1. Trang chủ
  2. » Giáo Dục - Đào Tạo

LƯỢNG GIÁC PHƯƠNG TRÌNH LƯỢNG GIÁC (lý thuyết + bài tập vận dụng) file word

103 268 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 103
Dung lượng 5,6 MB

Nội dung

PHƯƠNG TRÌNH LƯỢNG GIÁC A TĨM TẮT LÍ THUYẾt Dạng tốn 1: Phương trình lượng giác Phương trình: sin x = m (1) * Nếu: m > ⇒ Phương trình vơ nghiệm  π π * Nếu: m ≤ ⇒ ∃α ∈  − ;  sin α = m  2  x = α + k2π ⇒ (1) ⇔ sin x = sin α ⇔   x = π − α + k2π ( k∈ ¢ )  π π − ≤ α ≤ Chú ý : * Nếu α thỏa mãn  2 ta viết α = arcsin m sin α = m *Các trường hợp đặc biệt: sin x = 1⇔ x = π + k2π 2 sin x = −1 ⇔ x = − π + k2π sin x = ⇔ x = kπ Phương trình: cos x = m (2) * Nếu: m > ⇒ phương trình vơ nghiệm * Nếu: m ≤ ⇒ ∃α ∈ [0; π] : cos α = m ⇒ (2) ⇔ cos x = cosα ⇔  x = α + k2π ( k∈ Z )   x = −α + k2π 0 ≤ −α ≤ π Chú ý : * Nếu α thỏa mãn  ta viết α = arccosm cos α = m  * Các trường hợp đặc biệt: cos x = ⇔ x = k2π cos x = −1 ⇔ x = π + k2π cos x = ⇔ x = π + kπ http://dethithpt.com – Website chuyên đề thi, tài liệu file word Phương trình : tan x = m (3)  π π Với ∀m⇒ ∃α ∈  − ; ÷: tan α = m  2 ⇒ (3) ⇔ tan x = tan α ⇔ x = α + kπ  π π − < α < Chú ý : * Nếu α thỏa mãn  2 ta viết α = arctan m  tan α = m * Các trường hợp đặc biệt: tan x = 1⇔ x = π + kπ tan x = −1 ⇔ x = − π + kπ tan x = ⇔ x = kπ Phương trình: cot x = m (4) π π Với ∀m⇒ ∃α ∈ (− ; ) : cot α = m 2 ⇒ (4) ⇔ cot x = cot α ⇔ x = α + kπ  π π − < α < α Chú ý : * Nếu thỏa mãn  2 ta viết α = arccot m cot α = m * Các trường hợp đặc biệt: cot x = ⇔ x = π + kπ π cot x = −1⇔ x = − + kπ cot x = ⇔ x = π + kπ Ghi chú: u = v + k2π * sin u = sin v ⇔  u = π − v + k2π (k∈ ¢ ) * cosu = cos v ⇔ u = ± v + k2π (k∈ ¢ ) http://dethithpt.com – Website chuyên đề thi, tài liệu file word u = v + kπ  tan u = tan v ⇔ *  π u, v ≠ + nπ u = v + kπ * cot u = cot v ⇔  u, v ≠ nπ (k,n∈ ¢ ) (k,n∈ ¢ ) Dạng Phương trình bậc sinx cosx Là phương trình có dạng: asin x + bcos x = c (1) ; với a, b,c∈ ¡ a2 + b2 ≠ Cách giải: Chia hai vế cho cos α = a a2 + b2 ⇔ sin(x + α) = ;sin α = c a + b2 b a2 + b2 a2 + b2 đặt ⇒ (1) ⇔ sin x.cosα + cos x.sin α = c a2 + b2 (2) Chú ý: • (1) có nghiệm ⇔ (2) có nghiệm ⇔ a2 + b2 ≥ c2 1  π • sin x ± 3cos x = 2 sin x − cos x = 2sin(x − )   •   π 3sin x ± cos x = 2 sin x ± cos x = 2sin(x ± )     π • sin x ± cos x =  sin x ± cos x = 2sin(x ± )   Dạng Phương trình bậc hai chứa hàm số lượng giác  sin u(x)  sin u(x)      cosu(x) cosu(x) Là phương trình có dạng : a + b + c=  tan u(x)  tan u(x)      cot u(x)  cot u(x)   sin u(x)    cosu(x)  t = Cách giải: Đặt ta có phương trình : at2 + bt + c =  tan u(x)    cot u(x)  Giải phương trình ta tìm t , từ tìm x