Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 40 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
40
Dung lượng
2,68 MB
Nội dung
§13 Sử dụng máy tính cầm tay tốn hình học giải tích khơng gian Bài tập 1: Trong không gian với hệ tọa độ Oxyz, cho vecto a = ( 2; −5;3) , b = ( 0; 2; −1) , c = (1;7; ) Tìm tọa độ vecto u = a − 4b − 2c A u = ( 0;27;3) B u = ( 0; −27;3) C u = ( 0; −27; −3) D u = ( 0;27; −3) Cách giải máy tính: Ta thực sau: (nhập vecto a ) (nhập vecto b ) (nhập vecto c ) (xóa hình) (tìm tọa độ vecto u ) Màn hình Vậy, u = ( 0; −27;3) Do đáp án đáp án B Bài tập 2: Trong không gian với hệ tọa độ Oxyz, cho hai vecto a = ( 2; −5;3) b = ( 0; 2; −1) Tính a.b A -13 B 13 Cách giải máy tính: C 11 D Ta thực sau: (nhập vecto a ) (nhập vecto b ) (xóa hình) Tính a.b Màn hình Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Vậy a.b = −13 Do đó, ta chọn đáp án A Bài tập 3: Trong không gian với hệ tọa độ Oxyz, cho hai vecto a = ( 2; −5;3) b = ( 0; 2; −1) Tính a.b A a.b = (1; 2; ) B a.b = ( −1; −2; ) Cách giải máy tính: C a.b = ( −1; 2; ) D a.b = ( −1; 2; −4 ) Ta thực sau: (nhập vecto a ) (nhập vecto b ) (xóa hình) Tính a.b Màn hình Vậy a.b = ( −1; 2; ) Do ta chọn đáp án C Bài tập 4: Trong không gian với hệ tọa độ Oxyz, cho hai vecto a = ( 2; −5;3) b = ( 0; 2; −1) Tính góc hai vecto a b ( ) A a.b = 450 ( ) ( ) C a.b = 1350 B a.b = 900 ( ) D a.b = 00 Công thức: Cơng thức tính góc hai vecto: ( ) cos a, b = a.b a.b Cách giải máy tính: Ta thực sau: (nhập vecto a ) (nhập vecto b ) (xóa hình) Tính a.b Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Màn hình Tiếp tục nhấn: Màn hình (lưu giá trị vừa tìm) (chuyển đổi sang góc) Màn hình xuất ( ) Vậy, a.b = 1350 Do đó, đáp án đáp án C Bài tập 5: Trong không gian với hệ tọa độ Oxyz, cho ba vecto a = ( 2; −5;3) , b = ( 0; 2; −1) , c = (1;7; ) a.u = −5 Tìm tọa độ vecto u thỏa mãn u.b = −11 u.c = 20 A u = ( −2; −3;2) B u = ( 2; −3;2) C u = ( 2; −3; −2 ) D u = ( 2;3; −2) Cách giải có hỗ trợ máy tính: Đặt u = ( x; y;z ) Khi đó, ta có: 2.x + ( −1) y + 3.z = −5 a.u = −5 x = u.b = −11 1.x + ( −3) y + 2.z = −11 y = u.c = 20 z = −2 3.x + 2.y + ( −4 ) z = 20 Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Vậy, u = ( 2;3; −2) Do đó, đáp án đứng đáp án D Lưu ý: Để tìm x, y, z hệ Đối với máy CASIO 570VN PLUS, ta nhấn liên tục phím sau: Nhấn dấu hình xuất hiện: Nhấn tiếp dấu hình xuất Tiếp tục nhấn dấu hình xuất Vậy nghiệm hệ ( 2;3; −2) Còn máy VINACAL 570ES PLUS, ta nhấn liên tiếp phím sau: Sau nhấn dấu xem nghiệm: Bài tập 6: Trong không gian với hệ tọa độ Oxyz, cho ba vecto a = ( −1;1;0 ) , b = (1;1;0 ) , c = (1;1;1) Trong mệnh đề sau, mệnh đề đúng? A a + b + c = B a, b phương ( ) C cos b, c = D a.c = Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Ta giải tìm đáp