Một số đề ôn thi vào chuyên toán Đề 1 Bài 1: (8 điểm) Cho parabol 2 1 ( ) : 3 P y x= . 1. Viết phơng trình các tiếp tuyến của (P), biết các tiếp tuyến này đi qua điểm (2;1)A . 2. Gọi d là đờng thẳng đi qua điểm (2;1)A và có hệ số góc m. Với giá trị nào của m thì đờng thẳng d cắt (P) tại hai điểm phân biệt M và N, khi đó tìm quĩ tích trung điểm I của đoạn thẳng MN khi m thay đổi. 3. Tìm quĩ tích các điểm M0 từ đó có thể kẻ đợc hai tiếp tuyến của parabol (P) và hai tiếp tuyến này vuông góc với nhau. Bài 2: (4điểm) Giải hệ phơng trình: 2 2 19 7 x y xy x y xy + = + + = Bài 3: (8 điểm) Cho nửa đờng tròn đờng kính AB cố định. C là một điểm bất kì thuộc nửa đờng tròn. ở phía ngoài tam giác ABC, vẽ các hình vuông BCDE và ACFG. Gọi Ax, By là các tiếp tuyến của nửa đờng tròn. 1. Chứng minh rằng khi C di chuyển trên nửa đờng tròn đã cho thì đờng thẳng ED luôn đi qua một điểm cố định và đờng thẳng FG luôn đi qua điểm cố định khác. 2. Tìm quĩ tích của các điểm E và G khi C di chuyển trên nửa đờng tròn đã cho. 3. Tìm quĩ tích của các điểm D và F khi C di chuyển trên nửa đờng tròn đã cho. Hết Đáp án và thang điểm: 1 Bµi 1 ý Néi dung §iÓm 1. 8,0 1.1 (2,0 ®iÓm) Ph¬ng tr×nh ®êng th¼ng d 1 ®i qua A(2; 1) cã d¹ng: y = ax + b vµ 1 = 2a + b, suy ra b = 1 - 2a, do ®ã d 1 : y = ax - 2a+1. 0,50 Ph¬ng tr×nh cho hoµnh ®é giao ®iÓm cña d 1 vµ (P) lµ: 2 2 1 2 1 3 6 3 0 3 x ax a x ax a= − + ⇔ − + − = 0.50 §Ó d 1 lµ tiÕp tuyÕn cña (P) th× cÇn vµ ®ñ lµ: '∆ = 2 2 9 24 12 0 2 3 a a a a = ∆ = − + = ⇔ = 2,0 VËy tõ A(2; 1) cã hai tiÕp tuyÕn ®Õn (P) lµ: 1 2 2 1 : 2 3; : 3 3 d y x d y x= − = − 0,50 1.2 (4,0 ®iÓm) Ph¬ng tr×nh ®êng th¼ng d ®i qua A(2; 1) cã hÖ sè gãc m lµ: 1 2y mx m= + − 0,50 Ph¬ng tr×nh cho hoµnh ®é giao ®iÓm cña d vµ (P) lµ: 2 2 1 2 1 3 6 3 0 (2) 3 x mx m x mx m= − + ⇔ − + − = 0,50 §Ó d c¾t (P) t¹i 2 ®iÓm ph©n biÖt th× cÇn vµ ®ñ lµ: 2 2 8 4 9 24 12 0 9 0 3 3 m m m m ∆ = − + > ⇔ − + > ÷ 2 4 4 4 2 0 3 9 3 3 m m ⇔ − − > ⇔ − > ÷ 4 3 4 2 2 3 3 (*) 3 4 2 3 4 2 3 3 m m m m m m ≥ − > < ⇔ ⇔ > < − > 1,5 2 Với điều kiện (*), d cắt (P) tại 2 điểm M và N có hoành độ là x 1 và x 2 là 2 nghiệm của phơng trình (2), nên toạ độ trung điểm I của MN là: 1 2 2 2 2 2 2 ; 2 1; 3 3 3 3 3 3 2 2 2 4 1 2 1 3 3 x x x m x x x x m x I y mx m y x x = < > < > + ữ = = = + = + 1,0 Vậy khi m thay đổi, quĩ tích của I là phần của parabol 2 2 4 1 3 3 y x x= + , giới hạn bởi 1; 3x x< > . 