Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)Tính toán hệ dầm chịu uốn có xét đến biến dạng trượt ngang (Luận văn thạc sĩ)
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC DÂN LẬP HẢI PHÒNG - HÀ HỮU TRỌNG TÍNH TỐN HỆ DẦM CHỊU UỐN CĨ XÉT ĐẾN BIẾN DẠNG TRƯỢT NGANG Chuyên ngành: Kỹ thuật Xây dựng Cơng trình Dân dụng & Cơng nghiệp Mã số: 60.58.02.08 LUẬN VĂN THẠC SỸ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC GS.TSKH HÀ HUY CƯƠNG Hải Phòng, 2017 i LỜI CAM ĐOAN Tên là: Hà Hữu Trọng Sinh ngày: 12/11/1975 Nơi công tác: Thành phố Hạ Long Tôi xin cam đoan cơng trình nghiên cứu riêng Các số liệu, kết luận văn trung thực chưa công bố cơng trình khác Hải Phòng, ngày ., tháng 11, năm 2017 Tác giả luận văn Hà Hữu Trọng ii LỜI CẢM ƠN Tác giả luận văn xin trân trọng bày tỏ lòng biết ơn sâu sắc GS.TSKH Hà Huy Cương ý tưởng khoa học độc đáo, bảo sâu sắc phương pháp để phân tích nội lực, chuyển vị tốn dầm chịu uốn có xét đến biến dạng trượt ngang chia sẻ kiến thức học, toán học uyên bác Giáo sư Giáo sư tận tình giúp đỡ cho nhiều dẫn khoa học có giá trị thường xuyên động viên, tạo điều kiện thuận lợi, giúp đỡ tác giả suốt q trình học tập, nghiên cứu hồn thành luận văn Tác giả xin chân thành cảm ơn nhà khoa học, chuyên gia trường Đại học Dân lập Hải phòng tạo điều kiện giúp đỡ, quan tâm góp ý cho luận văn hoàn thiện Tác giả xin trân trọng cảm ơn cán bộ, giáo viên Khoa xây dựng, Phòng đào tạo Đại học Sau đại học - trường Đại học Dân lập Hải phòng, đồng nghiệp tạo điều kiện thuận lợi, giúp đỡ tác giả q trình nghiên cứu hồn thành luận văn Hải Phòng, ngày ., tháng 11, năm 2017 Tác giả luận văn Hà Hữu Trọng iii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN iii MỤC LỤC iv MỞ ĐẦU Đối tượng, phương pháp phạm vi nghiên cứu đề tài Mục đích nghiên cứu đề tài Nhiệm vụ nghiên cứu đề tài Ý nghĩa khoa học thực tiễn đề tài nghiên cứu CHƯƠNG 1.CÁC PHƯƠNG PHÁP XÂY DỰNG VÀ CÁC PHƯƠNG PHÁP GIẢIBÀI TOÁN CƠ HỌC KẾT CẤU 1.1 Phương pháp xây dựng toán học 1.1.1 Phương pháp xây dựng phương trình vi phân cân phân tố 1.1.2 Phương pháp lượng 1.1.3 Nguyên lý công ảo 11 1.1.4 Ph-ơng trình Lagrange: 12 1.2 Bài toán học kết cấu phương pháp giải 11 1.2.1 Phương pháp lực 16 1.2.2 Phương pháp chuyển vị 16 1.2.3 Phương pháp hỗn hợp phương pháp liên hợp 16 1.2.4 Phương pháp phần tử hữu hạn 17 1.2.5 Phương pháp sai phân hữu hạn 17 12.6 Phương pháp hỗn hợp sai phân – biến phân 18 CHƯƠNG 2.PHƯƠNG PHÁP NGUYÊN LÝ CỰC TRỊ GAUSS 19 2.1 Nguyên lí cực trị Gauss 19 2.2 Phương pháp nguyên lý cực trị Gauss 21 2.3 Cơ hệ môi trường liên tục: ứng suất biến dạng 29 iv 2.4 Cơ học kết cấu 36 2.5.Phương pháp nguyên lý cực trị Gauss phương trình cân hệ 40 2.5.1.Phương trình cân tĩnh môi trường đàn hồi, đồng nhất, đẳng hướng 41 2.5.2 Phương trình vi phân mặt võng chịu uốn 43 CHƯƠNG 3.BÀI TỐN DẦM CHỊU UỐN CĨ XÉT ĐẾNBIẾN DẠNG TRƯỢT NGANG 46 3.1 Lý thuyết dầm có xét biến dạng trượt 46 3.2 Bài tốn dầm có xét biến dạng trượt 52 3.3 Các ví dụ tính tốn 54 3.3.1 Tính tốn dầm nhịp 54 3.3.2 Tính tốn dầm liên tục 64 KẾT LUẬN 80 Danh mục tài liệu tham khảo 82 v MỞ ĐẦU Những năm gần đây, kinh tế phát triển, dân số tăng quỹ đất