễn Thanh Tùng 2018)Cho lăng trụ đứng ABC.A'B'C' có đáy ABC tam giác cân với AB = AC = a; N SD BAC=120º AA' = a Gọi I trung điểm CC' hai mặt phẳng (như hình vẽ) Tính cosin góc tạo (ABC) ( AB'I ) A 30 10 B C 15 D Đáp án A Gắn hệ trục tọa độ Oxyz hình vẽ → a A ;0;0 ; 2 a B 0; − ;0 ; a C 0; ;0 ; a C ' 0; ;a ; a a I 0; ; 2 a B ' 0; − ;a Vecto pháp tuyến mặt phẳng a2 (ABC) n1 = AB; AC = 0;0; − Vecto pháp tuyến mặt phẳng 3a a a ;− ;− (AB’I) n = AB'; AI = − 4 → cos ( ( ABC ) ; ( AB'I ) ) = cos ( n1; n ) a n1.n 30 = = = n1 n a a 10 10 2 Câu (GV Nguyễn Thanh Tùng 2018)Một khối trụ (N) có diện tích xung quanh 4 chiều cao số nguyên ngoại tiếp khối nón ( N') có đường sinh Tính thể tích V phần khơng gian bên ngồi khối nón bên khối trụ A V = 2 C V = 6 B V = 4 D V = 8 Đáp án B (N’) có đáy đáy hình trụ, đỉnh tâm đáy hình trụ Khối nón Gọi chiều cao khối trụ cúng khối nón h l = = h + R → R = − h → Sxq = 2Rh → 2h − h = 4 h = → h = hZ h − 7h + 12 = ⎯⎯⎯ →h = → R = h = → h = → V = Vtru − Vnon = R h = 4 Câu (GV Nguyễn Thanh Tùng 2018)Cho hình chóp S.ABCD có ABCD hình vng cạnh a , SA vng góc với đáy ( ABCD ) SAC tam giác vuông cân Thể tích V khối chóp S.ABCD A V = a3 B V = a3 C V = a3 D V = a3 Đáp án D S B A D Ta có SA = AC = Vậy VS ABCD Câu 10 C AB + BC = a 1 a3 2 = SA.S ABCD = a 2.a = 3 (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABC , cạnh SB, SC , SD lấy ba điểm A, B, C cho SA = 2SA ; SB = 3SB SC = 4SC Gọi V thể tích khối chóp S A.B.C S.ABC Khi tỉ số V bao nhiêu? V A 12 B 24 C 24 D 12 Đáp án C Ta có V SA SB SC 1 1 = = = V SA SB SC 24 Câu 11 (GV Nguyễn Thanh Tùng 2018)Một hình nón có bán kính đáy r = a , chiều cao h = 2a Diện tích tồn phần hình nón tính theo a B 2 a A a D 4 a C 3 a Đáp án D ) ( ) ( Stp = r ( r + l ) = r r + r + h2 = a a + a + 8a = 4 a Câu 12 (GV Nguyễn Thanh Tùng 2018)Hình chữ nhật ABCD có AB = 4, AD = Gọi M N trung điểm AB CD Cho hình chữ nhật quay quanh MN ta khối trịn xoay tích V A V = 4 B V = 8 C V = 8 D V = 32 Đáp án B A M B D N C Khối tròn xoay tạo thành khối trụ có bán kính r = AB = chiều cao r = AD = Vậy V = r 2h = 8 Câu 13 (GV Nguyễn Thanh Tùng 2018) Cho lăng trụ đứng ABCD.ABCD có đáy hình thoi cạnh a ABC = 60 Biết BD = DC Thể tích lăng trụ ABCD.ABCD A a3 Đáp án A B a3 C a3 D 2a D' A' C' B' A D O B C ABC cân B ( BA = BC = a ) có ABC = 600 nên ABC Gọi O tâm hình thoi ABCD BO = a BD = a CD = a DD = DC − DC = a 1 a3 Vậy V = S ACBD DD = AC.BD.DD = a.a 3.a = 2 Câu 