án tốn tất thao tác máy tính Nhập tpaj độ vecto vào máy (nhập vecto a ) (nhập vecto b ) (nhập vecto c ) (xóa hình) Kiểm tra đáp án A Ta nhấn liên tục phím: Màn hình hiện: Tức a + b + c = (1;3;1) Do đó, đáp án A sai (xóa hình) Kiểm tra đáp án B Ta nhấn liên tục phím: Màn hình Tức a, b = ( 0;0; ) Do đó, đáp án B sai (xóa hình) Kiểm tra đáp án B Ta nhấn liên tục phím: Màn hình Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải ( ) Tức cos b, c = 0.8164965809 = Do đó, đáp án C Vậy đáp án D lại đáp án sai Hoặc ta kiểm tra đáp án D sau: Ta nhấn liến tục phím: Màn hình Do đó, đáp án D đáp án sai Bài tập 7: Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1;2; −3) , B ( 0;3;7 ) ,C (12;5;0 ) Tính diện tích ABC A SABC = 6847 B SABC = 8647 C SABC = 8467 D SABC = 8764 Cách giải có hỗ trợ máy tính: Ta có: AB = ( −1;1;10 ) , AC = (11;3;3) SABC = 6847 AB, AC = 2 Ta thao tác máy tính sau: (nhập vecto AB ) (nhập vecto AC ) (xóa hình) Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Màn hình Nhấn dấu bằng, hình Nhấn phím , hình Nhấn dấu bằng, hình Nhấn phím Nhấn phím , hình , hình Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Vậy SABC = 6847 AB, AC = Do đó, ta chọn đáp án A 2 Bài tập 8: Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1;2; −3) , B ( 0;3;7 ) ,C (12;5;0 ) Tính độ dài đường cao AH ABC 13649 13694 13694 16349 B AH = C AH = D AH = 197 197 197 179 Công thức: Cho điểm M, đường thẳng d qua M0 có vecto phương a Khi đó, khoảng cách A AH = từ điểm M đến đường thẳng d xác định bởi: d ( M, d ) = M0 M, a a Cách giải có hỗ trợ máy tính: Ta có: AH = d ( A, BC ) = BA, BC BC BA = (1; −1; −10 ) , BC = (12; 2; −7 ) Do đó, để tính AH ta thao tác máy tính sau: (nhập vecto BA ) (nhập vecto BC ) (xóa hình) Màn hình xuất Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Màn hình Vậy, AH = 13694 197 Do đó, ta chọn đáp án C Bài tập 9: Trong không gian với hệ tọa độ Oxyz, cho bốn A (1;1;0) , B ( 0;2;0 ) ,C ( 0;0;3) , D (1;2;3) Tính khoảng cách từ D đến mặt phẳng ( ABC) 12 17 B d ( D, ( ABC) ) = 12 C d ( D, ( ABC ) ) = D d ( D, ( ABC ) ) = 12 Cách giải có hỗ trợ máy tính: A d ( D, ( ABC ) ) = Ta có: VABCD = 1 AB, AC AD = d ( D, ( ABC ) ) SABC 6 Suy ra: d ( D, ( ABC ) ) = AB, AC AD AB, AC AD = 2SABC AB, AC Ta có: AB = ( −1; 2;0 ) , AC = ( −1;0;3) , AD = ( 0; 2;3) Ta thao tác máy tính sau: (nhập vecto AB ) (nhập vecto AC ) (nhập vecto AD ) (xóa hình) Màn hình Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải điểm Vậy, d ( D, ( ABC ) ) = 12 Do đó, a chọn đáp án A Bài tập 10: Trong không gian với hệ tọa độ Oxyz, cho bốn điểm không đồng phẳng A (1;1;0) , B ( 0;2;0 ) ,C ( 0;0;3) , D (1;2;3) Tính khoảng cách hai đường thẳng AC OB 1 B d ( OB, ( AC ) ) = C d ( OB, ( AC ) ) = D d ( OB, ( AC) ) = 2 Công thức: Cho hai đường