1. Trang chủ
  2. » Giáo án - Bài giảng

sang kien boi duong HSG

6 234 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 208,5 KB

Nội dung

Sáng kiến kinh nghiệm bồi dỡng học sinh giỏi môn toán ,, I . đặt vấn đề Đất nớc ta đang trong thời kì công nghiệp, hóa hiện đại hóa đất nớc. Nhiệm vụ của ngành giáo dục là đào tạo những con ngời lao động mới có đủ tài năng, trí tuệ để tiếp thu những thành tựu khoa học kĩ thuật và công nghệ tiên tiến của thế giới áp dụng vào việc phát triển kinh tế của đất nớc. Từng bớc đa nớc ta trở thành một nớc công nghiệp. Để làm đợc điều đó thì ngành giáo dục nói chung và mỗi ngời giáo viên nói riêng phải từng bớc đổi mới phơng pháp giảng dạy,không ngừng học hỏi để nâng cao trình độ chuyên môn nghiệp vụ của bản thân . Muốn công nghiệp hóa, hiện đại hóa thành công thì phải không ngừng đào tạo nhân lực , bồi dỡng nhân tài. Do đó việc bồi dỡng nhân tài là một nhiệm vụ rất quan trọng của ngành giáo dục và của mỗi ngời giáo viên. Bồi dỡng nhân tài phải đợc thực hiện sớm từ bậc tiểu học, trung học cơ sở . Việc bồi dỡng nhân tài ở bậc trung học cơ sở đ- ợc thể hiện ở bồi dỡng học sinh giỏi, trong đó có bồi dỡng học sinh giỏi môn Toán . Là giáo viên giảng dạy môn Toán THCS , tôi có nhiều năm tham gia vào công tác bồi dỡng học sinh giỏi môn Toán và rút ra một số kinh nghiệm . Sau đây tôi xin trình bày một số kinh nghiệm bồi dỡng học sinh giỏi môn Toán để quý thầy cô và các bạn đồng nghiệp cùng tham khảo . II. Giải quyết vấn đề Để bồi dỡng học sinh giỏi Toán có hiệu quả theo tôi phải làm đợc những công việc sau : - Đầu năm phân loại đối tợng học sinh, chọn những em học khá Toán trở lên và chăm học vào đội tuyển HSG Toán . - Chuẩn bị tài liệu , sách tham khảo , sách nâng cao môn Toán. - Soạn nội dung bồi giỏi , trong nội dung bồi giỏi phải hệ thống, phân loại đợc từng dạng Toán ở khối đợc phân công bồi . - Lên kế hoạch bồi giỏi theo từng tuần . Bản thân tôi nhiều năm đợc phân công bồi dỡng học sinh giỏi Toán 7 và đã đạt đợc một số kết quả nhất định. Sau đây tôi xin lấy một số ví dụ cụ thể khi bồi dỡng học sinh giỏi môn Toán 7 . 1. Tài liệu : Nâng cao và phát triển Toán 7 , Nâng cao và các chuyên đề Toán 7 , Bồi dỡng Toán 7 , Toán phát triển . 2. Kế hoạch bồi giỏi : Dạy từ 2 3 buổi trong một tuần bắt đầu từ 15/9 3. Một số dạng Toán cơ bản lớp 7 : - Dạng toán tính toán . - Dạng toán tìm x , tìm x, y là số nguyên - Dạng toán về tỉ lệ thức và dãy tỉ số bằng nhau . - Dạng toán về đồ thị hàm số y = ax . - Dạng toán về chia hết . - Dạng toán tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức . - Dạng toán tìm giá nguyên của biến để biểu thức có giá trị nguyên . - Dạng toán về đa thức , giá trị của biểu thức đại số . - Dạng toán về chứng minh hai tam giác bằng nhau, hai đoạn thẳng bằng nhau , hai góc bằng nhau , hai đoạn thẳng vuông góc . - Dạng toán về tính số đo góc , tính độ dài đoạn thẳng . - . Ngoài những công việc trên thì việc giảng dạy là quan trọng