http://dethithpt.com – Website chuyên đề thi, tài liệu file word  sin u(x)  Khi đặt t =   , ta co điều kiện: t∈ −1;1  cosu(x) Dạng Phương trình đẳng cấp Là phương trình có dạng f (sin x,cos x) = luỹ thừa sinx cosx chẵn lẻ Cách giải: Chia hai vế phương trình cho cosk x ≠ (k số mũ cao nhất) ta phương trình ẩn tan x Dạng Phương trình đối xứng (phản đối xứng) sinx cosx Là phương trình có dạng: a(sin x + cos x) + bsin x cos x + c = (3) Để giải phương trình ta sử dụng phép đặt ẩn phụ  t2 − = sin x cos x  π  t = sin x + cos x = 2sin  x + ÷ ⇒  4    t ∈ − 2; 2    Thay (5) ta phương trình bậc hai theo t Ngồi cịn gặp phương trình phản đối xứng có dạng a(sin x − cos x) + bsin x cos x + c = (3’) Để giải phương trình ta đặt t ∈  − 2; 2   π   t = sin x − cos x = 2sin  x − ÷⇒   sin x cos x = 1− t   Thay vào (3’) ta có phương trình bậc hai theo t B PHƯƠNG PHÁP GIẢI TOÁN Vấn đề Giải phương trình lượng giác Các ví dụ Ví dụ Giải phương trình sau: sin x − cos2x = 2sin(2x− 350 ) = cos2 x − sin2x = sin(2x + 1) + cos(3x − 1) = Lời giải: π Phương trình ⇔ cos2x = sin x = cos( − x) http://dethithpt.com – Website chuyên đề thi, tài liệu file word  π 2π  π x = + k  2x = − x + k2π ⇔ ⇔ , k∈ ¢  x = − π + k2π  2x = − π + x + k2π   2 Phương trình cos2 x − 2sin x cos x = cos x =  cos x = ⇔ cos x(cos x − 2sin x) = ⇔  ⇔  tan x = 2sin x = cos x    π  x = + kπ ⇔ , k∈ ¢  x = arctan + kπ  Phương trình ⇔ sin(2x − 350 ) = = sin600  950 x = + k.1800   2x − 35 = 60 + k360 ⇔ ⇔ 0 0 155   2x − 35 = 180 − 60 + k360  x = + k.180 0 π  Phương trình ⇔ cos(3x − 1) = sin(−2x − 1) = cos + 2x + 1÷ 2   π  π  x = + 2+ k2π  3x − = + 2x + 1+ k2π ⇔ ⇔  x = − π + k 2π  3x − = − π − 2x − 1+ k2π  10  Ví dụ Giải phương trình sau: cos x − 2sin2x = sin2 2x = cos2 2x + cos3x sin3 x sin3x − cos3 xcos3x = − sin2x.cos3x = sin5x.cos6x sin x + sin2x + sin3x = cos x + cos2x + cos3x sin2 3x − cos2 4x = sin2 5x − cos2 6x cos2 3x cos2x − cos2 x = Lời giải: Phương trình ⇔ cos x − 4sin x cos x = ⇔ cos x(1− 4sin x) = http://dethithpt.com – Website chuyên đề thi, tài liệu file word  π cos x =  x = + kπ ⇔ ⇔ sin x =  1   x = arcsin + k2π, x = π − arcsin + k2π  4 Ta có sin3 x = 3sin x − sin3x cos3x + 3cos x ;cos3 x = 4 Nên phương trình cho tương đương với sin 3x( 3sin x − sin3x) − cos3x( cos3x + 3cos x) = − ⇔ 3( sin3x sin x − cos3x cos x) − 1= − ⇔ −3cos4x = − 5 π π ⇔ cos4x = ⇔ x = ± + k , k∈ ¢ 2 12 Phương trình ⇔ sin2 2x − cos2 2x = cos3x ⇔ cos4x = − cos3x = cos( π − 3x)  π 2π  4x = π − 3x + k2π x= + k  ⇔ ⇔ 7   4x = −π + 3x + k2π  x = −π + k2π Phương trình ⇔ 1 sin5x − sin x = sin11x − sin x  2 ⇔ sin5x = sin11x ⇔ x = k π π π +k x = 16 Phương trình ⇔ (sin x + sin3x) + sin2x = (cos x + cos3x) + cos2x ⇔ 2sin2x cos x + sin2x = 2cos2xcos x + cos2x  2π  x= ± + k2π  cos x = −  ⇔ (2cos x + 1)(sin2x − cos2x) = ⇔ ⇔  π π sin2x = cos2x  x = + k  Áp dụng cơng thức hạ bậc, ta có: Phương trình ⇔ 1− cos6x 1+ cos8x 1− cos10x 1+ cos12x − = − 2 2 ⇔ cos6x + cos8x = cos10x + cos12x http://dethithpt.com – Website chuyên đề thi, tài liệu file word  π  x = + kπ  cos x = ⇔ 2cos7x cos x = 2cos11x cos x ⇔  ⇔ π π cos11 x = cos7 x x = k ; x = k   Phương trình ⇔ (1+ cos6x)cos2x − 1− cos2x = ⇔ cos6x.cos2x − = ⇔ cos8x + cos4x − = π ⇔ 2cos2 4x + cos4x − = ⇔ cos4x = 1⇔ x = k Nhận xét: * Ở cos6x.cos2x− = ta sử dụng cơng thức nhân ba, thay cos6x = 4cos3 2x − 3cos2x chuyển phương trình trùng phương hàm số lượng giác cos2x * Ta sử dụng cơng thức nhân từ đầu, chuyển phương trình cho phương trình chứa cosx đặt t = cos2 x Tuy nhiên cách trình bày đẹp sử dụng công thức hạ bậc công thức biến đổi tích thành tổng Ví dụ Giải phương trình sau: 3sin x + 4cos x = 2sin 3x + 5cos3x = 5 sin7x − cos2x = 3(sin 2x − cos7x) sin 2x + 3cos2x = 3cos x + 3sin x = sin 3x − 3cos3x = 2sin 2x sin x + cos x sin2x + 3cos3x = 2(cos4x + sin3 x) Lời giải: Phương trình ⇔ 3sin x = −4cos x ⇔ tan x = −  4 ⇔ x = arctan  − ÷+ kπ  3 π π π Phương trình ⇔ 2sin(2x + ) = ⇔ sin(2x + ) = = sin 3  π  2x + = ⇔  2x + π =  π  π + k2π x = − + kπ  12 ⇔ , k∈ ¢ 5π π  + k2π x = + kπ  Ta có 22 + ( ) = < 52 ⇒ phương trình vô nghiệm http://dethithpt.com – Website chuyên đề thi, tài liệu file word Phương trình ⇔ 3cos x + sin x = ⇔ x= π ⇔ cos(x − ) = 3 π ± arccos + k2π , k∈ ¢ Phương trình ⇔ sin7x + 3cos7x = 3sin 2x + cos2x  π π  π π 7x − = x − + k2π x= − + k   π π 36 , k∈ ¢ ⇔ cos(7x − ) = cos(x − ) ⇔  ⇔ 7x − π = − x + π + k2π x = π + k π   16  π 3x − = 2x + k2π  π Phương trình ⇔ sin(3x − ) = sin2x ⇔  π  3x − = π − 2x + k2π   x = ⇔ x =  π + k2π , k∈ ¢ 4π 2π +k 15 Phương trình ⇔ 3 sin x + sin 3x + 3cos3x = 2cos4x + sin x − sin3x 2 2  π x = − + k2π  π ⇔ sin3x + 3cos3x = 2cos4x ⇔ cos(3x − ) = cos4x ⇔   x = π + k 2π  42 Ví dụ Giải phương trình sau: π  tan  ( sin x + 1)  = 4  cos(π sin x) = cos(3π sin x) Lời giải: sin x = k  3π sin x = π sin x + k2π ⇔ Phương trình ⇔  sin x = n π sin x = −π sin x + n π   • Xét phương trình sin x = k Do k∈ ¢ −1≤ sin x ≤ nên ta có giá trị k : −1,0,1 Từ ta có nghiệm: x = mπ, x = π + mπ , m∈ ¢ http://dethithpt.com – Website chuyên đề thi, tài liệu file word • Xét phương trình sin x = n Ta có giá trị n là: n = ±2,n = ±1,n = Từ ta tìm nghiệm là: x = π π + lπ , x = lπ , x = ± + lπ , l ∈ ¢ Vậy nghiệm phương trình cho là: x = mπ, x = Phương trình ⇔ π π + mπ, x = ± + mπ m∈ ¢ π π sin x + 1) = + kπ ( 4 ⇔ sin x + = 1+ 4k ⇔ sin x = 4k ⇔ sin x = ⇔ x = mπ , m∈ ¢ Ví dụ Giải phương trình sau: ( ) − sin x + ( ) + cos x = 2sin 2x 3sin2 x + 5cos2 x − 2cos2x = 4sin2x π 2 x 2 x sin  − ÷tan x − cos =  4 5sin x − = 3( 1− sin x) tan x Lời giải: Phương trình ⇔ 3sin x + cos x + 3cos x − sin x = 2sin2x π π 7π ⇔ sin(x + ) + cos(x + ) = 2sin2x ⇔ sin(x + ) = sin2x 6 12  7π  7π  x = 12 + k2π  2x = x + 12 + k2π ⇔ ⇔  x = 5π + k 2π  2x = π − x − 7π + k2π   36 12 Phương trình cho tương đương với 3sin2 x + 5cos2 x − 2(cos2 x − sin2 x) = 8sin xcos x ⇔ 5sin2 x − 8sin x cos x + 3cos2 x = ⇔ 5tan2 x − 8tan x + = ⇔ tan x = tan x = ⇔ x= π + kπ x = arctan + kπ Điều kiện : cos x ≠ ⇔ x ≠ π + kπ http://dethithpt.com – Website chuyên đề thi, tài liệu file word Phương trình ⇔ 5sin x − = 3(1− sin x) ⇔ 5sin x − = 3(1− sin x) ⇔ 5sin x − = sin2 x cos2 x sin2 x 1− sin2 x sin2 x ⇔ (5sin x − 2)(1+ sin x) = 3sin2 x 1+ sin x  x = π ⇔ sin x = = sin ⇔  ⇔ 2sin x + 3sin x − = x =  Điều kiện : cos x ≠ ⇔ x ≠ π + k2π 5π + k2π π + kπ  π  sin2 x − (1+ cos x) = Phương trình ⇔ 1− cos(x − )  cos2 x  sin2 x ⇔ (1− sin x) − (1+ cos x) = 1− sin2 x ⇔ sin2 x − (1+ cos x) = 1+ sin x ⇔ (1− cos2 x) − (1+ cos x)(1+ sin x) =  x = k2π cos x =  ⇔ (1− cos x)(cos x − sin x) = ⇔  ⇔ π  tan x =  x = + kπ  Ví dụ Giải phương trình sau: sin3 x + cos3 x = sin x − cos x 2cos3 x = sin3x sin x + 3tan x = cos x( 4sin x − cos x) Lời giải: Phương trình ⇔ sin3 x + cos3 x = (sin x − cos x)(sin2 x + cos2 x) ⇔ 2cos3 x − sin x cos2 x + cos x.sin2 x = ( ) ⇔ cos x sin2 x − sin x cos x + 2cos2 x = ⇔ cos x = ⇔ x = π + kπ (Do sin2 x − sin x cos x + 2cos2 x > ∀x ∈ ¡ ) http://dethithpt.com – Website chuyên đề thi, tài liệu file word Bài 3: Giải phương trình ( sin3x + cos3x) = 1+ 2sin6x + 2sin 2x A x = π 17π + nπ x = + 2nπ 12 12 B x = π 17π + 2nπ x = + nπ 12 12 C x = π 17π + nπ x = + 2nπ 12 12 D x = π 17π + 2nπ x = + 2nπ 12 12 Lời giải: sin3x + cos3x ≥ Phương trình ⇔  2( sin 3x + cos3x) = 1+ 2sin6x + 2sin2x sin3x + cos3x ≥ sin 3x + cos3x ≥ (*)   ⇔ ⇔ π 5π sin2x =  x = 12 + kπ (1), x = 12 + kπ (2) • Với nghiệm x = π + kπ 12 π  π  sin 3x + cos3x = sin  + 3kπ ÷+ cos + 3kπ ÷ ≥ ⇔ k = 2n 4  4  • Với nghiệm x = 5π + kπ 12  5π   5π  sin 3x + cos3x = sin  + 3kπ ÷+ cos + 3kπ ÷ ≥ ⇔ k = 2n +     Vậy nghiệm phương trình cho là: x = π 17π + 2nπ x = + 2nπ 12 12 Bài 4: Giải phương trình : tan 2x tan3x tan7x = tan 2x + tan 3x + tan7x  k ≠ 2(2t + 1)  kπ A x = với  k ≠ 3(2t + 1) ,t ∈ ¢  k ≠ 6(2t + 1)   k ≠ 2(2t + 1)  kπ B x = với  k ≠ 5(2t + 1) ,t ∈ ¢ 12  k ≠ 6(2t + 1)   k ≠ 2(2t + 1)  kπ C x = với  k ≠ 5(2t + 1) ,t ∈ ¢  k ≠ 6(2t + 1)   k ≠ 2(2t + 1)  kπ D x = với  k ≠ 3(2t + 