Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng ABCD.. a.Chứng minh các mặt bên của hình chóp là các tam giác vuông.. Cho hình chóp S.ABCD có đáy ABCD là hình
Trang 1MỘT SỐ BÀI TẬP HÌNH ÔN THI KI 2 TRÍCH ĐỀ THI HỌC KÌ 2 ( SƯU TẦM )
Bài 1. Cho hình chóp tứ giác đều S.ABCD có AB = SA = a, gọi O là tâm của mặt đáy
a Chứng minh BDSC
b.Tính khoảng cách từ S đến mặt phẳng (ABCD) theo a
Bài 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng (ABCD)
a.Chứng minh các mặt bên của hình chóp là các tam giác vuông
b.Gọi M, N lần lượt là trung điểm SB, SD Chứng minh MN BD và MNSAC
Bài 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông ở A , AB = a, CA = 2a, và cạnh bên SA vuông góc với mặt đáy, SA = 2a Gọi M là một điểm nằm trên đoạn AB.Gọi (P) là mặt phẳng qua M và vuông góc với AB
a.C/m: mặt phẳng (P) song song với mp(SAC),
b.C/m: AC SMTính góc giữa SA và mp(SBC)
Bài 4. Cho tứ diện SABC có tam giácABC đều cạnh a, SA (ABC), SA =
2
a
Gọi I là trung điểm của cạnh BC
a) Chứng minh: BC mp(SAI)
b) Tính góc giữa mp (ABC) và mp(SBC) Từ đó suy ra diện tích tam giác SBC
Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SB(ABCD), SB = 3a Trên cạnh
AD lấy điểm M (M A M; D)
1) Chứng minh rằng: ACSD
2) Xác định và tính góc giữa SA và mp(SBD)
3) Gọi (P) là mặt phẳng đi qua M đồng thời song song với DC và SB Xác định thiết diện của hình chóp S.ABCD với mặt phẳng (P) Thiết diện đó là hình gì?
Bài 6. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a SA vuông góc với mặt phẳng đáy,
SA =a 2
a) ( 1 điểm )Chứng minh (SAB) vuông góc (SBC).
b) ( 1 điểm )Tính khoảng cách giữa : AD và SC
c) ( 1 điểm )Một mặt phẳng (P) qua A và vuông góc SC Tính diện tích thiết diện của hình chóp
S.ABCD khi cắt bởi mp(P)
Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tâm O và SA (ABCD), SA=x a) Gọi H là hình chiếu của D trên SB Chứng minh rằng AH (SBC)
b) Tính khoảng cách từ A đến mặt phẳng (SBD)
c) Tìm điều kiện giữa a và x để góc giữa đường thẳng BD và mặt phẳng (SBC) là 30
Bài 8. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, có cạnh SA a và SA vuông
góc với mặt phẳng ABCD Gọi H và K lần lượt là hình chiếu vuông góc của điểm A lên SB và
SD
a) Chứng minh BC SAB và SC AHK
b) Tính khoảng cách giữa hai đường thẳng SB và AD
Trang 2Bài 9. Cho hình chóp S ABC có đáy là tam giác ABC vuông ở C có CA a;CB a 2;
)
( ABC
1 Chứng minh mp(SBC) vuông góc với mp(SAC)
2 Tính góc giữa SB và mp(ABC)
3 Tính góc giữa mp(ABC) và mp(SBC)
4 Gọi I là trung điểm AB Tính khoảng cách từ I đến mp(SBC)
Bài 10. Cho hình chóp S.ABC có các mặt (SAB), (ABC) lần lượt là các tam giác cân tại S và C Gọi I là trung điểm của cạnh AB
a/ Chứng minh AB SC
b/ Gọi H là hình chiếu vuông góc của S lên IC Chứng minh SH (AIC)
Bài 11. Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a Đường thẳng SA vuông góc với mặt đáy,
SA = a 3
a) Chứng minh rằng:BD mp (SAC); CD SD
b) Tính góc hợp bởi cạnh bên SB và mặt phẳng đáy
Bài 12. Cho hình tứ diện ABCD, biết tam giác BCD vuông tại C và ABBCD Chứng minh rằng:
a) BCA là góc giữa hai mp (BCD) và (ACD).
Mp(BCA) vuông góc với mp(CDA).
Bài 13.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có các cạnh bên SB=SD=a Chứng minh: a) Mp(SAC) vuông góc với mp(ABCD).
b) Tam giác SAC vuông.
Bài 14.
Cho hình chóp S ABC có đáy là tam giác ABC vuông tại C SA (ABC),AC = a,
BC = b, SA = a 3
a) Chứng minh các mặt bên của tứ diện là các tam giác vuông
b) Tính khoảng cách từ A đến mp (SBC)
Bài 15. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA = a 2 và SA(ABCD) , qua A dựng mp( ) vuông góc với SC , cắt SB , SC , SD lần lượt tại E , K, H
a/ Chứng minh: AE SB , BD (SAC)
b/.Chứng minh : EH // BD
c/ Tính góc giữa đường thẳng SC và mặt phẳng (ABCD)
Bài 16. Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SAABCD,SA = a 1.Tính góc giữa ( SAC ) và ( SAD )
2 Tính khoãng cách giữa hai đường thẳng SB và AD
3 Gọi là mặt phẳng chứa AB và vuông góc với ( SCD) Hãy xác định mp
Mặt phẳng cắt hình chóp S.ABCD theo thiết diện là hình gì?
Bài 17. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA(ABCD) Gọi I là trung điểm của cạnh SC
a) Chứng minh AI BD
b) (BID) (ABCD)
c) Tính diện tích tam giác BID biết SA = AB = a