0,50 1.3 (2,0 điểm) Gọi 0 0 0 ( ; )M x y là điểm từ đó có thể vẽ 2 tiếp tuyến vuông góc đến (P). Ph- ơng trình đờng thẳng d' qua M 0 và có hệ số góc k là: y kx b= + , đờng thẳng này đi qua M 0 nên 0 0 0 0 y kx b b y kx= + = , suy ra pt của d': 0 0 y kx kx y= + . 0,50 Phơng trình cho hoành độ giao điểm của d và (P) là: 2 2 0 0 0 0 1 3 3 3 0 3 x kx kx y x kx kx y= + + = (**) 0,50 Để từ M 0 có thể kẻ 2 tiếp tuyến vuông góc tới (P) thì phơng trình: 2 0 0 9 12 12 0k kx y = + = có 2 nghiệm phân biệt 1 2 ,k k và 1 2 1k k = 0 0 12 3 1 9 4 y y = = 0,50 Vậy quĩ tích các điểm M 0 từ đó có thể vẽ đợc 2 tiếp tuyến vuông góc của (P) là đờng thẳng 3 4 y = 0,50 2. (4,0 điểm) ( ) 2 2 2 2 19 3 19 3 19 7 7 7 S x y x y xy S P x y xy P xy x y xy S P x y xy = + + = = + = ữ = + + = + = + + = (1) 1,0 Giải hệ (1) ta đợc: ( 1; 6), ( 2; 5)S P S P= = = = 1,0 Giải các hệ phơng trình tích, tổng: 1 6 x y xy + = = và 2 5 x y xy + = = ta có các nghiệm của hệ phơng trình đã cho là: 3 2 1 6 1 6 ; ; ; 2 3 1 6 1 6 x x x x y y y y = = = = + = = = + = 2,0 3 3. 8,0 3.1 Gọi K là giao điểm của Ax và GF, I là giao điểm của By và ED. Ta có: ã ã 0 90BEI BCA= = ã ã EBI CBA= (góc có các cạnh tơng ứng vuông góc) BE BC = , Do đó: BEI BCA BI BA = = mà By cố định, suy ra điểm I cố định. + Tơng tự, K ccố định. + Vậy khi C di chuyển trên nửa đờng tròn (O) thì dờng thẳng ED đi qua điểm I cố định và đờng thẳng GF đi qua điểm K cố định. 3,0 3.2 Suy ra quĩ tích của I là nửa đờng tròn đờng kính BI (bên phải By, ,C A E I C B E B ); quĩ tích của K là nửa đờng tròn đờng kính AK(bên trái Ax, ,C A G A C B G K ). 2,0 3.3 Xét 2 tam giác BEI và BDK, ta có: 1 2 BE BI BD BK = = ã ã ã ã ã ã 0 45EBI IBD KBD IBD EBI KBD + = + = = Do đó: ã ã 0 90 BEI BDK BDK BEI = = : + Vậy: Quĩ tích của D là nửa đờng tròn đờng kính BK. + Tơng tự, quĩ tích của F là nửa đờng tròn đờng kính AI. 3,0 Đề 2 4 Bài 1: (7 điểm) 1. Giải phơng trình: 4 4 1 2 9 6 2x x x x+ + + = 2. Chứng minh rằng nếu a, b, c là các số không âm và b là số trung bình cộng của a và c thì ta có: 1 1 2 a b b c c a + = + + + Bài 2: (6 điểm) 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của 2 2 3 5 1 x x y x + + = + . 2. Tìm nghiệm nguyên của phơng trình: 2 2 2 3 2 4 3 0x y xy x y+ + + = Bài 3: (7 điểm) Cho đờng tròn tâm O, bán kính R, hai đờng kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung AD. Nối EC cắt OA tại M, nối EB cắt OD tại N. 1. Chứng minh rằng tích OM ON AM DN ì là một hằng số. Suy ra giá trị nhỏ nhất của tổng OM ON AM DN + , khi đó cho biết vị trí của điểm E ? 