14 (GV Nguyễn Thanh Tùng 2018) Một hình hộp chữ nhật có ba kích thước a, b, c nội tiếp mặt cầu Khi diện tích Smc mặt cầu A S mc = 16 ( a + b + c ) B S mc = ( a + b + c ) C Smc = ( a + b + c ) D S mc = ( a + b + c ) Đáp án D D' A' C' B' A B I D C Gọi I giao điểm đường chéo hình hộp I tâm mặt cầu cần tìm AC a + b2 + c Bán kính mặt cầu R = IA = = 2 Vậy diện tích mặt cầu S = 4 R = 4 Câu 15 a + b2 + c = ( a + b2 + c ) (GV Nguyễn Thanh Tùng 2018) Cho khối chóp tích V = 30 cm diện tích đáy S = cm2 Chiều cao h khối chóp A h = cm B h = cm C h = 18 cm D h = 12 cm Đáp án C Ta có h = 3V 3.30 = = 18 ( cm ) S Câu 16 (GV Nguyễn Thanh Tùng 2018)Cho hình lăng trụ có đáy tam giác cạnh a , cạnh bên 2a tạo với đáy góc 30 Thể tích khối lăng trụ A 3a B a3 C a3 12 D a3 Đáp án B A' C' B' A C H B ( ) Gọi H hình chiếu vng góc A lên ( ABC ) AA, ( ABC ) = AAH = 300 Chiều cao lăng trụ AH = AA.sin300 = a a3 Vậy thể tích hình lăng trụ V = SABC AH = Câu 17 (GV Nguyễn Thanh Tùng 2018)Cho hình chóp tứ giác S.ABCD có cạnh đáy a chiều cao 2a Diện tích xung quanh hình nón đỉnh S với đáy hình trịn nội tiếp ABCD A a 17 B a 15 C a 17 D a 17 Đáp án A Do ABCD hình vng nên hình trịn nội tiếp ABCD có bán kính r = Vậy diện tích xung quanh hình nón cần tìm S = rl = r r + h = 2 a a 17 Câu 18 (GV Nguyễn Thanh Tùng 2018)Cho hình chóp tứ giác S.ABCD có khoảng cách từ tâm O đáy đến mặt bên a góc đường cao mặt bên 30 Khi thể tích V khối chóp S.ABCD A V = 32a3 B V = 32a3 C V = 32a 3 D V = 32a Đáp án B S I A B H O C D Gọi H trung điểm BC Kẻ OI ⊥ SH OI ⊥ ( SBC ) Ta có OI = a OSI = 30 SO = OI = 2a sin 300 1 2a 4a = + OH = DC = 2 OI OS OH 3 1 4a 32a3 Vậy thể tích khối chóp V = S ABCD SO = 2a = 3 (GV Nguyễn Thanh Tùng 2018) Một cốc hình trụ khơng nắp đường kính đáy Câu 19 độ cao cốc 10 cm Hỏi cốc đựng nước? A 200 cm3 B 200 cm3 C 250 cm3 D 400 cm3 Đáp án C Thể tích cốc V = r 2h = 52.10 = 250 cm3 Câu 20 (GV Nguyễn Thanh Tùng 2018)Cho hình lăng trụ ABC ABC tích V Gọi M , N trung điểm AB, AC P điểm thuộc cạnh CC cho CP = 2CP (như hình vẽ) Tính thể tích khối tứ diện BMNP theo V A V B 2V C 4V D 5V 24 Đáp án B Ta có VBMNP = V − VMCBPB − VMACPNA − VMANB − VPNCB Lại có VPNCB = 1 1 d ( P; ( ABC ) ) S NBC = h S = V 3 1 1 VMANB = d ( M ; ( ABC ) ) S ANB = h S = V 3 VMC BPB = VAC BBC ( ) ( d M , ( C BBC ) = d ( A, ( C BBC ) ) S BC PB = S BC CB ) 1 2 = VAC BBC = V = V 3 VMAC PNA = VBC AAC S AC PNA = S AC CA ) (do d ( M , ( C AAC ) ) = d ( B, ( C