thẳng d1 d chéo Đường thẳng d1 qua M1 có vecto A d ( OB, ( AC ) ) = phương u1 ; đường thẳng d qua M2 có vecto phương u Khi đó, khoảng cách hai đường thẳng d1 d xác định công thức: u1 , u M1M d ( d1 , d ) = u1 , u Cách giải có hỗ trợ máy tính: Ta có: AC = (1;1;1) , OB = ( 0;0;1) , OA = (1;0;0 ) d ( AC, OB) = AC, OB OA = AC, OB Ta thao tác máy tính sau: (nhập vecto AC ) (nhập vecto OB ) (nhập vecto OA ) (xóa hình) Màn hình Trang 10 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải x = −2 + 2t x = + 2t A y = −1 + 7t B y = −1 + 7t z = 4t z = 4t Cách giải có hỗ trợ máy tính: x = − 2t C y = −1 + 7t z = 4t x = + 2t D y = −1 + 7t z = −4t Gọi d = ( P ) ( Q) Lấy A ( 2; −1;0) d Vecto pháp tuyến mặt phẳng ( P ) là: n ( P ) = (1; −2;3) Vecto pháp tuyến mặt phẳng ( Q) là: n ( Q ) = ( 3; 2; −5 ) Vì d giao tuyến hai mặt phẳng ( P ) ( Q) nên vecto phương đường thẳng d là: n P , n Q = ( 4;14;8) ( ) ( ) Chọn u ( d ) = ( 2;7; ) x = + 2t Phương trình đường thẳng d là: y = −1 + 7t z = 4t Như thế, ta chọn đáp án A Lưu ý: để tính n( P) , n( Q) = ( 4;14;8) , ta nhấn liên tục phím sau: Màn hình Bài tập 23: Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;5) hai đường thẳng x = + 2t x = − t d1 : y = − 2t d : y = + t Viết phương trình tham số đường thẳng qua điểm A z = + t z = − 3t vng góc với hai đường thẳng d1 , d Trang 26 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải x = − t x = + t A y = t B y = t z = z = Cách giải có hỗ trợ máy tính: x = + t C y = − t z = x = + t D y = t z = + t Vecto phương đường thẳng d1 là: u1 = ( 2; −2;1) Vecto phương đường thẳng d là: u = ( −1;1; −3) Vì đường thẳng d cần lập vng góc với hai đường thẳng d1 , d nên vecto phương đường thẳng d là: u1, u = ( 5;5;0) Chọn u ( d ) = (1;1;0 ) x = + t Phương trình tham số đường thẳng d là: y = t z = Như ta chọn đáp án B Lưu ý: để tính u1, u = ( 5;5;0) , ta nhấn liên tục phím sau: Màn hình x −1 y z + = = Viết phương trình đường thẳng −3 ( m) qua giao điểm ( d ) ( α ) , vng góc với ( d ) đồng thời nằm mp ( α ) Bài tập 24: Cho ( α ) : 2x + y + z −1 = ( d ) : 7 x = + 7t x = + 7t 4 A y = + 8t B y = − 8t 5 −13 −13 z = − 6t z = − 6t Cách giải có hỗ trợ máy tính: x = + 7t C y = + 8t −13 z = + 6t x = − 7t D y = + 8t −13 z = − 6t Trang 27 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Tọa độ giao điểm đường thẳng ( d ) ( α ) nghiệm hệ: x −1 y x = =4 2x − y = y z + 3y + 4z = −8 y = = −3 4 2x + y + z = −13 2x + y + z − = z = −13 Tọa độ giao điểm đường thẳng ( d ) mặt phẳng ( α ) M ; ; 5 5 Vecto phương đường thẳng ( d ) là: u d = ( 2; 4; −3) Vecto pháp tuyến ( α ) là: n( α ) = ( 2;1;1) Vì đường thẳng d cần lập vng góc với ( d ) , đồng thời nằm mp ( α ) nên vecto phương đường thẳng d là: u d , n ( α ) = ( 7; −8; −6 ) x = + 7t Phương trình tham số đường thẳng d là: y = − 8t Như thế, ta chọn đáp án B −13 z = − 6t Lưu ý: Trong tập ta dùng máy tính cầm tay giải hệ phương trình ba ẩn tìm giao điểm −13 M ; ; tìm tọa độ vecto u d , n ( α ) = ( 7; −8; −6 ) 5 5 Bài tập 25: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A ( 2; −2;1) , B ( 0;2; −3) đường thẳng d : x −1 y − z −1 = = Tìm M ( d ) cho MA + MB2 nhỏ 1 5 5 5 7 A M ; ; B M ; ; 3 3 3 3 Cách giải có hỗ trợ máy tính: 5 4 C M ; ; 3 3 5 D M ; ; 3 3 Vì M ( d ) nên M (1 + 2t;2 + t;1 + t ) 2 49 49 Ta có: MA + MB2 = ( 2t − 1) + ( t + ) + t = 6t + 4t + 17 = t + + 3 3 Trang 28 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải 5 4 Dấu xảy t = Khi đó, tọa độ điểm M M ; ; 3 3 Như thế, ta chọn đáp án C 49 Lưu ý: Để phân tích 6t + 4t + 17 = t + + Ta thực máy tính sau: 3 Đối với máy CASIO 570VN PLUS, ta nhấn liên tiếp phím: Màn hình Nhấn dấu bằng, hình Đối với máy tính VINACAL 570ES PLUS II, ta nhấn liên tiếp phím sau: Màn hình Nhấn dấu bằng, hình Trang 29 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Bài tập 26: Trong khơng gian cho hai đường thẳng 1 , có phương trình: x − 8z + 23 = x − 2z − = Viết phương trình mặt phẳng ( P ) ( Q) song ; ( 2 ) : y − 4z + 10 = y + 2z + = ( 1 ) : song với qua ( 1 ) ( ) ( P ) : x − y − 4z + 13 = A ( Q ) : x − y − 4z − = ( P ) : x − y − 4z + 15 = B ( Q ) : x − y − 4z − = ( P ) : x − y − 4z + 13 = C ( Q ) : x − y − 4z + = Cách giải có hỗ trợ máy tính: ( P ) : x − y − 4z − 13 = D ( Q ) : x − y − 4z + = Phương trình ( 1 ) x = −23 + 8t viết lại dạng tham số: ( 1 ) : y = −10 + 4t z = t Phương trình ( ) x = + 2t viết lại dạng tham số: ( ) : y = −2 − 2t z = t Đường thẳng ( 1 ) qua M1 (1; 2;3) có vecto phương là: u1 = (8;4;1) Đường thẳng ( ) qua M2 ( 3; −2;0 ) có vecto phương là: u = ( 2; −2;1) Vì mặt phẳng ( P ) ( Q) song song với qua ( 1 ) ( ) nên vecto pháp tuyến chúng là: u1, u = ( 6; −6; −24) Chọn n = (1; −1; −4 ) Mặt phẳng ( P ) qua M1 (1;2;3) , có vecto pháp tuyến n = (1; −1; −4 ) , có phương trình là: ( x −1) − ( y − 2) − ( z − 3) = x − y − 4z +13 = Mặt phẳng ( Q) qua M2 ( 3; −2;0 ) , có vecto pháp tuyến n = (1; −1; −4 ) , có phương trình là: ( x − 3) − ( y + 2) − 4z = x − y − 4z − = Do ta chọn đáp án A Lưu ý: Để tính u1, u = ( 6; −6; −24) , ta nhấn liên tục phím sau: Trang 30 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Màn hình x = −1 + t Bài tập 27: Trong không gian cho đường thẳng : x = − t điểm A ( −2;3; ) Tìm điểm M z = − t cho khoảng cách AM ngắn 16 16 A M − ; ; B M − ; ; 3 3 3 3 Cách giải có hỗ trợ máy tính: 16 C M ; − ; 3 3 16 D M − ; − ; 3 3 Vì M ( d ) nên M ( −1 + t; −t;4 − t ) 14 14 Ta có: AM = 3t + 8t + 10 = t + + 3 3 16 Dấu xảy t = − Khi đó, tọa độ điểm M M − ; ; 3 3 Như thế, ta chọn đáp án A 14 Lưu ý: Để phân tích 3t + 8t + 10 = t + + Ta thực máy tính sau: 3 