Một số nghiệm soliton của các phương trình yang mills và ứng dụng ( Luận án tiến sĩ)Một số nghiệm soliton của các phương trình yang mills và ứng dụng ( Luận án tiến sĩ)Một số nghiệm soliton của các phương trình yang mills và ứng dụng ( Luận án tiến sĩ)Một số nghiệm soliton của các phương trình yang mills và ứng dụng ( Luận án tiến sĩ)Một số nghiệm soliton của các phương trình yang mills và ứng dụng ( Luận án tiến sĩ)
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Nguyễn Quốc Hoàn MỘT SỐ NGHIỆM SOLITON CỦA CÁC PHƯƠNG TRÌNH YANG-MILLS VÀ ỨNG DỤNG LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội – 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Nguyễn Quốc Hoàn MỘT SỐ NGHIỆM SOLITON CỦA CÁC PHƯƠNG TRÌNH YANG-MILLS VÀ ỨNG DỤNG Chuyên ngành: Vật lý lý thuyết Vật lý toán Mã số: 62440103 LUẬN ÁN TIẾN SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC: GS TSKH NGUYỄN VIỄN THỌ Hà Nội – 2014 Lời cam đoan Tôi xin cam đoan cơng trình nghiên cứu tơi Những kết nêu luận án trung thực chưa công bố công trình khác Mọi báo đồng tác giả cho phép sử dụng Hà Nội, tháng năm 2014 Giáo viên hướng dẫn Tác giả luận án GS, TSKH Nguyễn Viễn Thọ Nguyễn Quốc Hoàn i Lời cảm ơn Nhìn lại khoảng dài, với năm trục thời gian Thời khoảng mà nhận tình cảm tốt đẹp từ thầy cơ, đồng nghiệp, bạn bè gia đình Trước tiên, tơi xin bày tỏ lòng tơn kính biết ơn đến GS.TSKH Nguyễn Viễn Thọ - Một nhà khoa học nghiêm túc, thầy tận tình dạy bảo giúp đỡ tơi q trình học tập nghiên cứu Tơi xin tỏ lòng biết ơn đến thầy giáo Tơ Bá Hạ, thầy nhiệt tình giúp đỡ động viên tơi q trình học tập nghiên cứu Bản luận án lời cảm ơn chân thành tới thầy cô Viện Vật lý Kỹ thuật, đặc biệt thầy, cô bạn Bộ môn Vật lý Lý thuyết, Trường Đại học Bách Khoa Hà Nội Những nhận xét tỉ mỉ thầy (cô) phản biện giúp tơi hồn thiện luận án Cá nhân tơi coi học q báu học tập nghiên cứu Tôi xin gửi tới thầy (cô) phản biện lời cảm ơn chân thành Nhân dịp này, muốn gửi lời cảm ơn tới lãnh đạo đồng nghiệp Sở Giáo dục Đào tạo Hà Giang - nơi công tác, quan tâm, ủng hộ giúp đỡ quý báu Gia đình điểm tựa vững cho tơi, nơi mà tơi bày tỏ cảm xúc Xin gửi tới gia đình tơi lòng biết ơn sâu nặng tình cảm khơng thể nói lời Nguyễn Quốc Hồn ii Mục lục Lời cam đoan i Lời cảm ơn .ii Danh mục ký hiệu, chữ viết tắt vi Danh mục hình vẽ đồ thị vii MỞ ĐẦU 1 Lý chọn đề tài Mục đích, đối tượng phạm vi nghiên cứu Phương pháp nghiên cứu Ý nghĩa khoa học thực tiễn luận án 5 Bố cục luận án SOLITON TOPO TRONG CÁC HỆ TRƯỜNG GAUGE ABEL VÀ PHI ABEL 1.1 Hệ Yang-Mills khơng có trường Higgs: Nghiệm Wu-Yang 11 1.2 Hệ Yang-Mills-Higgs: Nghiệm monopole ’t Hooft-Polyakov dyon Julia – Zee 16 1.2.1 Nghiệm monopole 't Hooft-Polyakov 16 1.2.2 Nghiệm dyon Julia – Zee 19 1.3 