AAC ) ) = 5 VBAC CA = V = V 12 12 18 Vậy VBMNP = V − V − 1 V− V− V = V 18 9 Câu 21 (GV Nguyễn Thanh Tùng 2018)Thể tích khối hộp lập phương có đường chéo 3a A 27 a C 3a 3 B a D a 3 Đáp án C Gọi cạnh hình lpaaj phương x Đường chéo hình lập phương tính công thức x = 3a x = a ( Vậy thể tích hình lập phương a ) = 3a3 Câu 22 (GV Nguyễn Thanh Tùng 2018)Hình nón có bán kính đáy r = 3cm đường sinh l = 4cm Khi diện tích tồn phần Stp hình nón A Stp = 12 cm2 B Stp = 21 cm2 C Stp = 18 cm2 D Stp = 30 cm2 Đáp án B ( ) Ta có Stp = r ( r + l ) = 21 c m Câu 23 (GV Nguyễn Thanh Tùng 2018)Cho hình chóp S.ABCD có ABCD hình vng cạnh a Hình chiếu S mặt phẳng mặt phẳng (ABCD) 600 Thể tích V khối chóp S.ABCD a 15 A V = Đáp án D (ABCD) trung điểm AB Góc tạo SC a 15 B V = 18 a 15 C V = 12 a 15 D V = VCau = r 3 V1 = r13 V2 = r23 = V1 27 V3 = r33 = V2 27 n ) 1− q 27 = Tn = U1 = V1 1− q 1− 27 n 1− ( Tn V1 = n →+ V (1 − q)VNon = T = lim r1 = = 1 (1 − ) .3r1. ( 3r1 ) 13 27 Câu 29 (GV Nguyễn Thanh Tùng 2018)Cho hình nón có bán kính đáy r độ dài đường sinh l Diện tích xung quanh Sxq hình nón bao nhiêu? A Sxq = r(l + r) B Sxq = 2rl C Sxq = rl D Sxq = 2r(l + r) Đáp án C Câu 30 (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABCD có đáy ABCD hình thoi tâm O, SA vng góc với mặt phẳng (ABCD) Trong khẳng định sau, khẳng định sai? A SA ⊥ BD B SC ⊥ BD C AD ⊥ SC D SO ⊥ BD Đáp án C AC⊥BD SA ⊥ ( ABCD) → SA ⊥ BD ⎯⎯⎯→ BD ⊥ (SAC) → SC ⊥ BD;SO ⊥ BD (GV Nguyễn Thanh Tùng 2018) Cho hình lập phương ABCD.A'B'C'D' cạnh a Câu 31 Gọi M, N trung điểm AB, BC Tính góc cặp đường thẳng MN C'D' A 30º B 45º C 60º D 90º Đáp án B AB // C’D’ → ( MN;C ' D ' ) = ( MN; AB ) = BMN = 450 Câu 32 (GV Nguyễn Thanh Tùng 2018)Cho hình chóp S.ABCD tích 36 G trọng tâm tam giác SBC Thể tích V khối chóp G.ABCD A V = 18 B V = C V = D V =12 Đáp án D → VG.ABCD VS.ABCD Câu 33 = d G / ( ABCD ) d S/ ( ABCD ) = → VG.ABCD = 12 (GV Nguyễn Thanh Tùng 2018) Bán kính mặt cầu ngoại tiếp tứ diện cạnh a A a B a C a D 2a Đáp án B H tâm ΔBCD → AH ⊥ ( BCD ) M trung điểm CD; N trung điểm AB Trong mặt phẳng (ABM), kẻ đường thẳng qua N, vng góc với AB, cắt AH I Khi đó, I tâm đường tròn ngoại tiếp tứ diện ABCD BM = a a a → BH = → AH = AB2 − BH = 3 ANI AHB → AN AI AN.AB a = → R = AI = = AH AB AH (GV Nguyễn Thanh Tùng 2018) Cho khối trụ có chiều cao h = diện tích Câu 34 tồn phần 20 Khi chu vi đáy khối trụ A 2 B 4 C 6 D 8 Đáp án B Stp = 2Rh + 2R → 20 = 2R.3 + 2R R + 3R −10 = R = → Pday = 2R = 4 Câu 35 (GV Nguyễn Thanh Tùng 2018)Cho hình lăng trụ tam giác ABC.A'B'C' có cạnh đáy 2a, khoảng cách từ A đến mặt phẳng ( A'BC) a Thể tích khối lăng trụ cho A 3a B a 3a C D Đáp án A Gọi M trung điểm BC Trong mặt phẳng (AA’M), kẻ AH ⊥ A ' M 3a ΔA’BC cân A AM⊥BC AH ⊥A'M → A'M ⊥ BC ⎯⎯⎯ ⎯ → BC ⊥ ( AA'M ) → BC ⊥ AH ⎯⎯⎯⎯ → AH ⊥ ( A'BC) ΔAA’M vuông A; AH ⊥ A 'M → 1 1 1 = + → = + → AA ' = a 2 2 AH AA ' AM AA ' 2a 2 a → VABC.A 'B'C' = AB2 AA ' = 3a (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABCD có đáy ABCD hình Câu 36 thang vng A B Biết AB = BC = a , AD = 2a Hình chiếu vng góc A mặt phẳng (ABCD) trung điểm H AB Diện tích tam giác SAB a Thể tích V khối chóp S.HCD A V = Đáp án B 3a B V = a3 C V = a D V = a3 SH vng góc với AB trung điểm AB nên ΔSAB cân A 1 SSAB = SH.AB = SH.a = a → SH = 2a 2 1 SHCD = SABCD − SHAD − SHBC = AB ( AD + BC ) − AH.AD − BH.BC = a 2 2 1 a3 → VSHCD = SH.SHCD = 2a a = 3 (GV Nguyễn Thanh Tùng 2018) Cho tam giác ABC có AB = 3a , đường cao Câu 37 CH = a AH = a Trên đường thẳng vng góc với mặt phẳng (ABC) A, B, C (ABC) lấy điểm A ' , B ' , C' cho AA' = 3a , phía mặt phẳng BB' = 2a , CC' = a Tính diện tích tam giác A'B'C' A a 39 B a 21 C a 26 D a 35 Đáp án D Trên AA’ lấy M N cho AM = MN = NA’ = a; BB’ lấy điểm P cho BP = PB’ = a DL Pytago CH ⊥ AB;CH = a → BH = 2a ⎯⎯⎯⎯ → AC = a 2; BC = a A 'C' = A 'M + MC'2 = ( 2a ) ( B'C' = PB'2 + PC'2 = a + a A ' B' = ( 3a ) ( + a + a = a 10 → p = ) ) =a 6; =a A ' B'+ B'C '+ C ' A ' a 10 =a 6+ 2 → SA 'B'C' = p ( p − A ' B' )( p − B'C ' )( p − C ' A ' ) = a 35 Câu 38 (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABCD có đáy hình vng cạnh a, SA vng góc với mặt đáy (ABCD) SA = a Điểm M thuộc cạnh SA cho SM = k Xác định k cho mặt phẳng SA (BMC) chia khối chóp S.ABCD thành hai phần tích A k = −1 + B k = −1 + C k = −1 + D k = Đáp án B Kẻ MN // AD // AD ( N SD) nên (MBC) cắt (SAD) theo giao tuyến MN VS.MBC SM k = = k → VS.MBC = kVS.ABC = VS.ABCD VS.ABC SA VS.MNC SM SN k2 = = k → VS.MNC = k VS.ACD = VS.ABCD VS.ACD SA AD 1+ → VS.BMNC = VS.MBC + VS.MNC = k 0 → k + k − = ⎯⎯→ k= Câu 39 k2 + k VS.ABCD = VS.ABCD 2 −1 + (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABC có SA = a , SB + SC = m ( m 2a ) BSC = CSA = ASB = 60º ABC vng A Tính thể tích chóp S.ABC theo a m A V = a2 (m − a ) 12 B V = a2 (m − a ) 12 C V = a ( m − 2a ) 12 D V = a ( m − 2a ) 12 Đáp án D Trên tia SB; SC lấy điểm B’; C’ cho