2. Gọi GH là dây cung cố định của đờng tròn tâm O bán kính R đã cho và GH không phải là đờng kính. K là điểm chuyển động trên cung lớn GH. Xác định vị trí của K để chu vi của tam giác GHK lớn nhất. Hết Đáp án và thang điểm: 5 Bài ý Nội dung Điểm 1. 7,0 1.1 (2,0 điểm) 4 4 1 2 9 6 2x x x x+ + + = ( ) ( ) 2 2 4 4 1 3 2x x + = ( ) 4 4 4 1 3 2 (1) 1 3 2 0; 0 (2)x x y y y x x + = + = = (1) 1,0 0 1: 1 0, 3 0y y y < , nên (2) 1 3 2 1y y y + = = (thoả ĐK) 1x = là một nghiệm của phơng trình (1) 1 3: 1 0, 3 0y y y< > , nên pt (2) 1 3 2 0 0y y y + = = do đó pt (2) có vô số nghiệm y ( 1 3y< ), suy ra pt (1) có vô số nghiệm x ( 1 81x< ). 1,0 3: 1 0, 3 0y y y> > > , nên pt (2) 1 3 2 3y y y + = = , pt vô nghiệm. Vậy tập nghiệm của pt (1) là: [ ] 1; 81S = 1,0 1.2 (3,0 điểm) 1 1 2 1 1 1 1 (*) a b b c c a a b c a c a b c + = + + + = + + + + 0,50 Ta có: ( ) ( ) ( ) ( ) ( ) 1 1 c b A a b c a a b c a c b a b c a b c = = + + + + = + + + 0,50 Theo giả thiết: 2 2 a c b a c b b a c b + = + = = , nên: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) b a b a b a A a b b c c a a b b c c a + = = + + + + + + 1,0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 b a b c c a A c a b c b c c a b c c a + + = = = + + + + + + Đẳng thức (*) đợc nghiệm đúng. 1,0 6 2. 6,0 2.1 (3,0 điểm) 2 2 3 5 1 x x y x + + = + (xác định với mọi x R ) ( ) 2 1 3 5 0 (**)y x x y + = 0,5 1:y = pt (**) có nghiệm 4 3 x = 1:y để pt (**) có nghiệm thì: 2 9 4( 1)( 5) 4 24 11 0y y y y = = + 1,0 ( ) ( ) 2 25 5 5 5 1 11 3 0 3 3 1 4 2 2 2 2 2 y y y y y 1,0 Vậy tập giá trị của y là 1 11 ; 2 2 , do đó 11 1 ; 2 2 Max y Min y= = 0,5 2.2 (3,0 điểm) ( ) 2 2 2 2 2 3 2 4 3 0 3 2 2 4 3 0x y xy x y x y x y y+ + + = + + + = (***) 0,5 Để pt (***) có nghiệm nguyên theo x, thì: ( ) ( ) 2 2 2 3 2 4 2 4 3 4 8y y y y y = + = + là số chính phơng. ( ) ( ) 2 2 2 2 4 8 2 12y y k k y k + = + =Z ( 2 )( 2 ) 12 ( )y k y k a + + + = 1,0 Ta có: Tổng ( ) 2 ( 2 ) 2( 2)y k y k k+ + + + = + là số chẵn, nên ( ) 2 ; ( 2 )y k y k+ + + cùng chẵn hoặc cùng lẻ. Mà 12 chỉ có thể bằng tích 1.12 hoặc 2.6 hoặc 3.4, nên chỉ có các hệ phơng trình sau: 2 2 2 6 2 6 2 2 ; ; ; ; 2 6 2 2 2 2 2 6 y k y k y k y k y k y k y k y k + = + = + = + = + + = + + = + + = + + = 0,5 Giải các hệ pt trên ta có các nghiệm nguyên của pt (a): ( ) ( ) ( ) ( ) 2; 2 , 2; 2 , 6; 2 , 6; 2y k y k y k y k= = = = = = = = 0,5 Thay các giá trị 2; 6y y= = vào pt (***) và giải pt theo x có các nghiệm nguyên (x; y) là: ( 1; 2), ( 3; 2);( 11; 6),( 9; 6)x y x y x y x y= = = = = = = = 0,5 3. 