Đối với máy CASIO 570VN PLUS, ta nhấn liên tiếp phím: Màn hình Trang 31 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Nhấn dấu bằng, hình Đối với máy tính VINACAL 570ES PLUS II, ta nhấn liên tiếp phím sau: Màn hình Nhấn dấu bằng, hình Bài tập 28: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2x + 3y + z −11 = mặt cầu (S) : x + y2 + z2 − 2x + 4y − 2z − = Tìm tọa độ tiếp điểm ( P ) A H ( 3;1; −2 ) B H ( 3;1;2 ) (S) C H ( 3; −1;2) D H ( −3; −1;2 ) Cách giải có hỗ trợ máy tính: Mặt cầu (S) có tâm I (1; −2;1) bán kính R = 14 Ta có d ( I, ( P ) ) = 2.1 + ( −2 ) + − 11 22 + 32 + = 14 = R Do đó, mặt phẳng ( P ) tiếp xúc với mặt cầu (S) Tiếp điểm ( P ) (S) hình chiếu vng góc I lên ( P ) Ta có: k = − ( 2.1 + ( −2 ) + − 11) 22 + 32 + 12 x H = + 2k = = Khi y H = −2 + 3k = z = + k = H Vậy, tọa độ tiếp điểm H ( 3;1;2 ) Như ta chọn đáp án B Lưu ý: Các thao tác máy tính toán sau Trang 32 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Để tính k, ta nhập vào máy biểu thức − ( 2X + 3Y2M − 11) 22 + 32 + 12 Sau đó, nhấn CALC nhập X = 1; Y = −2; M = Rồi nhấn dấu bằng, hình Tức k = Nhấn (lưu vào biến A) Màn hình Nhấn AC, xóa hình Tính x H , ta nhấn Màn hình Nhấn AC, xóa hình Tính y H , ta nhấn Màn hình Nhấn AC, xóa hình Trang 33 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Tính z H , ta nhấn Màn hình BÀI TẬP TỰ LUYỆN 13.1 Cho a = ( 2; −5;3) , b = (1; 2; −1) , c = (1;3; ) Tìm tọa độ vecto u = 3a − b + 5c C u = ( −10; −2;20 ) B u = (10; −2;20 ) A u = (10;2;20 ) D u = (10; −2; −20) a.u = −5 13.2 Cho a = ( 2;3;1) , b = (1; −2; −1) , c = ( −2; 4;3) Tìm tọa độ vecto thỏa u.b = −11 u.c = 20 45 23 A u = − ; ; −2 7 45 23 B u = − ; ; 7 45 23 45 23 C u = − ; − ; D u = ; − ; 13.3 Cho A (1;1;1) , B ( 5;1; −2 ) ,C ( 7;9;1) Tính diện tích ABC C SABC = 418 B SABC = 481 A SABC = 148 D SABC = 814 13.4 Cho A ( 0;2;0) , B (1; −1;3) ,O ( 0;0;0 ) Tính khoảng cách từ O đến đường thẳng AB A d = 10 19 B d = 10 19 C d = 20 19 D d = 10 19 13.5 Cho tứ diện ABCD, với A ( 2;3;1) , B ( 4;1; −2) ,C ( 6;3;7 ) , D ( −5; −4;8) Tính thể tích tứ diện A VABCD = 70 B VABCD = 154 C VABCD = 13 D VABCD = 308 13.6 Cho ba điểm A (1;0;0) , B ( 0;0;1) ,C ( 2;1;1) Tính khoảng cách từ gốc tọa độ đến mặt phẳng ( ABC) A d ( O, ( ABC) ) = 13.7 Trong không B d ( O, ( ABC ) ) = gian với hệ C d ( O, ( ABC) ) = tọa độ Oxyz, D d ( O, ( ABC) ) = cho tứ diện ABCD với A ( 2;1;0) , B (1;1;3) ,C ( 2; −1;3) , D (1; −1;0 ) Tìm tọa độ tâm bán kính mặt cầu ngoại tiếp tứ diện ABCD 14 3 A I − ;0; ; R = 2 3 14 3 B I ;0; − ; R = 2 2 Trang 34 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải 3 14 D I − ;0; − ; R = 2 14 3 3 C I ;0; ; R = 2 2 ( ) 13.8 Trong hệ trục Oxyz, cho ba điểm A ( −2;1;0) , B ( −3;0;4 ) ,C ( 0;7;3) Khi đó, cos AB, BC A 14 118 B − 59 C 14 57 D − 14 