1) ,t ∈ ¢ 12  k ≠ 6(2t + 1)  Lời giải: http://dethithpt.com – Website chuyên đề thi, tài liệu file word  π π x ≠ + k cos2x ≠  π π   Điều kiện: cos3x ≠ ⇔  x ≠ + k cos7x ≠   π kπ   x ≠ 14 +  Phương trình ⇔ − tan2x(1− tan3x tan7x) = tan3x + tan7x Nếu tan3x tan7x = 1⇒ tan3x + tan7x = vơ lí Nên ta có phương trình : − tan2x = ⇔ 10x = −2x + mπ ⇔ x = tan3x + tan7x = tan10x 1− tan3x tan7x mπ 12 Loại nghiệm: Với toán sử dụng phương pháp loại nghiệm cách biểu diễn lên đường tròn lượng giác hay phương pháp thử trực tiếp phải xét nghiều trường hợp Do ta lựa chọn phương pháp đại số • π π mπ +k = ⇔ 3+ 6k = m 12 • π π mπ +k = ⇔ 2+ 4k = m 12 • m= 12t + π π mπ +k = ⇔ 6+ 12k = 7m⇔  ,t ∈ ¢ 14 12  k = 7t +  k ≠ 2(2t + 1)  kπ KL: Nghiệm phương trình là: x = với  k ≠ 3(2t + 1) ,t ∈ ¢ 12  k ≠ 6(2t + 1)  Vấn đề Phương trình lượng giác chứa tham số Đây chuyên đề giới thiệu, nên giáo viên minh họa tốn tự luận cho học sinh, chuyển tốn trắc nghiệm thật khơng tốt Các ví dụ Ví dụ Tìm giá trị m để phương trình: 2sin(x + π ) = 2m+ 1vô nghiệm 10 Lời giải: http://dethithpt.com – Website chuyên đề thi, tài liệu file word  π  2m+ Phương trình ⇔ sin  x + ÷ = 10   • Nếu −1≤ 2m+ ≤ 1⇔ − ≤ m≤ phương trình có nghiệm 2  π 2m+  x = − 10 + arcsin + k2π   x = 9π − arcsin 2m+ + k2π  10   m< − • Nếu  ⇒ phương trình vơ nghiệm  m>  Ví dụ Giải biện luận phương trình: mcos2x = m− Lời giải: • Nếu m≥ m− ⇒ ≤ 1⇒ phương trình có nghiệm m m− x = ± arccos + k2π m • Nếu m< phương trình vơ nghiệm Ví dụ Cho phương trình : (m− 1)cos x + 2sin x = m+ Giải phương trình m= −2 Tìm m để phương trình có nghiệm Lời giải: Với m= ta có phương trình : 3cos x − 2sin x = −1 ⇔ 13 cos x − Với sin α = 13 13 sin x = − ,cos α = ⇔ x + α = ± arccos −1 13 13 ⇔ cos(x + α) = − 13  π ; α ∈  0; ÷ 13  2 + k2π ⇔ x = −α ± arccos −1 13 + k2π Phương trình cho có nghiệm ⇔ (m− 1)2 + ≥ (m+ 3)2 ⇔ m≤ − http://dethithpt.com – Website chuyên đề thi, tài liệu file word Ví dụ Tìm m để phương trình: ( m + 1) cosx + ( m − 1) sinx = 2m + có nghiệm x1 , x2 thoả mãn: x1 − x2 = π Lời giải: Ta có phương trình cho tương đương với m+ 2m + 2 m−1 cosx + 2m + 2 ⇔ cos( x + α ) = cosβ (Trong cosα = sinx = 2m + 2m2 + 2m+3 (với đk −1≤ m+1 2m + 2   2m2 + 2m+3 ; cosβ = 2m2 + ≤ (*) ) ) ⇔ x = β ± α + k2π Do x1 , x2 có dạng x1 = β + α + k12π; x2 = β − α + k2 2π (Vì x1,x2 thuộc họ nghiệm x1 − x2 = l 2π , l ∈ Z ) Do đ ó: x1 − x2 = π ⇔ 2α+(k1− k2)2π = π π ⇔ cos 2α+(k1−k2)2π = cos ⇔ cos2α = Mặt khác cos2α = 2cos2α − nên ta có:  m+  ( m + 1) = 2 − ⇔ = ÷ ÷ 2 2m2 +  2m +  2 ⇔ m2 − 4m+ = ⇔ m= ± (ko thoả mãn (*)) Vậy không tồn m thoả mãn yêu cầu toán CÁC BÀI TOÁN LUYỆN TẬP Bài Giải biện luận phương