7,0 (4 đ) 3.1 Ta có: COM CED : vì: à à 0 90O E= = ; à C chung. Suy ra: . (1) OM CO ED CO OM ED CE CE = = Ta có: AMC EAC : vì: à C chung , à à 0 45A E= = . Suy ra: . (2) AM AC EA AC AM EA EC CE = = Từ (1) và (2): . (3) . 2 OM OC ED ED AM AC EA EA = = 1,0 7 ONB EAB : à à à ( ) 0 90 ;O E B chung= = . (4) ON OB OB EA ON EA EB EB = = à à à 0 . ( , 45 ) (5) DN DB DB ED DNB EDB B chung D E DN ED EB EB = = = =: Từ (4) và (5): . (6) . 2 ON OB EA EA DN DB ED ED = = . Từ (3) và (6): 1 2 OM ON AM DN ì = 1,0 Đặt , OM ON x y AM DN = = . Ta có: x, y không âm và: ( ) 2 1 2 0 2 2 2 2 x y x y xy x y xy = + + = = Dấu "=" xẩy ra khi: 1 1 2 2 x y x y xy = = = = 1,0 Vậy: Tổng min 1 2 2 2 OM ON OM ED khi EA ED AM DN AM EA + = = = = ữ E là trung điểm của dây cung ằ AD . 1,0 3.2 (3,0 điểm) GKH có cạnh GH cố định, nên chu vi của nó lớn nhất khi tổng KG KH + lớn nhất. Trên tia đối của tia KG lấy điểm N sao cho KN = KH. Khi đó, HKN cân tại K. Suy ra ã ã 1 2 GNH GKH= và KG KH KG KN GN + = + = mà ã ẳ 1 2 GKH GH= (góc nội tiếp chắn cung nhỏ ẳ GH cố định), do đó ã GNH không đổi. Vậy N chạy trên cung tròn (O') tập hợp các điểm nhìn đoạn GH dới góc ã 1 4 GOH = không đổi. 1,5 GN là dây cung của cung tròn (O') nên GN lớn nhất khi GN là đờng kính của cung tròn, suy ra GHK vuông tại H, do đó ã ã KGH KHG= (vì lần lợt phụ với hai góc bằng nhau). Khi đó, K là trung điểm của cung lớn ẳ GH . Vậy: Chu vi của GKH lớn nhất khi K là trung điểm của cung lớn ẳ GH . 1,5 8 Đề 3 Bài 1: (8 điểm) Cho phơng trình 2 2 2 2 2 0 (1).x mx m + = . 4. Tìm các giá trị của m để phơng trình (1) có hai nghiệm dơng phân biệt. 5. Tìm các giá trị của m để phơng trình (1) có hai nghiệm phân biệt 1 x và 2 x thoả mãn hệ thức 3 3 1 2 5 2 x x+ = . 6. Giả sử phơng trình (1) có hai nghiệm không âm. Tìm giá trị của m để nghiệm d- ơng của phơng trình đạt giá trị lớn nhất. Bài 2: (4điểm) Giải phơng trình: 2 2 4 3 4x x x x + = (2) Bài 3: (8 điểm) Cho tam giác ABC có ã 0 60 ; ;ABC BC a AB c= = = ( ,a c là hai độ dài cho trớc), Hình chữ nhật MNPQ có đỉnh M trên cạnh AB, N trên cạnh AC, P và Q ở trên cạnh BC đợc gọi là hình chữ nhật nội tiếp trong tam giác ABC. 1. Tìm vị trí của M trên cạnh AB để hình chữ nhật MNPQ có diện tích lớn nhất. Tính diện tích lớn nhất đó. 2. Dựng hình vuông EFGH nội tiếp trong tam giác ABC bằng thớc kẻ và com-pa. Tính diện tích của hình vuông đó. 9 Đáp án và thang điểm: Bài 1 ý Nội dung Điểm 1. 