57 13.9 Cosin góc hợp Oy mặt phẳng ( P ) : 4x − 3y + z − = bằng: A 17 26 B 13.10 Cosin góc hợp hai đường thẳng d1 : A 3 B C D x y +1 z −1 x +1 y z − = = = = d : −1 1 C D 13.11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + 2y + z − = điểm A ( 2;3;2) Tọa độ điểm A’ đối xứng với A qua mặt phẳng ( P ) A A' ( 0; −1;0) B A' ( −2;1;3) C A ' ( 0; −3;4 ) D A' (1;1;1) x = −3 − 2t 13.12 Trong không gian với hệ tọa độ Oxyz, gọi α góc hợp đường thẳng d : y = + t (t z = + t ) trục Ox Thế cosα A B − C D 13.13 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2x + y − 2z −1 = đường thẳng d: x −2 y z+3 = = Tìm tọa độ giao điểm d ( P ) −2 3 7 A M ; −3; − 2 2 3 7 B M ; −3; 2 2 3 7 C M ;3; − 2 2 7 3 D M ;3; 2 2 13.14 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2x + y − 2z −1 = đường thẳng d: x −2 y z+3 = = Viết phương trình mặt phẳng chứa d vng góc với ( P ) −2 A x + 8y − 5z + 13 = B x + 8y + 5z + 13 = C x − 8y − 5z + 13 = D x + 8y − 5z − 13 = Trang 35 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải 13.15 Trong khơng gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 6x + 3y − 2z −1 = mặt cầu (S) : x + y2 + z2 − 6x − 4y − 2z −11 = Mặt phẳng ( P ) tròn ( C ) Tìm tọa độ tâm ( C ) 13 A − ; ; 7 7 cắt mặt cầu (S) theo giao tuyến đường 13 C ; ; − 7 7 13 B ; − ; 7 7 13.16 Trong không gian với hệ tọa độ Oxyz, cho điểm 13 D ; ; 7 7 A ( 3;5;0) mặt phẳng ( P ) : 2x + 3y − z − = Tìm tọa độ điểm đối xứng A qua ( P ) A B ( −1; −1;2) C (1; −1;2) B ( −1;1;2) D (1;1; ) 13.17 Trong không gian với hệ tọa độ Oxyz, cho điểm A (1; −1;1) , B ( −1;2;3) đường thẳng x +1 y − x − = = Viết phương trình đường thẳng d qua A vng góc với hai đường thẳng −2 AB : A d : x −1 y + z −1 = = B d : x −1 y −1 z −1 = = C d : x −1 y −1 z +1 = = D d : x −1 y + z −1 = = −2 13.18 Trong không gian với hệ tọa độ Oxyz, cho điểm A ( −1; −1; −2) , B ( 0;1;1) mặt phẳng ( P ) : x + y + z −1 = Viết phương trình mặt phẳng qua A, B vng góc với ( P ) A x − 2y − z − = B x − 2y − z + = C x + 2y − z + = D x − 2y + z + = 13.19 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2x − 2y − z − = mặt cầu (S) : x + y2 + z2 − 2x − 4y − 6z −11 = Mặt phẳng ( P ) cắt mặt cầu (S) theo đường tròn Xác định tọa độ tâm đường tròn A H ( −3;0; ) B H ( 3;0; −2 ) C H ( −3;0; −2 ) D H ( 3;0;2) 13.20 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;4;2) , B ( −1;2;4) đường thẳng : x −1 y + z = = Tìm tọa độ điểm M thuộc đường thẳng cho MA + MB2 nhỏ −1 A M (1;0;4 ) B M ( −1;0; −4) 13.21 Tìm giao điểm đường thẳng d : A M ( 3;1;0) B M ( 3; −1;0 ) C M ( −1;0;4) D M (1;0; −4 ) x − y +1 z = = mặt phẳng ( P ) : 2x − y − z − = −1 C M ( −3;1;0 ) D M ( −3; −1;0) Trang 36 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải 13.22 Cho hai điểm A ( −2; −1;3) , B ( 4; −2;1) mặt