1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề NGUYÊN hàm TÍCH PHÂN ỨNG DỤNG đặng việt đông file word

83 751 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 83
Dung lượng 10,8 MB

Nội dung

Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 m http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 MỤC LỤC ÁP DỤNG BẲNG NGUYÊN HÀM VÀ PHÂN TÍCH A – LÝ THUYẾT TÓM TẮT .4 B – BÀI TẬP C – ĐÁP ÁN 22 PHƯƠNG PHÁP ĐỔI BIẾN VÀ VI PHÂN 23 A – LÝ THUYẾT TÓM TẮT .23 B – BÀI TẬP 23 C – ĐÁP ÁN 32 PHƯƠNG PHÁP TỪNG PHẦN 33 A – LÝ THUYẾT TÓM TẮT .33 B – BÀI TẬP 33 C – ĐÁP ÁN 35 TÍCH PHÂN 36 A – LÝ THUYẾT TÓM TẮT .36 PHƯƠNG PHÁP ÁP DỤNG BẢNG NGUYÊN HÀM VÀ MTCT .37 PHƯƠNG PHÁP ĐỔI BIẾN VÀ MTCT 41 PHƯƠNG PHÁP TỪNG PHẦN VÀ MTCT 45 C – ĐÁP ÁN 46 TÍCH PHÂN TỔNG HỢP HẠN CHẾ MTCT 47 ĐÁP ÁN 60 ỨNG DỤNG TÍNH DIỆN TÍCH 62 A – LÝ THUYẾT TÓM TẮT .62 B – BÀI TẬP 62 C – ĐÁP ÁN 75 B – BÀI TẬP 77 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 ÁP DỤNG BẲNG NGUYÊN HÀM VÀ PHÂN TÍCH A – LÝ THUYẾT TĨM TẮT Khái niệm nguyên hàm • Cho hàm số f xác định K Hàm số F gọi nguyên hàm f K nếu: F'(x) = f (x) , ∀x ∈ K • Nếu F(x) nguyên hàm f(x) K họ nguyên hàm f(x) K là: ∫ f (x)dx = F(x) + C , C ∈ R • Mọi hàm số f(x) liên tục K có nguyên hàm K Tính chất • ∫ f '(x)dx = f (x) + C ∫ [ f (x) ± g(x)]dx = ∫ f (x)dx ± ∫ g(x)dx • ∫ kf (x)dx = k ∫ f (x)dx (k ≠ 0) • Nguyên hàm số hàm số thường gặp ∫ k.dx = k.x + C 1) x n +1 2) ∫ x dx = +C n +1 4) ∫ dx = ln x + C x 1 dx = ln ax + b + C 6) ∫ (ax + b) a n +C x 3) ∫x 5) ∫ (ax + b) 7) ∫ sin x.dx = − cos x + C 8) ∫ cos x.dx = sin x + C 9) ∫ sin(ax + b)dx = − a cos(ax + b) + C 10) ∫ cos(ax + b)dx = a sin(ax + b) + C 11) ∫ cos n dx = − +C; a(n − 1)(ax + b) n −1 1 ∫ sin dx = − 2 x x dx = ∫ (1 +tg x).dx = tgx + C 12) dx = ∫ ( + cot g x ) dx = − cot gx + C 1 13) ∫ cos (ax + b) dx = a tg(ax + b) + C 14) ∫ sin 15) ∫ e dx = e 16) ∫e 17) 19) 21) 23) 25) x x +C (ax + b) (ax + b) ∫ e dx = a e + C ax x a dx = +C ∫ ln a 1 x −1 ∫ x − dx = ln x + + C 1 x −a ∫ x − a dx = 2a ln x + a + C x ∫ a − x dx = arcsin a + C 18) 20) 22) 24) 26) −x 1 dx = − cot g(ax + b) + C (ax + b) a dx = −e − x + C (ax + b) n +1 n (ax + b) dx = + C (n ≠ 1) ∫ a n +1 ∫ x + dx = arctgx + C 1 x ∫ x + a dx = a arctg a + C ∫ − x dx = arcsin x + C ∫ x ± dx = ln x + x ± + C http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 ∫ 27) ∫ dx = ln x + x ± a + C 28) x ±a x a2 x 2 a − x dx = a − x + arcsin + C 2 a x a 29) ∫ x ± a dx = x ± a ± ln x + x ± a + C 2 2 B – BÀI TẬP Câu 1: Nguyên hàm 2x ( + 3x ) là: A x ( x + x ) + C 2 B x ( + 3x ) + C Câu 2: Nguyên hàm A − x4 + x2 + +C 3x 1 − x − là: x 3 x x B − + − + C x 6x  2 D x 1 + ÷+ C   C 2x ( x + x ) + C C −x + x + +C 3x D − x3 − +C x Câu 3: Nguyên hàm hàm số f ( x ) = x là: 33 x2 +C 3x x +C Câu 4: Nguyên hàm hàm số f ( x ) = là: x x 2 +C +C A F ( x ) = B F ( x ) = − x x A F ( x ) = B F ( x ) = C F ( x ) = 4x +C 33 x C F ( x ) = x +C D F ( x ) = 4x 3 x2 D F ( x ) = − +C x +C 5  Câu 5: ∫  + x ÷dx bằng: x  5 5 x +C x + C C −5ln x − x + C D 5ln x + x +C A 5ln x − B −5ln x + 5 5 dx Câu 6: ∫ bằng: − 3x 1 +C +C A B − C ln − 3x + C D − ln 3x − + C ( − 3x ) ( − 3x ) 3 Câu 7: Nguyên hàm hàm số f ( x ) = A F ( x ) = C F ( x ) = ( x − 1) +C B F ( x ) = 2−3 x +C x D F ( x ) = x Câu 8: Tìm nguyên hàm: A x x+ x là: x2 53 x + ln x + C ∫( ( ) +C x +1 x 1+ x +C x x + )dx x B − 33 x + ln x + C http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 C 33 x − ln x + C Câu 9: Tìm nguyên hàm: D ∫ (x + 33 x + ln x + C − x )dx x x3 + 3ln x + x +C 3 x3 C − 3ln x − x +C 3 A + x )dx x2 5 5 x +C x +C A − + B − x x Câu 11: Tìm nguyên hàm: ∫ (x − + x )dx x x +C A x + ln x − 4 x +C C x + ln x + dx Câu 12: Tính ∫ , kết là: 1− x C A B −2 − x + C 1− x x3 + 3ln X − x 3 x3 D + 3ln x − x +C 3 B Câu 10: Tìm nguyên hàm: ∫ ( C − 5 + x +C x D 5 + x +C x x − ln x − x +C 4 x +C D x − ln x + B +C 1− x C D C − x  x2 +1  Câu 13: Nguyên hàm F(x) hàm số f (x) =  ÷ hàm số hàm số sau?  x  x3 x3 A F(x) = − + 2x + C B F(x) = + + 2x + C x x 3 x  x3  +x  +x÷ C F(x) = + C D F(x) =  ÷ + C x  x ÷  ÷   x(2 + x) Câu 14: Hàm số không nguyên hàm hàm số f (x) = (x + 1) x2 − x −1 x2 + x −1 B x +1 x +1 Câu 15: Kết sai kết sao? x +1 − 5x −1 A ∫ dx = + x +C x x 10 5.2 ln ln x2 x +1 dx = ln −x+C C ∫ 1− x x −1 A C B x2 + x +1 x +1 ∫ D x2 x +1 x + x −4 + dx = ln x − + C x 4x D ∫ tan xdx = tan x − x + C x + 2x + Câu 16: ∫ dx bằng: x +1 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 x2 + x + ln x + + C x2 C + x + ln x − + C A Câu 17: ∫ B D x + ln x + + C x2 − x + dx bằng: x +1 x2 B − 2x + 5ln x + + C A x + ln x + + C C x2 + x + ln x + + C x2 − 2x − 5ln x − + C D 2x + ln x + + C 20x − 30x + ; F ( x ) = ( ax + bx + c ) 2x − với x > Để hàm số 2x − F ( x ) nguyên hàm hàm số f (x) giá trị a, b, c là: A a = 4; b = 2;c = B a = 4; b = −2;c = −1 C a = 4; b = −2;c = D a = 4; b = 2; c = −1 Câu 19: Nguyên hàm hàm số f ( x ) = x – 3x +      x x 3x x 3x A F(x) = B F(x) = − − ln x + C − + ln x + C 3 x 3x x 3x C F(x) = D F(x) = − + ln x + C + + ln x + C 3 2x Câu 20: Cho f ( x ) = Khi đó: x +1 2 A ∫ f ( x ) dx = ln ( + x ) + C B ∫ f ( x ) dx = 3ln ( + x ) + C Câu 18: Cho hàm số: f (x) = C ∫ f ( x ) dx = ln ( + x ) + C D ∫ f ( x ) dx = ln ( + x ) + C x + 3x + 3x − biết F(1) = x + 2x + 2 13 2 −6 − A F(x) = x + x + B F(x) = x + x + x +1 x +1 2 x 13 x C F(x) = D F(x) = +x+ − +x+ −6 x +1 x +1 1  Câu 22: Nguyên hàm hàm số y = 3x −  ; +∞ ÷ là: 3  Câu 21: Tìm nguyên hàm F(x) hàm số f (x) = 2 3 B C D ( 3x − 1) + C ( 3x − 1) + C x −x+C 9 Câu 23: Tìm hàm số F(x) biết F’(x) = 4x3 – 3x2 + F(-1) = A F(x) = x4 – x3 - 2x -3 B F(x) = x4 – x3 - 2x + C F(x) = x4 – x3 + 2x + D F(x) = x4 + x3 + 2x + A Câu 24: Một nguyên hàm f (x) = ( ) A x ln x + x + − x + C ( x ln x + x + x +1 ) x −x +C là: ( ) B ln x + x + − x + C http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 C x ln x + − x + C D Câu 25: Nguyên hàm hàm số y = A 2x 3 − +C x B −3x ( ) x + ln x + x + − x + C 2x + là: x2 +C x C 2x 3 + +C x D x3 − +C x Câu 26: Cho ∫ f (x)dx = F(x) + C Khi với a ≠ 0, ta có ∫ f (a x + b)dx bằng: 1 F(a x + b) + C A B F(a x + b) + C C F(a x + b) + C D F(a x + b) + C 2a a −1 Câu 27: Họ nguyên hàm F(x) hàm số f (x) = là: (x − 2) −1 −1 F(x) = +C +C F(x) = +C A F(x) = C D B Đáp số khác (x − 2)3 x−2 x−2 Câu 28: Họ nguyên hàm F(x) hàm số f (x) = x2 − x +1 x −1 x2 + ln | x − 1| +C +C C F(x) = x + x −1 B F(x) = x + ln | x − 1| +C A F(x) = D Đáp số khác Câu 29: Nguyên hàm F ( x ) hàm số f ( x ) = 2x + x − thỏa mãn điều kiện F ( ) = B 2x − 4x A C x4 x + − 4x D x − x + 2x Câu 30: Nguyên hàm hàm số f ( x ) = x ¡ A x4 +x+C Câu 31: Tính B 3x + C C 3x + x + C D x4 +C D x3 − +C 2x x5 + ∫ x3 dx ta kết sau đây? A Một kết khác B x3 x2 + +C x6 +x +C C x4 Câu 32: Một nguyên hàm F(x) f (x) = 3x + thỏa F(1) = là: A x − B x + x − C x − Câu 33: Hàm số f ( x ) có nguyên hàm K A f ( x ) xác định K C f ( x ) có giá trị nhỏ K D 2x − B f ( x ) có giá trị lớn K D f ( x ) liên tục K Câu 34: Tìm họ nguyên hàm hàm số f (x) = x + x + x ? 32 43 54 x + x + x +C 4 54 C F(x) = x + x + x + C 3 A F(x) = 23 43 54 x + x + x +C 2 54 D F(x) = x + x + x + C 3 B F(x) = http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đơng Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 35: Cho hàm số f (x) = x − x + 2x − Gọi F(x) nguyên hàm f(x), biết F(1) = x4 x3 49 x4 x3 A F(x) = B F(x) = − + x2 − x + − + x2 − x +1 12 4 x x x4 x3 C F(x) = D F(x) = − + x2 − x + − + x2 − x 4 Câu 36: Họ nguyên hàm hàm số y = (2x + 1)5 là: 1 6 (2x + 1)6 + C A B (2x + 1) + C C (2x + 1) + C D 10(2x + 1) + C 12 Câu 37: Tìm nguyên hàm hàm số f(x) biết f (x) = x+9 − x A ( x + 9) − x3 + C B Đáp án khác 27 2 +C C D ( x + 9) + x3 + C 3 3( ( x + ) − x ) 27 ( ) ( ) Câu 38: Mệnh đề sau sai? A Nếu F(x) nguyên hàm f (x) ( a; b ) C số ∫ f (x)dx = F(x) + C B Mọi hàm số liên tục [ a; b ] có nguyên hàm [ a; b ] C F(x) nguyên hàm f (x) [ a; b ] ⇔ F′(x) = f (x), ∀x ∈ [ a; b ] D ( ∫ f (x)dx ) ′ = f (x) Câu 39: Tìm nguyên hàm F ( x ) hàm số f ( x ) = − x biết F ( ) = 19 x3 x3 x3 B F ( x ) = 2x − x + C F ( x ) = 2x − + D F ( x ) = 2x − + + 3 3 Câu 40: Cho hai hàm số f (x), g(x) hàm số liên tục,có F(x), G(x) nguyên hàm f (x), g(x) Xét mệnh đề sau: (I): F(x) + G(x) nguyên hàm f (x) + g(x) (II): k.F ( x ) nguyên hàm kf ( x ) ( k ∈ R ) (III): F(x).G(x) nguyên hàm f (x).g(x) A F ( x ) = 2x − Mệnh đề mệnh đề ? A I B I II C I,II,III : (x + 1)2 −2 C x +1 D II Câu 41: Hàm nguyên hàm hàm số y = −x + 2x B x +1 x +1 Câu 42: Tìm công thức sai: A x x A ∫ e dx = e + C C ∫ cos xdx = sin x + C Câu 43: Trong mệnh đề sau, mệnh đề sai? D x −1 x +1 ax + C ( < a ≠ 1) ln a D ∫ sin xdx = cos x + C B ∫ a x dx = http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 (I) : ∫ sin x dx = (II) : ∫ sin x +C 4x + dx = ln ( x + x + ) + C x + x +3 (III) : ∫ 3x ( x + 3− x ) dx = A (III) 6x +x +C ln B (I) C Cả sai D (II) Câu 44: Nếu F(x) nguyên hàm hàm số y = F(2) = F(3) x −1 A B ln C ln D ln + 2 Câu 45: Công thức nguyên hàm sau không đúng? dx x α+1 = ln x + C A ∫ B ∫ x α dx = + C ( α ≠ −1) x α +1 dx ax x = tan x + C C ∫ a dx = D ∫ + C ( < a ≠ 1) cos x ln a Câu 46: Trong khẳng định sau, khẳng định sai? A F ( x ) = + tan x nguyên hàm hàm số f ( x ) = + tan x B Nêu F(x) nguyên hàm hàm số f(x) nguyên hàm f(x) có dạng F( x) + C (C số) u '( x ) dx = lg u ( x ) + C ∫ C u ( x ) F ( x ) = − cos x f ( x ) = sin x D nguyên hàm Câu 47: Trong mệnh đề sau, mệnh đề sai: x x4 x2 2x A ∫ ( x − x ) dx = B ∫ e dx = e + C − +C 2 dx = ln C ∫ sin xdx = cos x + C D ∫ x +x Câu 48: Trong khẳng định sau, khăng định sai? A ∫ ( f1 ( x ) + f ( x ) ) dx = ∫ f1 ( x ) dx + ∫ f ( x ) dx nguyên hàm cùa hàm số f ( x ) F ( x ) − G ( x ) = C số B Nếu F ( x ) G ( x ) C F ( x ) = x nguyên hàm f ( x ) = x F ( x ) = x2 f ( x ) = 2x D nguyên hàm Câu 49: Trong khẳng định sau khẳng định sai? A F ( x ) = + sin x f ( x ) = sin 2x nguyên hàm hàm số B Nếu F ( x ) G ( x ) nguyên hàm hàm số f(x) ∫ ( F ( x ) − G ( x ) ) dx có dạng h ( x ) = Cx + D (C,D số, C ≠ ) http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 10 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 64: Với giá trị m > diện tích hình phẳng giới hạn hai đường y = x y = mx đơn vị diện tích ? A m = B m = C m = D m = Câu 65: Cho S diện tích hình phẳng giới hạn đồ thị hàm số y = x − 6x + 9x trục Ox Số nguyên lớn không vượt S là: A 10 B C 27 D Câu 66: Tìm d để diện tích hình phẳng giới hạn đường cong y = , Ox, x=1, x=d (d>1) 2: x A e2 B e C 2e D e+1 x Câu 67: Cho hình phẳng giới hạn đường y = xe ; y = 0; x = 0; x = Thể tích khối trịn xoay sinh hình phẳng quay quanh trục hoành 2 A π ( e + ) B π ( e − ) C π ( e − ) D π ( e + ) Câu 68: Diện tích hình phẳng giới hạn đường cong ( C ) : y = − x + 3x − , hai trục tọa độ đường thẳng x = là: A (đvdt) B (đvdt) C (đvdt) D (đvdt) 2 Câu 69: Cho hình phẳng giới hạn đường y = + x , Ox, x=0, x=4 quay xung quanh trục Ox Thể tích khối trịn xoay tạo thành bằng: 68 28 28 68 A π B π C π D π 3 3 Câu 70: Diện tích hình phẳng giới hạn y − 2y + x = , x + y = là: 11 A Đáp số khác B C D 2 Câu 71: Hình phẳng D giới hạn y = 2x y = 2x + quay D xung quanh trục hồnh thể tích khối trịn xoay tạo thành là: 288 4π π (đvtt) A V = B V = + π (đvtt) C V = 72 π (đvtt) D V = (đvtt) 5 π Câu 72: Các đường cong y = sinx, y = cosx với ≤ x ≤ trục Ox tạo thành hình phẳng Diện tích hình phẳng là: A - B C 2 D 2 − Câu 73: Diện tích hình phẳng nằm góc phần tư thứ nhất, giới hạn đường thẳng y = 4x đồ thị hàm số y = x http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 69 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 