SB’ = SC’ = SA = a ASB = BSC = CSA = 600 → S.AB’C’ tứ diện → VS.AB'C' = a3 12 AB2 = a + SB2 − a.SB cosin AB2 + AC2 = BC2 ⎯⎯⎯ → AC2 = a + SC2 − a.SC ⎯⎯⎯⎯⎯ → 2a − a (SB + SC ) + SB.SC = BC2 = SB2 + SC2 − SB.SC → SB.SC = am − 2a a ( m − 2a ) VS.AB'C' SB' SC ' SB'.SC' a2 a = = = = → VS.ABC = VS.ABC SB SC SB.SC a ( m − 2a ) m − 2a 12 Câu 40 (GV Nguyễn Thanh Tùng 2018) Cho hình chóp S.ABC có ABC tam giác cạnh a Hai mặt phẳng ( SAC ) , ( SAB ) vng góc với đáy góc tạo SC đáy 60 Tính khoảng cách h từ A tới mặt phẳng ( SBC ) theo a A h = h= a 15 a 15 B h = a 3 D h = a C Đáp án A ( SAC ) ⊥ ( ABC ) Do ( SAB ) ⊥ ( ABC ) SA ⊥ ( ABC ) ( SAC ) ( SAB ) = SA ( SC, ( ABC ) ) = SCA = 60 SA = AC tan SCA = a Gọi I,H hình chiếu vng góc A BC, SI, đó: d ( A, ( SBC ) ) = AH Tam giác ABC cạnh a nên AI = a Khi xét tam giác SAI : 1 1 a 15 a 15 = + = + = AH = Vậy h = d ( A, ( SBC ) ) = AH SA AI 3a 3a 3a 5 Câu 41 (GV Nguyễn Thanh Tùng 2018)Cho tứ diện ABCD có cạnh AD vng góc với mặt phẳng ( DBC ) DBC = 90 Khi quay cạnh tứ diện xung quanh trục cạnh AB, có hình nón tạo thành? A B C D.4 Đáp án C Trong cạch lại (khơng kể cạnh AB) có cạnh AD, DB, AC quay quanh trục AB tạo hình nón Do có hình nón tạo thành (như hình vẽ) Chú ý: Do CB ⊥ ( ADB ) CB ⊥ AB , CB quay quanh AB tạo hình trịn mà khơng phải hình nón Câu 42 (GV Nguyễn Thanh Tùng 2018)Cho tứ diện ABCD có AB = CD = 2a Gọi M, N trung điểm BC, AD MN = a Tính góc tạo hai đường thẳng AB CD A 30 C 60 B 45 D 90 Đáp án C Qua M vẽ đường thẳng song song với AB cắt AC P vẽ đường thẳng song song với CD (MNPQ) song song với AB CD Từ cắt BD Q Ta có mp ( AB, CD) = (MP, MQ) = PMQ Áp dụng tính chất đường trung bình tam giác (do M, N trung điểm) ta suy MP = MQ = NP = NQ = a hay tứ giác MPNQ hình thoi Tính cos( PMN ) = Câu 43 MN = PMN = 30 PMQ = 2.PMN = 60 2MP (GV Nguyễn Thanh Tùng 2018)Cho tứ diện ABCD cạnh a Diện tích xung quanh S xq hình trụ có đáy đường trịn ngoại tiếp tam giác BCD có chiều cao chiều cao tứ diện ABCD A S xq = a2 B S xq = a2 C S xq = a D S xq = 2 a 2 Đáp án D Gọi r bán kính đường trịn đáy h chiều cao tứ diện, ta có S xq = 2 r.h Nếu gọi M trung điểm CD G trọng tâm tam giác BCD ta có r = BG = 2 a a BM = = 3 Ta có h = AG = AB − BG = a − Vậy S xq = 2 r.h = 2 a2 a = 3 a a 2 a 2 = 3 (GV Nguyễn Thanh Tùng 2018)Cho hình chóp S.ABCD có ABC = ADC = 90 , Câu 44 SA vng góc với đáy Biết góc tạo SC đáy ABCD 60 , CD = a tam giác ADC có diện tích A Smc = 16 a 3a Diện tích