8,0 1.1 (2,0 điểm) Để phơng trình (1) có hai nghiệm dơng phân biệt, cần và đủ là: 2 2 ' 4 0 2 0 2 0 m m P S m = > = > = > 0.5 2 2 2 2 0 m m m m < > < < > 1.5 1.2 (3,0 điểm) Phơng trình có 2 nghiệm phân biệt 2 ' 4 0 2 2m m = > < < (*) 0,50 ( ) ( ) 2 3 3 1 2 1 2 1 2 1 2 5 5 3 2 2 x x x x x x x x + = + + = 0,50 2 2 3 3( 2) 5 6 5 0 2 2 m m m m m = + = 0,5 ( ) ( ) 2 1 2,3 1 21 1 5 0 1; 2 m m m m m + = = = m 0,5 Ta có: 2 1 21 3 21 1 21 2 0 2 2 2 2 x + = > = < 3 1 21 0 2 2 x + = > > và 3 3 5 21 2 0 2 2 x x = > < 0,5 Vậy: Có 2 giá trị của m thoả điều kiện bài toán: 1 21 1; 2 m m + = = 0,5 1.3 (3,0 điểm) Phơng trình có hai nghiệm không âm khi và chỉ khi: 2 2 ' 4 0 2 0 2 2 (**) 2 0 m m P m S m = = = > 0,50 10 [...]... ~ AEF 4c) Chng minh tng t ta c BDF~BAC, EDC~BAC, suy ra ã ã BDF~DEC BDF = CDE ã ã ã ã BDF = CDE 900 BDF = 900 CDE 4d) Ta cú ã ã ã AHB BDF = ã AHC CDE ã ADF = ã ADE Suy ra DH l tia phõn giỏc gúc EDF Chng minh tng t ta cú FH l tia phõn giỏc gúc EFD T õy suy ra H l giao im ba ng phõn giỏc tam giỏc DEF Vy H cỏc u ba cnh ca tam giỏc DEF Bi 5) Ta cú x3 + y3 + z3 3xyz = (x + y)3 + z3 3xyz 3xy(x... trung im M ca BC b) ABC ~ AEF C c) BDF = DE d) H cỏch u cỏc cnh ca tam giỏc DEF Bi 5 (1) Cho ba s thc x, y v z sao cho x + y + z = 1 Chng minh rng Bi 6 (1) Gii bt phng trỡnh 2007 < 2008 x HT 24 HNG DN CHM Gi ý ỏp ỏn Bi 1a) 4x2-49-12xy+9y2=(4x2-12xy+9y2)-49 =(2x-3y)2-72=(2x-3y+7)(2x-37-7) Bi 1b) x2+7x +10 =x2+5x+2x +10 =x(x+5) +2(x+5) =(x+5)(x+2) Bi 2a) x2-7x +10= (x-5)(x-2) iu kin A cú ngha l x 5v x 2... a2 ) 2 a 2 b 2 = 0 = 0 b 2 c 2 = 0 c 2 a 2 = 0 a 2 = b 2 = c 2 | a | = | b | = | c | 2 2.1 1,0 6,0 (4,0 điểm) Theo giả thi t diện tích của hình vuông có dạng S = abbb = k 2 ( k > 0, k Z) 0,5 100 0 k 9999 33 k 99 , nên k chỉ gồm 2 chữ số: k = xy = 10 x + y k 2 = 100 x 2 + 20 xy + y 2 ( 3 x 9;0 y 9 ) 1,0 2 Nếu y lẻ: y = 1;3;5;7;9 y = 1;9; 25; 49;81 b = 1;5;9 Khi đó 2xy có chữ số tận... Qmin=2006 khi ù ớ ớ ù y + 1= 0 ù y =- 1 ù ù ợ ợ Bi 4 C M A I F E a) Ta cú: OI = OJ ị DF = DK ã ã ị DH // GK ị HDE = GME O J B ã ã ã ã D ị DHEF m GME = GFE ị HDE = GFE K ni tip c H ã ã b) T cõu a suy ra DEH = DFH G ã ã m DFH = OCH ị OHEC ni tip c ã ã ị OEC = OHC = 900 Vy CE l tip tuyn ca (O) Đề 10 Bi 1: (2 im) Rỳt gn biu thc 29 2 x2 + y 2 x ữ x2 + y 2 y ữ + x2 + y 2 vi x > 0, y > 0 Bi 2: (4 im)... Trng hp c bit : G E D Thỡ chng minh trờn vn ỳng Cõu b (1,5) 0,25 Hai tam giỏc ABC v ADE cú chung trung tuyn AG nờn cú chung trng tõm 0,5 33 Cõu c (1) M tam giỏc ADE cú trung tuyn OE c nh , Nờn im c nh K m trung tuyn CM ca ABC i qua