trình sau: 4sin 2x = 2m+ π tan(2x − ) = m+ π (m− 1)cos2(4x + ) = 2m π mcot2(2x − ) = 2m+ Lời giải: Phương trình ⇔ sin2x = 2m+ (1) http://dethithpt.com – Website chuyên đề thi, tài liệu file word • Nếu  x =  x =  2m+ ≤ ⇔ 2m+ ≤ ⇔ − ≤ m≤ phương trình (1) có nghiệm 2 2m+ arcsin + kπ , k∈ ¢ π 2m+ − arcsin + kπ 2  5  ã Nu m ; ữ ; +∞ ÷ phương trình (1) vơ nghiệm 2    Lời giải: • Nếu m= 1⇒ phương trình (1) vơ nghiệm  π  2m • Nếu m≠ 1⇒ phương trình đa cho ⇔ cos2  4x + ÷ = (2)  m−   2m  m− ≥ m∈ (−∞;0] ∪ (1; +∞) ⇔ ⇔ −1≤ m≤ +) Nếu  m − ≤ m <   ≤1  m−  π 2m Phương trình (2) ⇔ cos 2x + ÷ = ± 3 m−  ⇔ 2x +   π 2m  π 2m  = ± arccos ± + k2π ⇔ x = − ± arccos ± + kπ , k  ữ m ữ m ÷ ÷      m < −1 +) Nếu  phương trình (2) vô nghiệm  m> Lời giải: m Với giá trị ta có phương trình cho tương đương với 2x − π π kπ = arctan(m+ 1) + kπ ⇔ x = + arctan(m+ 1) + 12 2 Lời giải: • Nếu m= ⇒ phương trình vơ nghiệm  π  2m+ • Nếu m≠ phương trình ch tương đương với cot2  2x − ÷ = 8 m  (4) http://dethithpt.com – Website chuyên đề thi, tài liệu file word +) Nếu 2m+ 1 < ⇔ − < m< phương trình (4) vơ nghiệm m  m≤ −  +) Nếu phương trình (4) có nghiệm   m> 2x −  2m+   2m+  kπ π π = arccot  ± + kπ ⇔ x = + arccot + , k  ữ ữ  ÷  ÷ m 16 m     Bài Giải biện luận phương trình sau: msin2 2x + m− = (2m− 1)tan2 3x = m+ Lời giải: • Nếu m= ⇒ phương trình vơ nghiệm • Nếu m≠ ⇒ phương trình ⇔ sin2 2x = 1− m m  1− m  m< > 1⇔ 1− m > m ⇔  +) ⇒ phương trình vơ nghiệm m  m≠  x =  +) m≥ ⇒ phương trình có nghiệm :  x =    1− m  arcsin  ± + kπ ÷  ÷ m    1− m  π − arcsin  ± + kπ ÷  ÷ 2 m   Lời giải: • Nếu m= ⇒ phương trình vơ nghiệm • Nếu m≠ m+ phương trình ⇔ tan2 3x = 2m− +) Nếu −2 < m< ⇒ phương trình vơ nghiệm  m ≤ −2  m+  kπ ⇒ phương trình có nghiệm x = arct an ± + +) Nếu   2m− ÷ ÷  m>    Bài Cho phương trình (m− 1)sinx + mcos x = 2m− (1) http://dethithpt.com – Website chuyên đề thi, tài liệu file word Tìm m để phương trình (1) có nghiệm x = π , giải phương trình với giá trị m vừa tìm đượC Tìm m để phương trình cho có nghiệm Lời giải: Phương trình có nghiệm x = π π π 3− (m− 1)sin + mcos = 2m− ⇔ m= 3 Bạn đọc tự giải phương trình Lời giải: Phương trình có nghiệm ⇔ (m− 1)2 + m2 ≥ (2m− 1)2 ⇔ m2 − m≤ ⇔ ≤ m≤ Bài Tìm tất giá trị tham số m để phương trình cos2x + cos2 x + 3sin x + 2m= có nghiệm Lời giải: Phương trình ⇔ 3sin x − 3sin x = 2m+ 2 Đặt t = sin,t ∈ −  1;1 Ta có phương trình : 3t − 3t = 2m+ 2 Xét hàm số f (t) = 3t − 3t, t ∈ −  1;1 Bảng biến thiên t −1 f (t) Dựa vào bảng biến thiên ta có phương trình cho có nghiệm ⇔ ≤ 2m+ ≤ ⇔ −1≤ m≤ π  cos2x − (2m+ 1)cos x + m+ = có nghiệm  ; π  2  Lời giải: http://dethithpt.com – Website chuyên