mặt cầu Smc ngoại tiếp hình chóp S.ABCD B S mc = 4 a C S mc = 32 a D Smc = 8 a Đáp án A Ta có SC đường kính mặt cầu ngoại tiếp hình chóp S.ABCD góc đỉnh A, B, D nhìn SC góc 90 độ R= ( SBC = SDC = SAC = 90 ) Do bán kính mặt cầu SC Tam giác ADC vng D có 2.S ADC 2.a AD = = =a 3, CD 2a suy A có AC = AD2 + DC = 3a + a = 2a Ta (SC,( ABCD)) = SCA = 60 có AC SC = Tam giác SAC vuông = 2a.2 = 4a cos( SCA) Do R = Câu 45 SC = 2a , ta tính S mc = 4 R = 16a (GV Nguyễn Thanh Tùng 2018)Cho hình chóp S.ABC có đáy ABC tam giác vng cân C ; SA vng góc với đáy; SC = a Gọi góc hai mặt phẳng ( SBC ) ( ABC ) Tính sin để thể tích khối chóp A sin = B sin = S.ABC lớn C sin = D sin = Đáp án B Ta có BC ⊥ AC BC ⊥ SC , góc mp (SBC) mp (ABC) góc SCA 1 1 Mặt khác VS ABC = SA.S ABC = SA AC.BC = SA AC 3 (vì AC ⊥ BC AC = BC ) Vì tam giác SAC vng A nên ta có SA = SC.sin = a sin AC = SC − SA2 = a − a sin Từ t = sin V (t ) = VS ABC = 1 SA AC = a sin (a − a sin ) , 6 đặt ta có hàm số thể tích theo t sau a t (1 − t ) a6 t (1 − t )(1 − t ) 36 a6 V = 2.t (1 − t )(1 − t ) 72 V2 = Dấu “=” xảy 2t = − t = t = 1 = t = = sin = 3 Câu 46 (GV Nguyễn Thanh Tùng 2018) Cho tứ diện ABCD có cạnh a Gọi E,F điểm đối xứng B qua C,D M trung điểm đoạn thẳng AB Gọi (T ) thiết diện tứ diện ABCD cắt mặt phẳng ( MEF ) Tính diện tích S thiết diện (T ) A S = a2 B S = a2 C S = a2 D S = a2 Đáp án D Vẽ AO ⊥ ( BCD) , MH ⊥ ( BCD) Gọi K trung điểm EF, ta có ( ABK ) ⊥ ( BCD) , mp (ABK) chứa AO, MH mặt phẳng trung trực đoạn CD EF Gọi J trung điểm CD; G giao điểm MK AJ; I giao điểm MK AO Gọi N, P giao điểm ME với AC, MF với AD Khi diện cắt tứ diện ABCD mp (MNP) thiết (MEF) Vì BE=BF=2a nên ta có MN=MP, hay tam giác MNP cân M, đường cao MG Để tính diện tích MNP, ta cần tìm MG NP Vì G giao điểm đường trung tuyến AJ MK tam giác ABK nên G trọng tâm tam giác ABK, MG = MK (1) AG = 2 2a AJ hay NP = CD = 3 (vì NP//CD//EF chứng minh dựa vào tam giác đồng dạng, tính chất tỉ số đồng dạng đường cao; đường cao AG, AJ tam giác ANP ACD) Áp dụng nhanh: tam giác cạnh a có độ dài đường cao a (và diện tích a ) Tam giác BCD cạnh a có đường cao BJ = O, BO = a , trọng tâm suy a Lại BJ = 3 MH đường trung bình tam giác vuông MH = ABO nên 1 AO = AB − BO = a − 2 Ta có HK = HJ + JK = 5 5a BJ + BJ = BJ = a= , (lưu ý BJ = BK ) 3 2 Vì tam giác MHK vng H nên ta có MK = MH + HK = Quay lại a 25a 3a − = 12 1 3a a 2a (1), ta có MG = MK = = NP = , từ tính diện tích tam 3 2 giác MNP