A B C D Câu 74: Tính diện tích S hình phẳng giới hạn đường y = 4x − x y = 0, ta có 32 23 A S = (đvdt) B S = (đvdt) C S = (đvdt) D S = 1(đvdt) 23 3 Câu 75: Tính diện tích S hình phẳng giới hạn đường y = x y = − x , ta có A S = (đvdt) B S = (đvdt) C S = 8(đvdt) D Đáp số khác x2 x2 ;y = 4 2 A S = 2π + B S = 2π + C S = 2π + D S = 2π + 3 3 Câu 77: Cho hai hàm số y = f(x), y = g(x) có đồ thị (C 1) (C2) liên tục [a;b] cơng thức tính diện tích hình phẳng giới hạn (C1), (C2) hai đường thẳng x = a, x = b là: Câu 76: Tính diện tích ( S) hình phẳng giới hạn đường: y = − b A S = ∫ [ f (x) − g(x)] dx a b b a a C S = ∫ f (x)dx − ∫ g(x)dx b B S = ∫ [ g(x) − f (x) ] dx a b D S = ∫ f (x) − g(x) dx a ;x =1 x +1 31 17 23 A S = − ln + B S = ln − C S = ln − D S = ln + 18 3 18 18 Câu 79: Cho đồ thị hàm số y = f ( x ) Diện tích hình phẳng (phần tơ đậm hình) là: Câu 78: Tính diện tích ( S) hình phẳng giới hạn đường: y = x ; y = ln A ∫ f ( x ) dx −3 C −3 −3 4 0 B ∫ f ( x ) dx + ∫ f ( x ) dx ∫ f ( x ) dx + ∫ f ( x ) dx −3 D ∫ f ( x ) dx + ∫ f ( x ) dx π   Câu 80: Cho hình phẳng giới hạn bởi: D =  y = tan x; x = 0; x = ; y =    Thể tích vật trịn xoay D quay quanh Ox: π π π  A π  + ÷ B − C + 3 3  http://dethithpt.com – Website chuyên đề thi – tài liệu file word π  D π  − ÷ 3  Trang 70 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 81: Tính diện tích hình phẳng tạo đường: Parabol ( P ) : y = x − 4x + tiếp tuyến điểm A ( 1; ) , B ( 4;5 ) nằm ( P ) 11 A S = B S = C S = Câu 82: Diện tích hình phẳng giới hạn y = x ln(x + 2) − x2 D S = 13 trục hoành là: π π π π + B ln − − C ln − − + D ln − − + 3 3 y = f (x) Câu 83: Cho đồ thị hàm số Diện tích hình phẳng (phần gạch hình) là: A − A 0 −3 ∫ f (x)dx + ∫ f (x)dx B −3 ∫ f (x)dx + ∫ f (x)dx C −3 0 ∫ f (x)dx + ∫ f (x)dx D ∫ f (x)dx −3 Câu 84: Diện tích hình phẳng giới hạn đồ thị: y = x − 2x y = − x + x có kết là: C D A 12 B Câu 85: Diện tích hình phẳng giới hạn hai đường thẳng x = 0, x = π đồ thị hai hàm số y = cosx, y = sinx là: A + B C D 2 Câu 86: Diện tích hình phẳng giới hạn đường y = x ,trục Ox đường thẳng x = là: A B C 16 D 16 Câu 87: Diện tích hình phẳng giới hạn đồ thị hàm số y = x x + trục ox đường thẳng x=1 là: 3− 2 −1 2 −1 3− A B C D 3 3 Câu 88: Diện tích hình phẳng giới hạn đồ thị hàm số y = x − 4x + hai tiếp tuyến với đồ thị a hàm số tai A(1;2) B(4;5) có kết dạng đó: a+b b 13 D A 12 B 12 C 13 Câu 89: Diện tích hình phẳng giới hạn đường (P): y=2−x2, (C): y= − x Ox là: π 10 π − A − 2π B 2 − C D − π 3 Câu 90: Diện tích hình phẳng giới hạn đồ thị hàm số y=x ; y= x2 27 là: ; y= x http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 71 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 A 27ln2-3 63 B C 27ln2 D 27ln2+1 Câu 91: Diện tích hình phẳng giới hạn đồ thị hàm số y = x - 4x - trục hoành hai đường thẳng x=-2, x=-4 40 C 92 D 50 A 12 B 3 Câu 92: Diện tích hình phẳng giới hạn đường cong y = x y = x bằng: A −4 B C D Câu 93: Diện tích hình phẳng giới hạn đồ thị hàm số y = x − , y = x + có kết 22 10 73 35 A B C D 3 12 Câu 94: Diện tích hình phẳng giới hạn hai đường cong y = x – x y = x – x2 là: 37 C 33 D 37 A Đáp án khác B 12 12 Câu 95: Diện tích hình phẳng giới hạn đồ thị hàm số y = x +11x - 6, y = 6x , x = 0, x = có kết a dạng a-b b C A B -3 D 59 Câu 96: Diện tích hình phẳng giới hạn đồ thị hàm số y = -x + 4x tiếp tuyến với đồ thị hàm a số biết tiếp tuyến qua M(5/2;6) có kết dạng a-b b 12 A B 14 C D -5 11 Câu 97: Diện tích hình phẳng giới hạn (C): y= −x2+3x−2, d1:y = x−1 d2:y=−x+2 có kết 1 A B C D 12 Câu 98: Diện tích hình phẳng giới hạn đường cong y = x + 1, tiếp tuyến với đường điểm M(2; 5) trục Oy là: A B D C 3 Câu 99: Diện tích hình phẳng giới hạn đồ thị hàm số y = −2x + x + trục hoành là: 125 125 125 125 A B C D 24 34 14 44 x2 Câu 100: Diện tích hình phẳng giới hạn đường thẳng y = − x parabol y = bằng: http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 72 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 A 28 B 25 C 22 D 26 Câu 101: Diện tích hình phẳng giới hạn đồ thị: y = x − 4x + y=x+3 có kết là: 55 205 109 126 A B C D 6 Câu 102: Diện tích hình phẳng giới hạn đường cong y = x + sin x y = x , với ≤ x ≤ 2π bằng: A −4 B C D Câu 103: Diện tích hình phẳng giới hạn đường (P): y =x - 2x+2 tiếp tuyến bới (P) biết tiếp tuyến qua A(2;-2) là: 64 16 40 A B C D 3 3 Câu 104: Diện tích hình phẳng giới hạn đồ thị hàm số y = - x + 3x +1 đường thẳng y=3 57 45 27 21 A B C D 4 4 Câu 105: Cho Parabol y = x tiếp tuyến At A(1 ; 1) có phương trình: y = 2x – Diện tích phần bơi đen hình vẽ là: y -2 -1 A -1 x B C D Một số khác 3 Câu 106: Coi hàm số y = f(x) có đạo hàm y’ = có đồ thị (C) qua điểm A(1 ; 2) Diện tích giới hạn (C), trục toạ độ đường thẳng x = bao nhiêu? A B C D Khơng xác định A Câu 107: Tính diện tích hình hữu hạn giới hạn đường cong ax = y ; ay = x (a > cho trước) 2 a2 a2 A S = B S = C S = a D S = a 3 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 73 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 108: Diện tích hình phẳng giới hạn đường: y = x y = sin x + x (0 ≤ x ≤ π) là: π A π B C π D Một số khác 2 x2 Câu 109: Cho hàm số y = với tập xác định D = R + = [0; + ∞ ) có đồ thị (C) 8x + Tính diện tích tam giác cong chắn trục hồnh, (C) đường thẳng x = ln ln ln A S = B S = C S = D Một kết khác 10 12 Câu 110: Xét hình (H) giới hạn đường (C) : y = (x + 3) , y = x = Lập phương trình đường thẳng qua điểm A(0 ; 9), chia (H) thành ba phần có diện tích 27x 27x 27x +9 +9 ; y = − +9 A y = 13x + ; y = B y = 4 27x 27x +9;y = +9 C y = 14x − ; y = 14x + D y = Câu 111: Để tính diện tích hình phẳng giới hạn đồ thị hàm số y = cosx đoạn [0 ; π], trục hồnh (y = 0) Một học sinh trình bày sau: π (I) Ta có: cos x ≥ ≤ x ≤ π ≤ x ≤ 2π 2 S= 2π π 3π 2π 0 π 3π ∫ cos x dx = ∫ cos x dx + ∫ cos x dx + ∫ cos x dx π 3π 2π π 3π (ΙΙ) S = ∫ cos xdx + π ∫ (− cos x)dx _ 3π ∫ cos xdx 2π (ΙΙΙ) S = sin x 02 + sin x π2 + sin x 3π (IV) S = - + + = Sai phần nào? A Chỉ (III) (IV) B Chỉ (III) C Chỉ (I) (IV) D Chỉ (II) (IV) Câu 112: Tính diện tích hình phẳng giới hạn đồ thị của: y = x − 2x , trục Ox đường thẳng x = 0, x = 2 A B C D Một số khác 3 Câu 113: Tính diện tích hình phẳng giới hạn Parabol y = − x đường thẳng y = -x - 11 A B C D Một kết khác 2 Câu 114: Tính diện tích hình phẳng giới hạn ba đường: y = sinx, y = cosx x = A 2 − B 2 + C D Một số khác Câu 115: Tính diện tích hình phẳng giới hạn hai parabol: y = A B C Câu 116: Tính diện tích hình phẳng giới hạn (C) : y = thẳng x = -1 x y = 3x − x D x2 − x +1 , tiệm cận xiên, trục tng đường x −1 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 74 Giáo viên: Th.S Đặng Việt Đơng Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 A ln3 B ln2 C ln5 D Một số khác Câu 117: Tính diện tích hình trịn tâm gốc toạ độ, bán kính R: πR A 2πR B C πR D Một kết khác Câu 118: Tính diện tích hình elip: πab A 2πab B C πab D πab 2 Câu 119: Tính diện tích giới hạn đường cong: 2 (C1 ) : y = f1 (x) = x + 1; (C ) : y = f (x) = x − 2x đường thẳng x = -1 x = 13 11 A B C D Một đáp số khác 2 Câu 120: Tính diện tích giới hạn : (C) : y = x + , tiệm cận xiên (C) đường thẳng x = 2x 1, x = 1 A B C D 3 Câu 121: Cho ba hàm số sau, xác định với x ≥ 0, y = − x + (D); y = x (C1 ) y = diện tích hình phẳng giới hạn ba đường: (D1 , (C1 ) , (C2 ) A B C x2 (C2 ) Tính D Câu 122: Diện tích hình phẳng giới hạn parabol: y = x − 2x + tiếp tuyến với parabol điểm M(3; 5) trục tung A B C D Câu 123: Diện tích hình phẳng giới hạn bởi: y = lnx, y = 0, x = e là: A B C D Một kết khác Câu 124: Tính diện tích hình phẳng giới hạn bởi: y = x(x – 1)(x – 2), y = 1 A B C D Câu 125: Cho D miền kín giới hạn đường y = , y = – x y = Tính diện tích miền D 7 A B C D Một đáp số khác Câu 