đề thi, tài liệu file word Phương trình ⇔ 2cos x − ( 2m + 1) cosx + m =  2cos x − = ⇔ ( 2cos x − 1) ( cos x − m) = ⇔   cos x − m= π  Ta có : x ∈  ; π ÷⇒ −1≤ cos x ≤ 2  π  Suy phương trình cho có nghiệm x ∈  ; π ÷ ⇔ −1≤ m≤ 2  Bài 5: Giải biện luận phương trình : ( ) ( ) 3 8m + sin x − 4m + sin x + 2mcos x = Lời giải: • Nếu m= , phương trình ⇔ sin3 x − sin x = sin xcos2 x = ⇔ sin2x = ⇔ x = kπ • Nếu m≠ 0, chia hai vế phương trình cho cos3 x ≠ ta ( ) (8m2 + 1)tan3 x − (4m2 + 1)tan x 1+ tan2 x + 2m= ⇔ 4m2 tan3 x − (4m2 + 1)tan x + 2m= ⇔ (2mtan x − 1)(2mtan2 x + tan x − 2m) =    x = arctan + kπ  tan x = tan x = m   ⇔ ⇔ 2m 2m ⇔    kπ  2mtan x + tan x − 2m=  tan2x = 4m  x = arctan(4m) +  2 KL: • Nếu m= phương trình có nghiệm x = kπ • Nếu m≠ phương trình có nghiệm x= kπ 1 kπ , x = arctan + kπ , x = arctan(4m) + 2m 2 2msin x cos x − ( sin x + cos x) + = Lời giải:  π t2 − Đặt t = sin x + cos x = 2cos x − ÷, t ∈  − 2; 2 ⇒ sin x cos x = 4  http://dethithpt.com – Website chuyên đề thi, tài liệu file word Thay vào phương trình ta có: t = m(t2 − 1) − t + = ⇔ (t − 1)(mt + m− 1) = ⇔   mt = 1− m  π x = + k2π  π • t = 1⇔ cos x − ÷ = ⇔  4  x = k 2π  • Xét phương trình : mt = 1− m (*) +) Nếu m= ⇒ (*) vô nghiệm +) Nếu ⇒ (*) ⇔ t =  m≤ −1− m≠ 1− m ≤ 2⇔  ⇔ m m + 2m− 1≥  m≥ −1+  1− m 1− m  π  1− m π ⇔ cos x − ÷ = ⇔ x = ± arccos ÷+ k2π m 4 m   m 2 1− m  m≠ ⇒ (*) ⇔ t = +)  vô nghiệm m  −1− < m< −1+ KL: • Nếu −1− < m< −1+ ⇒ phương trình có nghiệm x = π + k2π, x = k2π  m< −1− • Nếu  ⇒ phương trình có nghiệm  m> −1+ x=  1− m π π + k2π, x = k2π, x = ± arccos ÷+ k2π  m 2 cos2 x − sin2 x mcot2x = cos6 x + sin6 x Lời giải: cos2x cos2x = Phương trình ⇔ m sin2x 1− 3sin2 xcos2 x • Phương trình ln có nghiệm: x = • Phương trình: π π +k m = hay 3mt2 + 4t − 4m= (*) sin2x − 3sin2 2x Với t = sin2x ∈ −  1;1 \ { 0} +) m= phương trình vơ nghiệm http://dethithpt.com – Website chuyên đề thi, tài liệu file word +) m≠ ⇒ phương trình (*) ln có hai nghiệm phân biệt t1t2 = − nên có có nhiều nghiệm thuộc −  1;1 2 Nghiệm t = −2 + 1+ 3m ∈ −  1;1 ⇔ 1+ 3m − ≤ m 3m ⇔ 3m2 + ≤ 1+ 3m2 ⇔ 9m4 − 144m2 ≤ ⇔ m ≤ 2 Nghiệm t = −2 − 1+ 3m ∈ −  1;1 ⇔ 1+ 3m + ≤ m vô nghiệm 3m  m= π π Vậy : * Nếu  phương trình cho có nghiệm x = + k m >   m≠ π π * Nếu  phương trình cho có nghiệm x = + k  m ≤ x= −2 + 1+ 3m2 π −2 + 1+ 3m2 arcsin + kπ , x = − arcsin + kπ 3m 2 3m Bài 6: Tìm m để phương trình mcos2x + sin x = cos xcot x có nghiệm thuộc ( 0;2π ) Lời giải:  sin x ≠ (1) Phương trình ⇔  cos2x(msin x − 1) = (2) • Nếu m= ⇒ phương trình ⇔ cos2x = ⇔ x= π 3π 5π 7π ,x = ,x = ,x = ⇒ m= thỏa yêu cầu toán 4 4 • m≠ Vì phương trình ln có nghiệm ( 0;2π ) nêu