SMNP 1 a 2a a = MG.NP = = 2 Câu 47 (GV Nguyễn Thanh Tùng 2018)Cho hình trụ có bán kính đường trịn đáy chiều cao 2cm Diện tích xung quanh hình trụ A B 2 C 4 D 8 Đáp án D Sxq = 2Rh = 8 Câu 48 (GV Nguyễn Thanh Tùng 2018)Cho lăng trụ ABC ABC có cạnh đáy a, chiều cao 2a Tính cosin góc tạo hai đường thẳng AC BC A 10 B C D 10 Đáp án A AC // A’C’ → ( AC;BC') = ( A 'C';BC' ) → cos ( AC;BC' ) = cos ( A 'C';BC' ) = cos A 'C 'B A 'C' = a A 'C'2 + BC'2 − A 'B2 → → cos A 'C'B = = 2 2.A 'C'.BC' 10 BA ' = BC' = a + 2a = a ( ) (GV Nguyễn Thanh Tùng 2018) Một lăng trụ đứng có đáy tam giác cạnh Câu 49 a, cạnh bên b Khi thể tích V khối lăng trụ a 2b A V = B V = a 2b 12 C V = a 2b D V = ab Đáp án A Vlt = Sday h = Câu 50 a2 a 2b b = 4 (GV Nguyễn Thanh Tùng 2018) Cho hình nón có chiều cao cm, góc trục đường sinh 30 Thể tích khối nón A 12 cm3 B 24 cm3 C 72 cm3 D 216 cm3 Đáp án B → R = h.tan 300 = = → Vnon = R h = 24 3 Câu 51 (GV Nguyễn Thanh Tùng 2018) Một hình trụ có bán kính đáy 1, thiết diện qua trục hình vng Thể tích khối cầu ngoại tiếp hình trụ A 6 B 3 C 4 D 8 Đáp án D Thiết diện qua trục hình trụ hình vng → chiều cao h = 2R = Trung điểm I trục hình trụ tâm khối cầu ngoại tiếp hình trụ, bán kinh IA → IA = IH + HA = → V = Câu 52 IA = 3 (GV Nguyễn Thanh Tùng 2018)Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Tam giác SAB cân S nằm mặt phẳng vng góc với mặt phẳng đáy (ABCD) Biết thể tích khối chóp S.ABCD A SA = a a B SA = a3 Độ dài cạnh bên SA bao nhiêu? C SA = a D SA = a Đáp án A → VS.ABCD a a 2 a3 a 2 = SH.SABCD → = SH.a → SH = → SA = SH + AH = + = a 2 Câu 53 (GV Nguyễn Thanh Tùng 2018)Cho hình lập phương ABCD.ABCD cạnh a Xét tứ diện ABCD Cắt tứ diện mặt phẳng qua tâm hình lập phương song song với mặt phẳng ( ABC ) Tính diện tích thiết diện thu a2 A 2a B a2 C Đáp án C a2 Thiết diện cần tìm hình vng MNPQ → SMNPQ = SABCD = 2 3a D ... 2 Câu 47 (GV Nguyễn Thanh Tùng 2018)Cho hình trụ có bán kính đường trịn đáy chiều cao 2cm Diện tích xung quanh hình trụ A B 2 C 4 D 8 Đáp án D Sxq = 2Rh = 8 Câu 48 (GV Nguyễn Thanh. .. quanh trục AB tạo hình nón Do có hình nón tạo thành (như hình vẽ) Chú ý: Do CB ⊥ ( ADB ) CB ⊥ AB , CB quay quanh AB tạo hình trịn mà khơng phải hình nón Câu 42 (GV Nguyễn Thanh Tùng 2018)Cho... 24 3 Câu 51 (GV Nguyễn Thanh Tùng 2018) Một hình trụ có bán kính đáy 1, thiết diện qua trục hình vng Thể tích khối cầu ngoại tiếp hình trụ A 6 B 3 C 4 D 8 Đáp án D Thiết diện qua trục hình