Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 126 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
126
Dung lượng
644,61 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI ——————————- NGUYỄN QUANG CHUNG NGHIÊNCỨURỦIROTÀICHÍNHTRONGTÁIBẢOHIỂM LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2018 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI ——————————- NGUYỄN QUANG CHUNG NGHIÊNCỨURỦIROTÀICHÍNHTRONGTÁIBẢOHIỂM LUẬN ÁN TIẾN SĨ TOÁN HỌC Chun ngành: Lí thuyết Xác suất Thống kê Tốn học Mã ngành: 62460106 NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS BÙI KHỞI ĐÀM PGS TS TỐNG ĐÌNH QUỲ Hà Nội - 2018 MỤC LỤC MỤC LỤC i LỜI CAM ĐOAN LỜI CẢM ƠN MỘT SỐ KÝ HIỆU DÙNG TRONG LUẬN ÁN MỞ ĐẦU Chương KIẾN THỨC CHUẨN BỊ 1.1 11 Một số trình ngẫu nhiên ứng dụng lý thuyết rủiro 11 1.1.1 Quá trình Markov 13 1.1.2 Martingale với tham số rời rạc 15 1.2 Một số mơ hình rủiro cổ điển 19 1.3 Táibảohiểm 21 1.3.1 Táibảohiểm quota share 22 1.3.2 Táibảohiểm stop\excess of loss 26 Chương XÁC SUẤT THIỆT HẠI LIÊN KẾT TRONG MƠ HÌNH RỦI 32 RO VỚI TÁIBẢOHIỂM 2.1 Tối ưu cho xác suất thiệt hại liên kết 33 2.2 Cơng thức tính xác cho xác suất thiệt hại liên kết mơ hình rủiro với táibảohiểm quota share 36 2.3 2.2.1 Mô hình rủiro khơng có lãi suất 37 2.2.2 Mơ hình rủiro có lãi suất 41 Cơng thức tính xác cho xác suất thiệt hại liên kết mô hình rủiro với táibảohiểm excess of loss 46 2.3.1 Mơ hình rủiro khơng có lãi suất 46 2.3.2 Mơ hình rủiro có lãi suất 51 i 2.4 Các ví dụ số 56 Chương ƯỚC LƯỢNG XÁC SUẤT THIỆT HẠI TRONG MƠ HÌNH 59 TÁIBẢOHIỂM BẰNG PHƯƠNG PHÁP MARTINGALE 3.1 3.2 3.3 Mơ hình rủiro khơng có lãi suất 60 3.1.1 Trường hợp với táibảohiểm quota share 60 3.1.2 Trường hợp với táibảohiểm quota share −(α, β) 67 3.1.3 Trường hợp với táibảohiểm excess of loss 70 Mơ hình rủiro có lãi suất 78 3.2.1 Trường hợp với táibảohiểm quota share 78 3.2.2 Trường hợp với táibảohiểm excess of loss 86 Các ví dụ số 92 Chương ƯỚC LƯỢNG XÁC SUẤT THIỆT HẠI TRONG MÔ HÌNH TÁIBẢOHIỂM BẰNG PHƯƠNG PHÁP TRUY HỒI 100 4.1 Trường hợp khơng có lãi suất 100 4.2 Trường hợp có lãi suất 106 KẾT LUẬN 115 TÀI LIỆU THAM KHẢO 117 DANH MỤC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 122 ii LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiêncứu tơi, hướng dẫn PGS.TS Bùi Khởi Đàm PGS TS Tống Đình Quỳ Tất kết quả, số liệu luận án hoàn toàn trung thực chưa công bố công trình Hà Nội, Xác nhận tập thể hướng dẫn Tác giả