126: Tính diện tích hình phẳng giới hạn đường: y = x + 1, y = cosx y = A B C D 2 Câu 127: Tính diện tích hình phẳng giới hạn đường: (y − x) = x x = A B C D Một số 5 khác C – ĐÁP ÁN 1D, 2D, 3B, 4C, 5D, 6D, 7A, 8C, 9B, 10D, 11D, 12D, 13D, 14A, 15A, 16D, 17B, 18A, 19A, 20C, 21B, 22B, 23B, 24D, 25B, 26A, 27C, 28A, 29C, 30C, 31C, 32A, 33A, 34C, 35A, 36B, 37C, 38A, http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 75 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 39A, 40A, 41A, 42D, 43B, 44A, 45D, 46C, 47D, 48D, 49B, 50B, 51D, 52C, 53C, 54D, 55A, 56D, 57B, 58A, 59C, 60B, 61B, 62D, 63A, 64A, 65D, 66B, 67C, 68B, 69B, 70D, 71A, 72D, 73C, 74B, 75B, 76C, 77D, 78B, 79B, 80C, 81C, 82D, 83A, 84B, 85D, 86B, 87C, 88C, 89C, 90C, 91C, 92B, 93A, 94C, 95C, 96C, 97C, 98D, 99A, 100A, 101C, 102B, 103C, 104C, 105A, 106C, 107A, 108B, 109C, 110D, 111A, 112B, 113C, 114D, 115A, 116B, 117C, 118D, 119A, 120B, 121C, 122D, 123A, 124B, 125D, 126D, 127D http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 76 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 ỨNG DỤNG TÍNH THỂ TÍCH A – LÝ THUYẾT TĨM TẮT • Gọi B phần vật thể giới hạn hai mặt phẳng vng góc với trục Ox điểm điểm a b S(x) diện tích thiết diện vật thể bị cắt mặt phẳng vng góc với trục Ox điểm có hồnh độ x (a ≤ x ≤ b) Giả sử S(x) liên tục đoạn [a; b] b Thể tích B là: V = ∫ S(x)dx a • Thể tích khối trịn xoay: Thể tích khối trịn xoay hình phẳng giới hạn đường: (C): y = f(x), trục hoành, x = a, x = b (a < b) sinh quay quanh trục Ox: b V = π∫ f (x)dx a Chú ý: Thể tích khối trịn xoay sinh hình phẳng giới hạn đường sau quay xung quanh trục Oy: (C): x = g(y), trục tung, y = c, y = d d V = π∫ g (y)dy là: c B – BÀI TẬP Câu 1: Cho hình phẳng giới hạn đường y = 2x – x y = Thì thể tích vật thể trịn xoay sinh hình phẳng quay quanh trục Ox có giá trị bằng? 16π 15π 5π 6π A (đvtt) B (đvtt) C (đvtt) D (đvtt) 15 16 Câu 2: Thể tích hình khối hình phẳng giới hạn đườn y = x − 4, y = 2x − 4, x = 0, x = quay quanh trục Ox bằng: 32π 32π A − B 6π C −6π D 5 Câu 3: Thể tích vật thể trịn xoay quay hình phẳng giới hạn đường x y = x2 e2 , x = 1, x = 2, y = quanh trục ox là: A π(e + e) B π(e − e) C πe2 D πe Câu 4: Thể tích vật thể trịn xoay quay hình phẳng giới hạn đường y = , y = 0, x = 1, x = quanh trục ox là: x A 6π B 4π C 12π D 8π Câu 5: Cho hình phẳng ( H ) giới hạn đường y = sin x ; x = ; y = x = π Thể tích vật thể trịn xoay sinh hình ( H ) quay quanh Ox A 2π B π2 C π2 D π Câu 6: Cho hình phẳng giới hạn đường y = x y = x quay xung quanh trục Ox Thể tích khối trịn xoay tạo thành bằng: http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 77 Giáo viên: Th.S Đặng Việt Đơng Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 A π B π D −π C Câu 7: Thể tích vật thể trịn xoay quay hình phẳng giới hạn đường y = x , y = 0, y = − x quanh trục ox là: 7π 13π 6π A B 6π C D 12 Câu 8: Thể tích vật thể trịn xoang quay hình phẳng giới hạn đồ thị hàm số y = x ; x = y quanh trục ox 4π 3π π π A B C D 10 10 10 Câu 9: Thể tích vật thể trịn xoay quay hình phẳng giới hạn đồ thị hàm số y = 8x x = quanh trục ox là: A 12π B 4π C 16π D 8π Câu 10: Thể tích vật thể trịn xoay quay hình phẳng giới hạn đường y = − x , y = quanh aπ trục ox có kết dạng a+b có kết là: b C 31 D 25 A 11 B 17 Câu 11: Thể tích khối trịn xoay tạo nên quay quanh trục Ox hình phẳng giới hạn đường y = (1- x)2, y = 0, x = x = bằng: 5π 2π 8π A 2π B C D Câu 12: Thể tích khối trịn xoay tạo phép quay quanh trục Ox hình phẳng giới hạn đường y = x2 x = y2 bằng: 10π 3π A 10π B C 3π D 10 Câu 13: Thể tích khối trịn xoay tạo thành quay hình phẳng D giới hạn đường y = x − , trục hoành, x = 2, x = quanh trục Ox bằng: A ∫ B π ∫ ( x − 1) dx x − 1dx 2 C π∫ ( y + 1) dx D ∫ ( x − 1) dx Câu 14: Thể tích khối trịn xoay tạo lên hình phẳng (H) giới hạn đường y = − x + ; y = trục Ox quay xung