chớnh l trng tõm ca ADE 3 AK nờn H trựng 2 vi G ( l trung im chung ca hai on thng DE v BC ) M OGE vuụng ti E ( chng minh trờn) , O,E c nh (theo gt) ) Vy khi A di ng trờn... (1) 1 1 0 26 Gi ý ỏp ỏn im Hoc biu din trờn trc s : Trong tng phn, tng cõu, nu thớ sinh lm cỏch khỏc nhng vn cho kt qu ỳng, hp logic thỡ vn cho im ti a ca phn, cõu tng ng HT De 8 Bi 1: a) Gii phng trỡnh: x 4 - x 3 + x 2 - 11x + 10 = 0 b) Tỡm x, y tho món: x - 2 x - 1 = - y + 4 y - 4 27 Bi 2 Rỳt gn A = 3- 3 2- 3+ 2 2 + 3+ 3 2+ 3 - 2 2 Bi 3 Tỡm GTNN (nu cú) ca cỏc biu thc sau: P = 4 x 2 + 12 x + 9... 3600; 4900; 6400; 8100 không thoả điều kiện bài toán Với y = 2: k 2 = 100 x 2 + 40 x + 4 Khi đó x chỉ có thể là 6 thì chữ số hàng chục của k2 mới là 4, suy ra k 2 = 3600 + 244 = 3844 abbb Với y = 4; 6: y 2 = 16;36 , khi đó 20xy có chữ số hàng chục là số chẵn, nên 0,5 chữ số hàng chục của k2 phải là số lẻ, do đó không thể bằng 4 hoặc 6, 2 nghĩa là k abbb Với y = 8: y2 = 64; k 2 = 100 x 2 + 160 x +... ABC cõn ti A AD = AB = 2R (khụng i) AD = AB = 2R (khụng i) v A c nh Do ú D chuyn ng trờn ng trũn (A; 2R) 0,5 0,5 0,5 0,5 0,5 23 De 7 Bi 1 (4) Phõn tớch cỏc a thc sau thnh nhõn t : a) 4x2 49 12xy + 9y2 b) x2 + 7x + 10 Bi 2 (4) Cho 1 x2 x 2 2x 4 A= + 2 x 2 x 7 x + 10 x 5 a) Rỳt gn A b) Tỡm x nguyờn A nguyờn Bi 3 (4) Gii phng trỡnh a) 2 x + 1 = 3x 2 b) x2 2 = (2x + 3)(x + 5) + 23 Bi 4 (6)... toán) Vậy: bài toán có một lời giải duy nhất: Hình vuông cần xác định có cạnh k = 38 và diện tích S = 1444 0,5 2 2.2 (2,0 điểm) Theo giả thi t, cha của A có thể là B hoặc C: + Nếu B là cha của A thì C không thể song sinh với A, vì nếu nh thế thì C là con của B, trái giả thi t, do đó C và B là song sinh và khác giới tính (gt), nên C là phái nữ Mặt khác, con gái của B không thể là C nên phải là A, do đó... tõm ng trũn ngoi tip ABC, v ng kớnh AG, HG ct BC ti K Chng minh OK BC (2 im) c Chng minh AOH cõn v tớnh bỏn kớnh ng trũn ngoi tip tam giỏc ABC theo a (2 im) d Tớnh din tớch tam giỏc ABC theo a (2 im) De 11 30 Cõu 1/ (1) Cho x = 3 3+ 9+ 125 27 3 3 + 9 + 125 Chng minh rng x l mt s 27 nguyờn Cõu 2/ (1,5) Cho x > 0 , y > 0 , t > 0 Chng minh rng : Nếu xy + 1 y = yt + 1 t = xt + 1 thì x= y= t hoặc x.y.t . 1)( 5) 4 24 11 0y y y y = = + 1,0 ( ) ( ) 2 25 5 5 5 1 11 3 0 3 3 1 4 2 2 2 2 2 y y y y y 1,0 Vậy tập giá trị của y là 1 11 ; 2 2 . điểm) Theo giả thi t diện tích của hình vuông có dạng ( ) 2 0,S abbb k k k= = > Z 0,5 2 100 0 9999 33 99k k , nên k chỉ gồm 2 chữ số: 10k xy x y= =