luận án Nguyễn Quang Chung LỜI CẢM ƠN Đầu tiên, xin bày tỏ lòng biết ơn sâu sắc tới tập thể cán hướng dẫn khoa học: PSG TS Bùi Khởi Đàm PSG TS Tống Đình Qùy Đặc biệt PGS TS Bùi Khởi Đàm, người giao đề tài, tận tình bảo, hướng dẫn tơi suốt q trình nghiêncứu hoàn thành luận án Trong thời gian làm NCS Trường Đại học Bách khoa Hà Nội, tơi nhận nhiều tình cảm giúp đỡ từ thầy Bộ mơn Tốn ứng dụng, thầy Viện Tốn ứng dụng Tin học Tôi xin chân thành bày tỏ lòng biết ơn sâu sắc đến thầy Tơi bày tỏ cảm ơn chân thành đến Ban Giám hiệu, Khoa Khoa học Trường Đại học Sư phạm- Kỹ thuật Hưng Yên tạo điều kiện cho học tập nghiêncứu Cuối cùng, xin bày tỏ lòng biết ơn đến gia đình tồn thể bạn bè ln khuyến khích, động viên để tơi vững bước đường nghiêncứu tốn học mà chọn Hà Nội, NCS Nguyễn Quang Chung MỘT SỐ KÝ HIỆU DÙNG TRONG LUẬN ÁN N Tập số tự nhiên, N = {0, 1, 2, } R Tập số thực ✶A Hàm tiêu tập hợp A x∧y min{x, y}với x, y ∈ R x∨y max{x, y}với x, y ∈ R (Ω, F, P) Ω không gian mẫu, F σ − đại số tập Ω, P độ đo xác suất trên(Ω, F) Z+ max{Z, 0} với Z biến ngẫu nhiên Z− min{Z, 0} với Z biến nhẫu nhiên MZ (r) α M ψn (u0 ) Hàm sinh moment biến ngẫu nhiên Z Tỷ lệ chia sẻ phần thu phí bảohiểm Mức trì Xác suất thiệt hại cơng ty bảohiểm chu kỳ n chưa có táibảohiểm ψ(u0 ) Xác suất thiệt hại công ty bảohiểm với thời gian vô hạn chưa có táibảohiểm ψn(1) (u0 , α) Xác suất thiệt hại công ty bảohiểm chu kỳ n có táibảohiểm quota share ψ (1) (u0 , α) Xác suất thiệt hại công ty bảohiểm với thời gian vơ hạn có táibảohiểm quota share ψn(2) (v0 , α) Xác suất thiệt hại công ty táibảohiểm chu kỳ n có táibảohiểm quota share ψ (2) (v0 , α) Xác suất thiệt hại công ty táibảohiểm với thời gian vơ hạn có táibảohiểm quota share ψn(1) (u0 , α, β) Xác suất thiệt hại công ty bảohiểm chu kỳ n có táibảohiểm quota share−(α, β) ψn(2) (v0 , α, β) Xác suất thiệt hại công ty táibảohiểm chu kỳ n có táibảohiểm quota share−(α, β) φ(1) n (u0 , α, M ) Xác suất thiệt hại công ty bảohiểm chu kỳ n có táibảohiểm excess of loss φ(1) (u0 , α, M ) Xác suất thiệt hại công ty bảohiểm với thời gian vơ hạn có táibảohiểm excess of loss φ(2) n (v0 , α, M ) Xác suất thiệt hại công ty táibảohiểm chu kỳ n có táibảohiểm excess of loss φ(2) (v0 , α, M ) Xác suất thiệt hại công ty táibảohiểm với thời gian vơ hạn có táibảohiểm excess of loss ψn(1) (u0 , α, is ) Xác suất thiệt hại công ty bảohiểm chu kỳ n có táibảohiểm quota share lãi suất ψ (1) (u0 , α, is ) Xác suất