quanh Ox 1 −1 −1 1 −1 −1 2 A π ∫ ( − x + 1) dx + π ∫ dx 2 B π ∫ (− x + 2) dx + π ∫ dx 2 C π ∫ (− x + 2) dx − π ∫ dx 2 D π ∫ ( − x + 2) dx −1 −1 −1 Câu 15: Thể tích khối trịn xoay sinh quay quanh trục Oy hình phẳng giới hạn đường: y = x − 4x + Ox bằng: 16π π 16π A B 5π C D 5 Câu 16: Thể tích khối trịn xoay quay quanh trục Ox hình phẳng giới hạn đường π y = x ln x, y = 0, x = e có giá trị bằng: (b e3 − 2) a,b hai số thực đây? a A a = 27; b = B a = 24; b = C a = 27; b = D a = 24; b = http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 78 Giáo viên: Th.S Đặng Việt Đơng Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 17: Thể tích vật thể trịn xoay tạo quay hình phẳng giới hạn đường y = x – 2x, y = 0, x = 0, x = quanh trục hồnh Ox có giá trị bằng? A 8π (đvtt) 15 B 8π (đvtt) C 15π (đvtt) D 7π (đvtt) Câu 18: Cho hình phẳng ( H ) giới hạn đường: y = x ln x, y = 0, x = e Tính thể tích khối trịn xoay tạo thành hình ( H ) quay quanh trục Ox A VOx = π ( 5e3 − ) B VOx = π ( 5e3 + ) C VOx = π ( 5e3 − ) D VOx = π ( 5e3 + ) 25 27 27 25 Câu 19: Tính thể tích V khối trịn xoay tạo thành ta cho miền phẳng D giới hạn đường y = ex , y = 0, x = 0, x = quay quanh trục ox Ta có A V = π (đvtt) B V = (e − 1) π (đvtt) C V = eπ2 (đvtt) D V = π2 (đvtt) Câu 20: Thể tích vật thể trịn xoay sinh hình phẳng giới hạn parabol ( P ) : y = x − trục hoành quay xung quanh trục Ox đơn vị thể tích? 7π 5π 8π A B C D Đáp án khác 2 Câu 21: Tính thể tích vật thể trịn xoay tạo thành quay hình phẳng (H) giới hạn đường cong y = x y = x quanh trục Ox 3π 13π 13π 3π A V = B V = C V = D V = 10 15 5 Câu 22: Thể tích vật thể trịn xoay sinh hình phẳng giới hạn bới đường y = x , y = − x + , y = quay quanh trục Oy, có giá trị kết sau ? 11 32 π (đvtt) π (đvtt) A π (đvtt) B π (đvtt) C D 15 ( Câu 23: Cho (H) hình phẳng giới hạn đường cong (L): y = x ln + x ) , trục Ox đường thẳng x = Tính thể tích vật thể trịn xoay tạo cho (H) quay quanh trục Ox π π π π A V = ( ln − 1) B V = ( ln + ) C V = ( ln + ) D V = ln 3 3 Câu 24: Thể tích khối trịn xoay quay hình phẳng (H) giới hạn y = −x + 2x trục Ox quanh trục Ox là: 16 16π 16π3 A B C D 15 15 15 Câu 25: Thể tích khối trịn xoay quay hình phẳng (H) giới hạn y = x y = x + quanh trục Ox là: 72 138π 9π 72π A B C D 5 Câu 26: Thể tích khối trịn xoay khơng gian Oxyz giới hạn hai mặt phẳng x = 0; x = π có thiết diện cắt mặt phẳng vng góc với Ox điểm (x; 0;0) đường trịn bán kính sin x là: A 2π B π C D 4π 2 Câu 27: Thể tích khối trịn xoay tạo thành cho đường x +(y-1) = quay quanh trục hoành A 6π2 (đvtt) B 8π2 (đvtt) C 4π2 (đvtt) D 2π2 (đvtt) http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 79 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 28: Thể tích khối trịn xoay tạo thành quay quanh trục hồnh hình phẳng giới hạn x3 đường y = y = x2 436π 9π 468π 81π A (đvtt) B (đvtt) C (đvtt) D (đvtt) 35 35 35 Câu 29: Tính thể tích khối trịn xoay tạo quay quanh trục Ox hình phẳng giới hạn 2x − , y = 0, x = −1 ( C) : y = x −1 π A 2π B C 3π D π Câu 30: Thể tích khối trịn xoay tạo nên quay quanh trục Ox hình phẳng giới hạn đường y = (1 − x ), y = 0, x = x = bằng: 2π 5π 8π A B 2π C D Câu 31: Thể tích khối trịn xoay cho Elip A πb B 2πb x y2 + = quay quanh trục Ox, có kết bằng: b2 C 4πb D πb Câu 32: Thể tích khối trịn xoay giơi han đường y = 2x − x ; y = quay quanh trục Ox là: A V = π 15 B V = 18 π 15 C V= 16 π 15 D V = 12 π 15 π Câu 33: Cho hình phẳng D giới hạn bởi: y = tan x; x = 0; x = ; y = gọi S diện tích hình phẳng giới hạn D gọi V thể tích vật trịn xoay D quay quanh ox Chọn mệnh đề π π A S = ln2, V = π( + ) B S = ln2; V = π( − ) 3 π π C S = ln3; V = π( + ) D S = ln3; V = π( − ) 3 y = Câu 34: (H) giới hạn đường:  Tính thể tích vật tròn xoay quay (H) quanh Ox y = x − x 4π 16 π A B C D 15 30 Câu 35: Thể tích vật giới hạn miền hình phẳng tạo đường y = x y = quay