Nghiệm soliton tới hạn, nghiệm Bogomolny-Prasad-Sommerfield (BPS) 21 1.3.1 Nghiệm soliton tới hạn 21 1.3.2 Nghiệm Bogomolny-Prasad-Sommerfield (BPS) 23 1.4 Trường Yang-Mills không gian Euclide nghiệm instanton 24 iii 1.5 Kết luận chương 26 NGHIỆM SOLITON CỦA HỆ YANG-MILLS VỚI NGUỒN NGOÀI ĐỐI XỨNG TRỤC 27 2.1 Nguồn đối xứng xuyên tâm đối xứng trục 27 2.1.1 Nguồn đối xứng xuyên tâm 28 2.1.2 Nguồn đối xứng trục 31 2.2 Phương pháp số tìm nghiệm phương trình trường cân 32 2.3 Nghiệm phương trình Yang-Mills với hai nguồn điểm số topo cao 34 2.3.1 Phương trình trường ansatz đối xứng trục 34 2.3.2 Gián đoạn hóa hệ trường liên tục 35 2.3.3 Mô nghiệm trường [III, IV] 37 2.3.4 Sự phân bố không gian vector điện, từ trường phi Abel [IV] 39 2.3.5 Sự phân bố không gian mật độ lượng trường phi Abel [III, IV] 41 2.4 Nghiệm dạng dây vortex: Nghiệm số nghiệm giải tích 42 2.4.1 Giới thiệu phương trình Yang-Mills với nguồn dạng sợi dây 43 2.4.2 Nghiệm tĩnh phương trình 44 2.4.3 Nghiệm sóng phương trình [VI] 52 2.5 Kết luận chương 56 PHƯƠNG TRÌNH CHUYỂN ĐỘNG CỦA HẠT MÀU TRONG TRƯỜNG CHUẨN 58 3.1 Hạt màu trường chuẩn - Phương trình Wong 59 3.2 Suy rộng phương trình Wong cho trường chuẩn [V] 65 iv 3.3 Đối xứng Lorentz địa phương toán hạt trường hấp dẫn 74 3.4 Kết luận chương 76 THẾ HIỆU DỤNG VÀ QUỸ ĐẠO HẠT TRONG TRƯỜNG CHUẨN 77 4.1 Hạt trường Wu-Yang 77 4.2 Hạt trường đơn cực 'tHooft-Polyakov trường soliton BPS 84 4.2.1 Hạt trường gauge 'tHooft 84 4.2.2 Hạt trường soliton BPS 88 4.3 Chuyển động hạt trường hấp dẫn với tiếp cận Yang-Mills 93 4.3.1 Thế hiệu dụng chuyển động hạt [V] 93 4.3.2 Quỹ đạo chuyển động hạt [II, V] 98 4.4 Kết luận chương 99 KẾT LUẬN 100 Danh mục cơng trình khoa học tác giả có liên quan đến luận án 103 Tài liệu tham khảo 104 Phụ lục 111 v Danh mục ký hiệu, chữ viết tắt : : : : : : : : : : : : : : : : Mật độ Lagrangian Tensor cường độ trường Yang-Mills dạng ma trận Tensor cường độ trường Yang-Mills dạng thành phần Thế Yang-Mills Tensor cường độ trường gauge dạng thành phần Vector màu Đạo hàm hiệp biến Đạo hàm phản biến Mật độ dòng nguồn ngồi Điện trường phi abel dạng thành phần Từ trường phi abel dạng thành phần Số topo Mật độ lượng trường phi abel 4-xung lượng tắc Spin đồng vị hạt Các vi tử phản Hermit nhóm Lorentz : : : : Hằng số cấu trúc nhóm Lorentz Cường độ trường trường gauge Lorentz Ma trận phép quay thông số không gian Hàm ma trận vi Danh mục hình vẽ đồ thị Hình 2.1 Thế phi Abel với nguồn ngồi kỳ dị 38 Hình 2.2 Thế phi Abel với nguồn ngồi kỳ dị 38 Hình 2.3 Sự phân bố khơng gian điện trường phi Abel Hình 2.4 Sự phân bố đường từ trường phi Abel vector nguồn ngồi kỳ dị với 40 Hình 2.5 Sự phân bố không gian mật độ lượng trường nguồn ngồi kỳ dị với 41 Hình 2.6 Sự biến