phẳng (β ) : 2x + 3y − 2z + = Viết phương trình mặt phẳng ( α ) qua hai điểm A, B vng góc với mặt phẳng (β ) A 4x + 4y + 5z + 18 = B 4x + 4y + 5z − 18 = C 4x − 4y + 5z − 18 = D 4x + 4y + 5z − 18 = (β ) : 2x + y − z − = 0, ( γ ) : x − y − z − = phương trình mặt phẳng ( α ) qua điểm M vng góc với hai mặt phẳng (β ) , ( γ ) 13.23 Cho điểm M (1;0; −2 ) hai mặt phẳng A 2x + y − 3z − = B 2x + y − 3z + = C −2x + y − 3z − = D −2x + y + 3z − = Viết 13.24 Cho mặt phẳng ( P ) : x + y + 5z −14 = điểm M (1; −4; −2 ) Tìm tọa độ hình chiếu H M ( P ) A H ( 2; −3;3) B H ( 2;3;3) C H ( 2; −3; −3) D H ( −2; −3;3) 13.25 Cho mặt phẳng ( P ) : x + y + 5z −14 = điểm M (1; −4; −2 ) Tìm tọa độ điểm M’ đối xứng với M qua ( P ) A M' ( −3; −2;8) B M' ( 3;2;8) C M' ( 3; −2;8) D M' ( −3;2; −8) 13.26 Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 2; −1;1) hai đường thẳng x = + t x = + 3t d1 : y = −2 + t , d : y = −2 + t Viết phương trình tham số đường thẳng d qua điểm A z = z = + t vng góc với hai đường thẳng d1 , d x = + t A d : y = −1 − t z = − 2t x = + t B d : y = − t z = − 2t x = + t C d : y = − t z = − 2t x = + t D d : y = − t z = −1 + 2t 13.27 Trong không gian với hệ tọa độ Oxyz, cho vecto a = ( −1;1;0 ) , b = (1;1;0 ) , c = (1;1;1) Trong mệnh đề sau mệnh đề sai: A a = B c = C a ⊥ b D b ⊥ c 13.28 Trong không gian Oxyz, cho tứ diện ABCD, với A (1;0;0) , B ( 0;1;0) ,C ( 0;0;1) , D (1;1;1) Tính thể tích tứ diện A B C D Trang 37 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải 13.29 Trong không gian Oxyz, cho tứ diện ABCD, với A (1;0;0) , B ( 0;1;0) ,C ( 0;0;1) , D (1;1;1) Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là: A B C D 3 13.30 Trong không gian Oxyz, cho tứ diện ABCD, với A ( 2; −1; −2) ;B ( −1;1;2 ) ;C ( −1;1;0 ) ;D (1;0;1) Độ dài đường cao tứ diện kẻ từ D bằng: A 3 13 B 13 C D 13 13.31 Trong không gian Oxyz, cho điểm A ( 0;2;1) ;B (3;0;1) ;C (1;0;0 ) Lập phương trình mặt phẳng ( ABC) A 2x − 3y − 4z + = B 2x − 3y − 4z + = C 4x + 6y − 8z + = D 2x + 3y − 4z − = 13.32 Trong không gian Oxyz, cho hai đường thẳng d : x − y +1 z + x −1 y −1 z +1 = = ; d': = = 2 2 Tính khoảng cách hai đường thẳng A B C D 13.33 Mặt phẳng qua điểm A (1;0;0) , B ( 0; −2;0 ) ,C ( 0;0;3) có phương trình là; A x − 2y + 3z = B x y z + + =6 −2 C 13.34 Tính khoảng cách hai đường thẳng d1 : A 5 B x y z + + =1 −1 −3 D 6x − 3y + 2z = x − y − z −1 x −1 y z +1 = = = = d : −2 −4 −5 854 29 C 854 29 D 13.35 Trong mặt phẳng Oxyz, cho tứ diện ABCD, với A ( 2;3;1) ;B ( 4;1; −2) ;C ( 6;3;7 ) ;D ( −5; −4; −8) Độ dài đường cao kẻ từ D tứ diện là: A 45 B 5 C 5 D 3 13.36 Cho tứ diện ABCD, với A (1;0;0) ;B ( 0;1;0 ) ;C ( 0;0;1) ;D ( −2;1; −1) Thể tích tứ diện ABCD là: A B C D Trang 38 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải 13.37 d2 : Phương