quanh trục Ox là: 64π 152π 128π 256π A B C D 5 5 Câu 36: Thể tích khối trịn xoay cho hình phẳng giới hạn đường π quay quanh trục hoành Ox y = sin x + cos x − , y = 0, x = 0, x = 12 3π π π π A B C D 32 16 24 32 http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 80 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 37: Tính thể tích vật thể trịn xoay sinh quay (H) quanh trục Ox, biết (H) hình phẳng giới π e tan x y = hạn (C): , trục Ox, trục Oy đường thẳng x = cos x 2π 2π π π A (e − 1) B π(e − 1) C π(e − 1) D (e − 1) 2 Câu 38: Thể tích khối trịn xoay tạo nên quay hình H quanh trục Ox, với H = { y = x ln x; y = 0; x = 1; x = e} bằng: π(5e3 − 3) π(e3 + 1) π(e3 − 3) π(e3 − 1) B C D 27 27 Câu 39: Cho hình phẳng (H) giới hạn đường thẳng y = x ; trục hoành đường thẳng x = m, m > Thể tích khối trịn xoay tạo quay (H) quanh trục hoành 9π (đvtt) Giá trị tham số m là: A B 3 C D 33 A Câu 40: Thể tích vật thể giới hạn mặt trụ: x + z = a y + z = a V = (đvtt) Tính giá trị a? 1 D C 2 Câu 41: Thể tích khối trịn xoay hình phẳng (H) giới hạn đường y = sin x ; y = ; x = 0; x = π quay xung quanh Ox là: π2 π2 π2 π2 A B C D A B Câu 42: Cho hàm số f ( x ) g ( x ) liên tục [ a; b ] thỏa mãn f ( x ) > g ( x ) > với x ∈ [ a; b ] Gọi V thể tích khối trịn xoay sinh quay quanh Ox hình phẳng giới hạn đồ thị ( C ) : y = f ( x ) ; ( C ') : y = g ( x ) ; đường thẳng  b  A V =  π ∫  f ( x ) − g ( x ) dx   a  b C V = ∫ f ( x ) − g ( x ) dx a x = a ; x = b V tính cơng thức sau ? b 2 B V = π ∫  f (x) − g (x) dx a b D V = π∫ f ( x ) − g ( x )  dx a Câu 43: Cho hình phẳng (S) giới hạn Ox y = − x Thể tích khối tròn xoay quay (S) quanh Ox A π B π C π D π Câu 44: Cho hình phẳng giới hạn đường y = x + , y = , x = x = quay quanh trục Ox Thể tích khối tròn xoay tạo thành π π 23π 13π A B C D 14 Câu 45: Cho (H) hình phẳng giới hạn ( P ) y = x − 4x+4,y=0,x=0,x=3 Thể tích V quay (H) quanh trục Ox 33 A 33 B C 33π http://dethithpt.com – Website chuyên đề thi – tài liệu file word D 33π Trang 81 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân-Giải tích 12 Câu 46: Cho hình phẳng (S) giới hạn Ox, Oy, y = 3x + Thể tích khối trịn xoay quay (S) quanh Oy là: 8π 16 π A π B C π D 27 3 Câu 47: Tính thể tích vật thể giới hạn mặt sinh quay hình phẳng giới hạn bởi: y = 2x − x , y = quay quanh Ox 17π 16π 14π A B C D Một kết khác 15 15 15 Câu 48: Thể tích vật thể giới hạn mặt sinh quay hình phẳng giới hạn đường y = x , 8x = y quay quanh Oy 21π 23π 24π 23π A B C D 5 5 Câu 49: Tính thể tích sinh quay quanh trục Ox hình phẳng giới hạn trục Ox Parabol (C) : y = ax − x (a > 0) πa πa πa πa B C D 10 20 30 Câu 50: Tính thể tích khối trịn xoay tạo nên ta quay quanh trục Ox, hình phẳng S giới hạn đường: y = x.e x , x = 1, y = (0 ≤ x ≤ 1) A A π(e − 1) B π(e + 1) Câu 51: Cho hình giới hạn elip (E) : Thể tích vật thể trịn xoay là: 2πab 4πab A B 3 C π(e − 1) D Một kết khác x y2 + = quay quanh trục Ox a b2 C πab D Một kết khác 4 Câu 52: Cho D miền giới hạn đường: y = 0, y = cos x + sin x , x = π , x =π Tính thể tích khối trịn xoay tạo nên quay miền Được quanh trục Ox π2 5π2 3π2 A B C D Một kết khác 8 - http://dethithpt.com – Website chuyên đề thi – tài liệu file word Trang 82 ... Website chuyên đề thi – tài liệu file word Trang 35 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân- Giải tích 12 TÍCH PHÂN A – LÝ THUYẾT TĨM TẮT Khái niệm tích phân • Cho hàm. .. chuyên đề thi – tài liệu file word Trang Giáo viên: Th.S Đặng Việt Đơng Trường THPT Nho Quan A Phần Tích Phân- Giải tích 12 ÁP DỤNG BẲNG NGUN HÀM VÀ PHÂN TÍCH A – LÝ THUYẾT TÓM TẮT Khái niệm nguyên. .. Website chuyên đề thi – tài liệu file word Trang 46 Giáo viên: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Tích Phân- Giải tích 12 TÍCH PHÂN TỔNG HỢP HẠN CHẾ MTCT 2 Câu 1: Cho tích phân I =

Ngày đăng: 02/05/2018, 14:23

TỪ KHÓA LIÊN QUAN

w