thiên lượng trường tổng cộng theo giá trị tích 42 màu với nguồn ngồi kỳ dị Hình 2.7 Thế phi Abel với nguồn dạng sợi dây 46 Hình 2.8 Thế phi Abel với nguồn ngồi dạng sợi dây 47 Hình 2.9 Sự phân bố khơng gian mật độ lượng trường nguồn dạng sợi dây Hình 2.10 Các hàm profile vortex tĩnh ; Mật độ tích màu mật độ lượng với nguồn ngồi dạng sợi dây Hình 2.11 Sự biến thiên lượng tổng cộng Abel với nguồn dạng sợi dây Hình 4.1 Đường biểu diễn tổng moment quỹ đạo tồn phần Hình 4.2 Đường biểu diễn hiệu dụng Schwarzschild-like Hình 4.3 Đường cong hiệu dụng Yang-Mills tựa Schwarzschild, hiệu 98 dụng giới hạn Newton hiệu dụng lý thuyết tổng quát Einstein theo vii 40 với 47 49 vào tổng điện tích phi 52 theo theo 96 97 MỞ ĐẦU Lý chọn đề tài Lý thuyết trường gauge Yang-Mills [1] đề xướng vào năm 1954 Ý tưởng dựa yêu cầu xây dựng Lagrangian bất biến phép biến đổi đối xứng nội Ngày lý thuyết trường gauge Yang-Mills thừa nhận rộng rãi hình thức luận khung cho lý thuyết thống tương tác điện từ tương tác yếu, cho sắc động lực lượng tử tương tác mạnh Đầu tiên khám phá Glashow vào năm 1960 cách thức để thống tương tác điện từ tương tác yếu [2], với việc sử dụng mơ hình chưa hồn chỉnh mặt vật lý lượng tử trường khơng có khối lượng Năm 1967, Weinberg [3] Salam [4] kết hợp chế Higgs [5, 6, 7] vào lý thuyết Glashow giúp cho việc sinh khối lượng boson gauge, kết xây dựng thành cơng mơ hình thống tương tác điện - yếu, gọi mơ hình Weinberg-Salam chế Higgs cho nguyên nhân tạo nên khối lượng cho hạt Sự thành công thuyết phục hầu hết nhà Vật lý lý thuyết gauge phi Abel tương tác điện - yếu lý thuyết vật lý hoàn hảo Đặc biệt, sau tìm thấy dòng yếu trung hòa gây trao đổi boson CERN năm 1973 [8, 9, 10], lý thuyết điện - yếu chấp nhận cách rộng rãi Glashow, Weinberg, Salam trao giải Nobel Vật lý năm 1979 Tiếp cơng trình xây dựng sắc động lực học lượng tử (viết tắt QCD) lý thuyết tương tác mạnh dựa bất biến phép biến đổi gauge nhóm Ngày nay, hầu hết thí nghiệm kiểm chứng ba lực miêu tả mơ hình chuẩn dự đốn thuyết Tuy nhiên, mơ hình chuẩn chưa thuyết thống lực tự nhiên cách hoàn toàn, vắng mặt lực hấp dẫn ... nghiệm tĩnh với đối xứng cầu phương trình Yang- Mills cổ điển với nhóm chuẩn từ nghiên cứu ứng dụng nghiệm cổ điển toán lượng tử Trong luận án chọn đề tài Một số nghiệm soliton phương trình Yang- Mills. .. trình Yang- Mills ứng dụng Nhằm nghiên cứu sâu nghiệm soliton lý thuyết Yang- Mills Yang- Mills- Higgs, tìm thêm số nghiệm ứng dụng Các kết nội dung nghiên cứu nghiệm phương trình Yang- Mills so với... tài luận án – Nghiên cứu nghiệm phương trình YangMills – Có tác giả Nguyễn Văn Thuận với đề tài luận án tiến sỹ “Nghiên cứu nghiệm phương trình trường chuẩn Yang- Mills ứng dụng vật lý chúng” – Trong