trình mặt phẳng chứa hai đường thẳng d1 : x −1 y + z − = = −2 x +1 y z + = = là: −1 A 3x + 2y − = B 6x + 9y + z + = C −8x + 19y + z + = D 6x + 9y + z − = 13.38 Hình chiếu vng góc A ( −2; 4;3) mặt phẳng 2x − 3y + 6z + = có tọa độ là: 20 37 B − ; ; 7 7 A (1; −1;2) 37 31 C − ; ; 5 5 20 37 D − ; − ; − 7 13.39 Trong không gian Oxyz, cho vecto a = ( x; 2;1) b = ( 3; 2;0 ) Gía trị a − b nhỏ khi: A x = B x = C x = D x = −3 13.40 Trong không gian Oxyz, cho vecto a = ( 3; x + 1;1) , b = ( 0; −1;1) Gía trị a − 2b nhỏ khi: B x = −3 A x = C x = −2 D x = −1 gian với hệ tọa độ Oxyz, cho x = + 2t x −2 y+ z −3 : = = ; d : y = −1 − t Tính góc hai đường thẳng −1 1 z = + 3t 13.41 Trong không A 00 B 300 C 900 hai đường thẳng D 600 13.42 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A ( 3; −1;2) ;B ( 4; −1; −1) ;C ( 2;0;2 ) Mặt phẳng qua ba điểm A, B, C có phương trình: A 3x + 3y − z − = B 3x + 3y + z − = C 3x − 3y + z − = D −3x + 3y + z − = 13.43 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M (1; −1;5) , N ( 0;0;1) Mặt phẳng ( α ) chứa M, N song song với trục Oy có phương trình là; A ( α ) : 4x − z + = B ( α ) : x − 4z + = C ( α ) : −4x − z + = D ( α ) : 4x − z + = 13.44 Trong không gian với hệ tọa độ Oxyz, mặt phẳng ( α ) qua điểm M ( 0;0; −1) song song với giá hai vecto a = (1; −2;3) , b = ( 3;0;5 ) Phương trình mặt phẳng ( α ) là: A ( α ) : −5x + 2y + 3z + = B ( α ) : −5x + 2y − 3z + = Trang 39 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải D ( α ) : −5x + 2y + 3z − = C ( α ) : 5x + 2y + 3z + = 13.45 Trong không gian với hệ tọa độ Oxyz, mặt phẳng ( α ) qua A ( 2; −1;1) vng góc với hai mặt phẳng ( P ) : 2x − z + = ( Q ) : y = Phương trình mặt phẳng ( α ) là: A ( α ) : x − 2z − = B ( α ) : x + 2z − = C ( α ) : x + 2y − = D ( α ) : y + 2z − = § 13 13.1.B 13.2.A 13.3.B 13.4.B 13.5.B 13.6 A 13.7.C 13.8.A 13.9.A 13.10.C 13.11.A 13.12.C 13.13.B 13.14.B 13.15.D 13.16.A 13.17.A 13.18.D 13.19.D 13.20.C 13.21.B 13.22.B 13.23.C 13.24.A 13.25.C 13.26.A 13.27.D 13.28.D 13.29.A 13.30.B 13.31.D 13.32.B 13.33.D 13.34.A 13.35.A 13.36.C 13.37.B 13.38.B 13.39.A 13.40.B 13.41.C 13.42.B 13.43.A 13.44.A 13.45.B Trang 40 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải ... (xóa hình) Màn hình Trang 10 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Màn hình Màn hình Vậy d ( OB, ( AC ) ) = 1 = Như ta chọn đáp án A 2 Bài tập 11: Trong không gian. .. ) (xóa hình) Màn hình Màn hình Màn hình Vậy d ( d1 , d ) = 386 ta chọn đáp án A Trang 12 http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Bài tập 12: Trong không gian với... có lời giải Màn hình Nhấn dấu bằng, hình Nhấn phím , hình Nhấn dấu bằng, hình Nhấn phím Nhấn phím , hình , hình Trang http://dethithpt.com – Website chuyên đề thi thử file word có lời giải Vậy