yêu cầu tốn ⇔ phương trình msin x− = vơ nghiệm có nghiệm m≠  m≠  >   ⇔  m < Điều xảy   m     m= ±  =   m http://dethithpt.com – Website chuyên đề thi, tài liệu file word m ∀x ∈ ( 1; +∞ ) cos x Ta có phương trình : (1− m)t2 − 2t + 4m= (*) Yêu cầu toán ⇔ (*) có nhiều nghiệm t > ⇔ (*) có hai nghiệm phân biệt t1 ,t2 >  1− m≠ m≠ 1, m≠   ∆ ' = 1+ 4m(m− 1) >  ⇔ ⇔ t1 + t2 − > (t1 − 1) + (t2 − 1) > t t − (t + t ) + 1> (t1 − 1)(t2 − 1) > 12     m≠ 1, m≠ m≠ 1, m≠ m≠ 1, m≠     m≠     2m  ⇔ − 2> ⇔ >0 ⇔ 0 < m < ⇔  1 − m − m   1  < m<  4m  3m−  < m<  3  1− m − 1− m + >  1− m >   mtan2 x + 2tan x − 1= có nghiệm cos2 x Lời giải: Phương trình ⇔ mtan2 x + 2tan x − = 1+ tan2 x ⇔ (m− 1)tan2 x + 2tan x − = (1) • m= 1⇒ (*) ⇔ tan x = • m≠ Ta có (*) có nghiệm ⇔ ∆ ' = 2m− 1≥ ⇔ m≥ Vậy m≥ giá trị cần tìm http://dethithpt.com – Website chuyên đề thi, tài liệu file word  π cos4x = cos2 3x + msin2 x có nghiệm x ∈  0; ÷  12  Lời giải: Phương trình ⇔ 2cos2 2x − 1= 1+ cos6x m(1− cos2x) + 2 ⇔ 4cos3 2x − 4cos2 2x − 3cos2x + 3+ m(1− cos2x) = cos2x = ⇔ (cos2x − 1)(4cos 2x − 3− m) = ⇔  cos 2x = m+     π  π ;1÷ Vì x ∈  0; ÷⇒ 2x ∈  0; ÷⇒ cos2x ∈  ÷  12   6   Do phương trình cho có nghiệm ⇔ m+ < < ⇔ < m< 4 Bài 8: Tìm m để phương trình sau có nghiệm sin4x + cos4x – cos2x + sin2 2x + m= Lời giải: Phương trình ⇔ 1− sin2 2x − cos2x + m= ⇔ cos2 2x − 4cos2x = −3− 4m Đặt t = cos2x ⇒ t ∈ −  1;1 Ta có phương trình f (t) = t2 − 4t = −4m− Bảng biến thiên t −1 f (t) −3 Dựa vào bảng biến thiến ta thấy phương trình có nghiệm ⇔ −3 ≤ −4m− ≤ ⇔ −2 ≤ m≤ http://dethithpt.com – Website chuyên đề thi, tài liệu file word Bài 9: Chứng minh phương trình cosx + mcos2x = ln có nghiệm với m Lời giải: Phương trình ⇔ 2mcos2 x + cos x − m= Đặt t = cos x,t ∈ −  1;1 ta có phương trình 2mt + t − m= • m= ⇒ t = nghiệm phương trình • m≠ ta thấy phương trình ln có hai nghiệm t1 ,t2 t1t2 = ⇒ hai nghiệm ln có nghiệm thuộc −  1;1 http://dethithpt.com – Website chuyên đề thi, tài liệu file word ... liệu file word = atan2(α + β) + 2btan(α + β) + c ⇒P= atan2(α + β) + 2btan(α + β) + c = 1+ tan2(α + β) a b2 2b2 − +c (1− c)2 1− c b2 1+ (1− c)2 ab2 − 2b2(1− c) + c(1− c)2 = (1− c)2 + b2 CÁC BÀI... π Phương trình ⇔ sin(2x + 1) = sin( − 2+ x)   2x + = ⇔  2x + =   π − + x + k2π x = ⇔ π x = + − x + k2π  π − 3+ k2π , k∈ ¢ π k2π + + 3 Bài Giải phương trình 2cos x − = A x = ± π +. .. liệu file word Giải phương trình cosx + 1 10 + sinx + = cos x sin x A x = π + 19 ± arccos + k2π B x = π + 19 ± arccos + k2π C x = π + 19 ± arccos + kπ D x = π − 19 ± arccos + k2π Bài 73 Phương trình

Ngày đăng: 02/05/2018, 13:09

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w