ngày thu hẹp, đặc biệt thành phố lớn Để đáp ứng nhu cầu sử dụng đa dạng người dân, giải pháp kết cấu cho nhà cao tầng kỹ sư thiết kế sử dụng có giải pháp kết cấu nhà cao tầng kết hợp theo phương đứng, tầng làm siêu thị, nhà hàng… với diện tích sàn lớn, tầng nhà ở, khách sạn văn phòng cho th có diện tích nhỏ sử dụng tương đối phổ biến Trong công trình người ta thường dùng kết cấu dầm chuyển, sàn chuyển dàn chuyển làm nhiệm vụ tiếp nhận tải trọng từ tầng bên truyền xuống cột xuống móng Kết cấu dầm chuyển có đặc điểm chiều cao tiết diện lớn so với chiều dài chúng (dầm cao), việc nghiên cứu nội lực chuyển vị toán học kết cấu nói chung tốn học kết cấu có dạng cột ngắn dầm cao nói riêng có tầm quan trọng đặc biệt, đòi hỏi phải nghiên cứu đầy đủ mặt lý thuyết thực nghiệm Cho đến nay, đường lối xây dựng tốn kết cấu chịu uốn thường khơng kể đến ảnh hưởng biến dạng trượt ngang lực cắt gây có kể đến cách đặt vấn đề cách chọn ẩn chưa thật xác nên gặp nhiều khó khăn mà khơng tìm kết tốn cách xác đầy đủ Phương pháp nguyên lý cực trị Gauss GS.TSKH Hà Huy Cương đề xuất phương pháp cho phép áp dụng nguyên lý cực trị Gauss - vốn phát biểu cho hệ chất điểm -để xây dựng toán học kết cấu dạng tổng qt Từ tìm đượckết xác tốn dù tốn tĩnh hay tốn động, tốn tuyến tính hay toán phi tuyến Đối tượng, phương pháp phạm vi nghiên cứu đề tài Trong luận văn này, tác giả sử dụng phương pháp nguyên lý cực trị Gauss nói để xây dựng giải tốn dầm chịu uốn có xét đến biến dạng trượt ngang lực cắt gây ra, chịu tác dụng tải trọng tĩnh Do cần thiết việc nghiên cứu nội lực chuyển vị kết cấu chịu uốn có xét đến biến dạng trượt, mục đích nhiệm vụ nghiên cứu đề tài là: Mục đích nghiên cứu đề tài “Nghiên cứu nội lực chuyển vị hệ dầm có xét đến biến dạng trượt ngang” Nhiệm vụ nghiên cứu đề tài Tìm hiểu giới thiệu phương pháp xây dựng phương pháp giải toán học kết cấu Trình bày Phương pháp Nguyên lý cực trị Gauss GS TSKH Hà Huy Cương đề xuất, với ứng dụng học môi trường liên tục nói chung học vật rắn biến dạng nói riêng Giới thiệu lý thuyết xét biến dạng trượt toán kết cấu dầm chịu uốn với việc dùng hai hàm chưa biết hàm độ võng y hàm lực cắt Q Xây dựng giải tốn dầm có xét đến biến dạng trượt, chịu tác dụng tải trọng tĩnh Lập chương trình máy tính điện tử cho toán nêu Ý nghĩa khoa học thực tiễn đề tài nghiên cứu Việc xác định nội lực chuyển vị kết cấu chịu uốn nhiều tác giả nước quan tâm nghiên cứu, kể tốn có xét đến lực cắt ngang Q Trong nghiên cứu tác giả sử dụng lý thuyết dầm truyền thống, lý thuyết dầm Euler – Bernoulli (Lý thuyết không đầy đủ dầm, bỏ qua thành phần biến dạng trượt ngangdo lực cắt Q gây ra) để xây dựng toán.Khi xây dựng cơng thức tính tốn nội lực chuyển vị, giả thiết Bernoulli – giả thiết tiết diện phẳng (tiết diện dầm trước sau biến dạng phẳng vng góc với trục trung hòa) chấp nhận, tức góc trượt lực cắt Q gây bị bỏ qua, quan niệm tính tốn làm ảnh hưởng khơng nhỏ tới độ xác kết toán Một số tác X.P Timoshenko, O.C Zienkiewicz, J.K Bathe, W.T Thomson đề cập tới ảnh hưởng biến dạng trượt phân tích kết cấu chịu uốn, vấn đề thường bỏ ngỏ không giải cách triệt để kể lời giải số Khắc phục tồn nêu tác giả