thiệt hại công ty bảohiểm với thời gian vô hạn có táibảohiểm quota share lãi suất ψn(2) (v0 , α, jt ) Xác suất thiệt hại công ty táibảohiểm chu kỳ n có táibảohiểm quota share lãi suất ψ (2) (v0 , α, jt ) Xác suất thiệt hại công ty táibảohiểm với thời gian vơ hạn có táibảohiểm quota share lãi suất φ(1) n (u0 , α, M, is ) Xác suất thiệt hại công ty bảohiểm chu kỳ n có táibảohiểm excess of loss lãi suất φ(1) (u0 , α, M, is ) Xác suất thiệt hại công ty bảohiểm với thời gian vơ hạn có táibảohiểm excess of loss lãi suất φ(2) n (v0 , α, M, jt ) Xác suất thiệt hại công ty táibảohiểm chu kỳ n có táibảohiểm excess of loss lãi suất φ(2) (v0 , α, M, jt ) Xác suất thiệt hại công ty táibảohiểm với thời gian vơ hạn có táibảohiểm excess of loss lãi suất ψn (u0 , v0 , α) Xác suất thiệt hại liên kết chu kỳ n có táibảohiểm quota share ψ(u0 , v0 , α) Xác suất thiệt hại liên kết với thời gian vơ hạn có táibảohiểm quota share ψn (u0 , v0 , α, M ) Xác suất thiệt hại liên kết chu kỳ n có táibảohiểm excess of loss ψ(u0 , v0 , α, M ) Xác suất thiệt hại liên kết với thời gian vô hạn có táibảohiểm excess of loss ψn (u0 , v0 , α, is , jt ) Xác suất thiệt hại liên kết chu kỳ n có táibảohiểm quota share lãi suất ψ(u0 , v0 , α, is , jt ) Xác suất thiệt hại liên kết với thời gian vơ hạn có táibảohiểm quota share lãi suất ψn (u0 , v0 , α, M, is , jt ) Xác suất thiệt hại liên kết chu kỳ n có táibảohiểm excess of loss lãi suất ψ(u0 , v0 , α, M, is , jt ) Xác suất thiệt hại liên kết với thời gian vơ hạn có táibảohiểm excess of loss lãi suất MỞ ĐẦU Tổng quan hướng nghiêncứu lý chọn đề tài Một nghiêncứu lý thuyết rủirobảohiểm luận án Filip Lundberg (1903) Đại học Uppsala (Thụy Điển) Sau đó, Harald Cramér phát triển ý tưởng Filip Lundberg mà ngày gọi mơ hình Cramér- Lundberg hay mơ hình rủiro cổ điển Trong mơ hình phí thu bảohiểm xét số phần chi trả bảohiểm dãy biến ngẫu nhiên độc lập phân phối Một số tác giả S Ross [32], H Yang [46], B K Đàm N H Hoàng [1], B K Dam N T T Hong [17] N T T Hong [21] xét mơ hình rủiro với phí bảohiểm thu chu kỳ biến ngẫu nhiên Sau số tác giả B Sundt J L Teugels ([38], [39]), H Yang [46], J Cai ([7], [8]), J Cai D C M Dickson [9], X Wei Y Hu [43], B K Dam P D Quang [18], N T T Hong [21] P D Quang ([30], [31]) đề cập tới mơ hình có lãi suất Với hai mơ hình rủiro này, tác giả ước lượng đưa biểu thức cho xác suất thiệt hại công ty bảohiểm Tuy nhiên kinh doanh bảo hiểm, công ty bảohiểm gặp thiệt