nhất . Khi giảng dạy phải dạy cho học sinh theo từng dạng toán , theo từng chuyên đề . ở mỗi dạng toán phải nêu bật cho học sinh cách làm và khai thác bài toán ở nhiều khía cạnh khác nhau. Ví dụ 1 : Tính A = 1 + 3 + 3 2 + 3 3 + 3 4 + + 3 2007 +Phân tích đề bài - Biểu thức A là tổng các lũy thừa cơ số 3 có số mũ từ 0 đến 2007 - Để tính biểu thức A ta xét biểu thức 3A hoặc 3A sau đó tính 3A A hoặc A 3A ta sẽ tìm đợc giá trị của biểu thức A . + Lời giải : Ta có 3A = 3 + 3 2 + 3 3 + 3 4 + + 3 2008 Xét 3A A = 3 2008 1 2A = 3 2008 1 A = 2 13 2008 + Tổng quát cách giải : Để tính A = 1 + a + a 2 + a 3 + . + a n Xét aA A từ đó tính A + Khai thác : Từ bài toán trên ta có các bài toán tơng tự sau Bài 1 : Tính a) B = 2 2 + 2 4 + 2 6 + + 2 2008 b) C = 3 1 + 2 3 1 + 3 3 1 + . + 2007 3 1 c) D = 2006642 200732 3 .3331 3 .3331 +++++ +++++ Bài 2 : So sánh A = 1 + 3 + 3 2 + 3 3 + 3 4 + + 3 2007 và B = 3 2008 1 Bài 3 : Tìm x biết x + 3x + 3 2 x + 3 3 x + 3 4 x + + 3 2007 x = 3 2008 1 Ví dụ 2 : Tìm x biết : 12 x + 3 = 7 (1) + Phân tích đề bài - Ta thấy x nằm trong dấu giá trị tuyệt đối , để tìm x ta phải bỏ đợc dấu giá trị tuyệt đối . - Bỏ dấu giá trị tuyệt đối bằng cách xét biểu thức 2x 1 khi nào âm , khi nào không âm . Hoặc vận dụng tính chất a = a + Lời giải : Cách 1 : 12 x + 3 = 7 12 x = 4 2x 1 = 4 hoặc 2x 1 = - 4 x = 2,5 hoặc x = - 1,5 Cách 2 : Nếu 2x 1 0 suy ra x 0,5 thì (1) có dạng : 2x 1 + 3 = 7 x = 2,5 ( thỏa mãn x 0,5 ) Nếu 2x 1 < 0 suy ra x < 0,5 thì (1) có dạng : -( 2x 1 ) + 3 = 7 - 2x = 3 x = - 1,5 ( thỏa mãn x < 0,5) Vậy x = 2,5 hoặc x = - 1,5 Tổng quát cách giải : Dạng toán tìm x trong dấu giá trị tuyệt đối chia thành một số dạng sau: Dạng 1: )(xA = a (a 0 ) A(x) = a Dạng 2: )(xA = )(xB A(x) = B(x) Dạng 3: )(xA )(xB )(xC = )(xD . Cách giải:Lập bảng xét dấu để bỏ giá trị tuyệt đối. Dạng 4: )(xA + )( yB + )(zC 0 A(x) =0 và B(y) =0 và C(z) =0 + Khai thác : Từ bài toán (1) ta có bài toán tơng tự sau. a) 12 x + 3x = 7 b) 12 x +3 = 7x c) 12 x +3x = 7x Ví dụ 3 : Tìm x , biết : 1 + x = 10x (2) + Phân tích: - Ta có thể giải bài toán nh ví dụ 2. - Hoặc ta xét vế phải từ đó bỏ dấu giá trị tuyệt đối ở vế trái. + Lời giải. - Nếu x< 0 thì 10x < 0 khi đó không có giá trị nào của x thỏa mãn (2). - Nếu x 0 thì 10x 0 và x+1 > 0 nên (2) có dạng : x + 1 = 10x x = 9 1 ( thỏa mãn x 0 ) Vậy x = 9 1 + Khai thác : Từ cách giải của bài toán trên ta có thể giải các bài toán khó hơn sau: Tìm x , biết: a) 1 + x + 2 + x + 3 + x + . 9 + x = 10x b) 100 1 + x + 100 2 + x + 100 3 + x + + 100 99 + x = 100x c) 1 + x + 3 + x + 2 3 + x + 3 3 + x + + 2007 3 + x = ( 3 2008 + 2007 )x Ví dụ 4 : Cho tỉ lệ thức b a = d c ( giả thiết các biểu thức đều có nghĩa ) . Chứng minh a) b ba + = d dc + b) 2 + + dc ba = 22 22 dc ba + + + Phân tích đề bài : Ta thấy tử và mẫu của các tỉ số có a + b , c + d . Để giải bài toán này ta có thể sử dụng tính chất của tỉ lệ thức và dãy tỉ số bằng nhau hoặc biến đổi VT , VP của đẳng thức . + Lời giải : a) Cách 1 : Từ tỉ lệ thức b a = d c -> c a = dc ba d b + + = -> d dc b ba + = + Cách 2 : Từ tỉ lệ thức b a = d c -> b a + 1 = d c + 1 hay d dc b ba + = + Cách 3 : Đặt b a = d c = t -> a = bt , c = dt Ta có 1 )1( += + = + = + t b tb b bbt b ba ( 1 ) 1 )1( += + = + = + t d td d ddt d dc (2) Từ (1) và (2) suy ra d dc b ba + = + Cách 4 : Từ b a = d c -> ad = bc -> ad + bd = bc + bd hay ( a + b)d = ( c+d ) b -> d dc b ba + = + b) Cách 1 : Từ tỉ lệ thức b a = d c -> c a = dc ba d b + + = -> 2 2 2 2 2 + + == dc ba d b c a (1) Mà 22 22 2 2 2 2 dc ba d b c a + + == (2) Từ (1) và (2) suy ra 2 + + dc ba = 22 22 dc ba + + Cách 2 : Đặt b a = d c = t -> a = bt , c = dt Ta có 2 + + dc ba = 2 + + ddt bbt = 2 2 d b (3) 22 22 dc ba + + = ( ) ( ) 2 2 2 2 ddt bbt + + = 2 2 d b (4) Từ (3) và (4) suy ra 2 + + dc ba = 22 22 dc ba + + +Khai thác : Từ kết quả của bài toán trên ta có các bài toán tơng tự sau Bài 1 : Cho tỉ lệ thức b a = d c . Chứng minh a) 20072007 + = + d dc b ba b ) dc d b ba + + . = 1 c) 20082008 20082008 2008 dc ba dc ba + + = + + Bài 2 : Cho tỉ lệ thức b a = d c và a + b = c + d . Tính giá trị của biểu thức nn nn dc ba + + Ví dụ 5 : Cho x , y là các số nguyên . Chứng minh 2x + y 5295 yx + + Phân tích : Để giải bài toán này ta sử dụng tính chất chia hết của một tổng hoặc một hiệu. + Lời giải : Xét A = 3( 2x + y ) + ( 9x + 2y ) = 15x + 5y = 5( 3x + y ) 5 Nếu 2x + y 5 thì 3( 2x + y ) 5 mà A 5 nên 9x + 2y 5 Nếu 9x + 2y 5 mà A 5 suy ra 3( 2x + y ) 5 mà ( 3 ; 5 ) = 1 nên 2x + y 5 Nhận xét cách giải : Để giải bài toán này ta phải lập đợc một biểu thức chia hết cho 5 và trong biểu thức A phải chứa hai biểu thức 2x + y và 9x + 2y . Sau đó sử dụng tính chất chia hết của một tổng hoặc một hiệu để chứng minh . + Khai thác : Từ bài toán trên ta có các bài toán có cách giải tơng tự sau: Cho a , b là các số nguyên . Chứng minh a) a + 3b 2 a + b 2 b) 5a + 2b 13 a + 3b 13 c) 2a b 4 5a + b 4 III. Kết luận Qua nhiều năm thực hiện công tác bồi giỏi môn Toán 7 tôi thấy đa số học sinh nắm đợc cách làm các dạng toán cơ bản . Kết quả là tỉ lệ học sinh đỗ HSG Toán 7 cấp huyện hàng năm đạt cao và ổn định . Đội tuyển HSG Toán 7 nhiều năm đạt giải nhất nhì đồng đội . Do trong khuôn khổ của một chuyên đề , tôi không thể trình bày hết đợc các dạng Toán bồi giỏi của môn toán 7 và không tránh khỏi những sai sót . Kính mong đợc sự đóng góp ý kiến , chỉ bảo của quý thày cô và các bạn đồng nghiệp để bản thân ngày càng có nhiều kinh nghiệm hơn nữa trong công tác bồi dỡng học sinh giỏi . Canh Tân, ngày 20 tháng 5 năm 2007 Ngời viết Vũ Doãn Chinh . dạng toán cơ bản . Kết quả là tỉ lệ học sinh đỗ HSG Toán 7 cấp huyện hàng năm đạt cao và ổn định . Đội tuyển HSG Toán 7 nhiều năm đạt giải nhất nhì đồng đội. tợng học sinh, chọn những em học khá Toán trở lên và chăm học vào đội tuyển HSG Toán . - Chuẩn bị tài liệu , sách tham khảo , sách nâng cao môn Toán. -

Ngày đăng: 06/08/2013, 01:26

TỪ KHÓA LIÊN QUAN

w