khác ý nghĩa khoa học thực tiễn đề tài, ý nghĩa khoa học nằm chỗ đề tài xây dựng lý thuyết dầm có xét đến ảnh hưởng biến dạng trượt ngang lực cắt Q gây (Lý thuyết đầy đủ hay lý thuyết tổng quát dầm) nghiên cứu nội lực chuyển vị dầm khung chịu tác dụng tải trọng tĩnh, tìm kết xác tốn đồng thời đưa kết luận “ Lý thuyết dầm Euler – Bernoulli thường dùng trường hợp riêng Lý thuyết dầm này” CHƯƠNG CÁC PHƯƠNG PHÁP XÂY DỰNG VÀ CÁC PHƯƠNG PHÁP GIẢIBÀI TỐN CƠ HỌC KẾT CẤU Trong chương trình bày phương pháp truyền thống để xây dựng tốn học nói chung; giới thiệu tốn học kết cấu (bài toán tĩnh) phương pháp giải thường dùng 1.1 Phương pháp xây dựng toán học Bốn phương pháp chung để xây dựng tốn học kết cấu trình bày Dùng lý thuyết dầm chịu uốn để minh họa 1.1.1 Phương pháp xây dựng phương trình vi phân cân phân tố Phương trình vi phân cân xây dựng trực tiếp từ việc xét điều kiện cân lực phân tố tách khỏi kết cấu.Trong sức bền vật liệu nghiên cứu dầm chịu uốn ngang sử dụng giả thiết sau: - Trục dầm khơng bị biến dạng nên khơng có ứng suất - Mặt cắt thẳng góc với trục dầm sau biến dạng phẳng thẳng góc với trục dầm (giả thiết Euler–Bernoulli) - Không xét lực nén thớ theo chiều cao dầm Với giả thiết thứ ba có ứng suất pháp σx ứng suất tiếp σxz, σzx tác dụng lên phân tố dầm (hình 1.3), ứng suất pháp σz không Hai giả thiết thứ ba thứ dẫn đến trục dầm có chuyển vị thẳng đứng y(x) gọi đường độ võng hay đường đàn hồi dầm Giả thiết thứ xem chiều dài trục dầm khơng thay đổi bị võng đòi hỏi độ võng dầm nhỏ so với chiều cao dầm, ymax / h ≤ 1/5 Với giả thiết thứ hai biến dạng trượt ứng suất tiếp gây khơng xét tính độ võng dầm trình bày Gỉả thiết tỉ lệ h/l ≤ 1/5 Chuyển vị ngang u điểm nằm độ cao z so với trục dầm dy dx TTH Z h/2 u -h/2 𝑢 = −𝑧 Biến dạng ứng suất xác định Hình 1.2 Phân tố dầm sau d2y d2y ; x z xx Ez dx dx Momen tác dụng lên trục dầm: M h/2 h / hay Ebz d2y Ebh3 d y dz dx 12 dx M EJ (1.7) Ebh3 d2y đó: EJ , dx 12 EJ gọi độ cứng uốn dầm; độ cong đường đàn hồi gọi biến dạng uốn;b chiều rộng dầm Để đơn giản trình bày, dùng trường hợp dầm có tiết diên chữ nhật Cách tính nội lực momen không xét đến biến dạng trượt ứng suất tiếp gây Tổng ứng suất tiếp σzx mặt cắt cho ta lực cắt Q tác dụng lên trục dầm: Q h/2 zx dz h / Biểu thức ứng suất tiếp σzx tích phân trình bày sau Nhờ giả thiết nêu trên, thay cho trạng thái ứng suất dầm, ta cần nghiên cứu phương trình cân nội lực M Q tác dụng lên trục dầm Xét phân tố dx trục dầm chịu tác dụng lực M,Q ngoại lực phân bố q, hình 1.3 Chiều dương M, Q q hình vẽ tương ứng với chiều dương độ võng hướng xuống ... mặt võng chịu uốn 43 CHƯƠNG 3.BÀI TOÁN DẦM CHỊU UỐN CÓ XÉT ĐẾNBIẾN DẠNG TRƯỢT NGANG 46 3.1 Lý thuyết dầm có xét biến dạng trượt 46 3.2 Bài tốn dầm có xét biến dạng trượt ... vị kết cấu chịu uốn có xét đến biến dạng trượt, mục đích nhiệm vụ nghiên cứu đề tài là: Mục đích nghiên cứu đề tài “Nghiên cứu nội lực chuyển vị hệ dầm có xét đến biến dạng trượt ngang Nhiệm... Giới thiệu lý thuyết xét biến dạng trượt toán kết cấu dầm chịu uốn với việc dùng hai hàm chưa biết hàm độ võng y hàm lực cắt Q Xây dựng giải tốn dầm có xét đến biến dạng trượt, chịu tác dụng tải