hại yêu cầu bồi thường lớn Một chiến lược để giảm nguy thiệt hại trực tiếp cho công ty bảohiểm hình thức táibảohiểm Có thể coi K Borch [5] người nghiêncứutáibảohiểm Ở đó, tác giả phương án táibảohiểm khác táibảohiểm stop of loss làm cực tiểu phương sai cho phần chi trả bảohiểm công ty bảohiểmNghiêncứu mở hướng nghiêncứu xung quanh táibảohiểm P Kahn [24], S Vajda [41], J Ohlin [28], H R Waters [42], J Cai K Tan [10], J Cai, K S Tan, (1) I1 = ik ) dH(x)dF (y) (4.32) Nếu x ≥ α1 (u0 (1 + ik ) + αy) cơng ty bảohiểm xảy thiệt hại chu kỳ n = Tức là: (1) (1) P U1 ≤ | X1 = x, Y1 = y, I1 = ik = điều suy n+1 (1) (1) (Uk ≤ 0) | X1 = x, Y1 = y, I1 = ik = P (4.33) k=1 Nếu ≤ x < α1 (u0 (1 + ik ) + αy) cơng ty bảohiểm khơng thiệt hại chu kỳ n = Vì (1) (1) P U1 ≤ | X1 = x, Y1 = y, I0 = ik = 0, n+1 (1) (1) (Uk ≤ 0) | X1 = x, Y1 = y, I1 = ik P k=1 n+1 (1) = (1) (Uk ≤ 0) | X1 = x, Y1 = y, I1 = ik =P k=2 ψn(1) (u0 (1 + ik ) + α(y − x), α, ik ) (4.34) Thay (4.33) (4.34) vào (4.32), ta có N1 (1) ψn+1 (u0 , α, is ) (1) rsk = k=1 N1 (1) rsk + k=1 H α (u0 (1+ik )+αy) ∞ ∞ (u0 (1 + ik ) + αy) dF (y) α ψn(1) (u0 (1 + ik ) + α(y − x), α, ik )dH(x)dF (y) Đặc biệt, (1) (1) (1) ψ1 (u0 , α, is ) = P U1 ≤ | I0 = is 108 N1 (1) rsk = k=0 ∞ ∞ (1) P u0 (1 + ik ) + α(Y1 − X1 ) ≤ | X1 = x, Y1 = y, I1 = ik 0 dH(x)dF (y) N1 (1) rsk = k=0 α (u0 (1+ik )+αy) ∞ P u0 (1 + ik ) + α(Y1 − X1 ) ≤ | X1 = x, Y1 = y, 0 N1 (1) I1 = ik dH(x)dF (y) + ≤ | X1 = x, Y1 = N1 (1) rsk = k=0 ∞ H (1) rsk k=0 (1) y, I1 = ir ∞ ∞ α ((u0 (1+ik )+αy)) P u0 (1 + ik ) + α(Y1 − X1 ) dH(x)dF (y) (u0 (1 + ik ) + αy) dF (y) α Do đó, (4.28) (4.30) chứng minh Đối với công ty táibảohiểm ta xét hai trường hợp x ≥ (1 − α)y) x < (1−α) (v0 (1 + jk ) + (1 − α)y) (1−α) (v0 (1 + jk ) + lập luận ta chứng minh cho (4.29) (4.31) Phương trình (4.28) (4.29) gọi phương trình truy hồi cho (1) (2) ψn (u0 , α, is ) ψn (v0 , α, jt ) Định lý 4.2.2 Xét trình lợi nhuận (1.22) (1.23) thỏa mãn giả thiết Bổ đề 3.1.1 Khi đó, với α ∈ (0, 1), s = 0, 1, , N1 t = 0, 1, , N2 ψn(1) (u0 , α, is ) ≤ γE e−u0 R (1) (1) (α)(1+I1 ) (1) (4.35) (2) (4.36) | I0 = is ψn(2) (v0 , α, jt ) ≤ γE e−v0 R γ −1 = inf z≥0 ∞ R0 x dH(x) z e , eR0 z H(z) (2) (2) (α)(1+I1 ) | I0 = jt (0 < γ ≤ 1) n = 1, 2, Chứng minh Với α ∈ (0, 1), ta có γ −1 = inf z≥0 ∞ R0 x dH(x) z e eR0 z H(z) = inf 109 z≥0 ∞ αR(1) (α)x dH(x) z e eαR(1) (α)z H(z) −1 ∞ αR(1) (α)x dH(x) z e (1) eαR (α)z H(z) H(z) = ≤ γe−αR (1) ∞ (α)z eαR (1) e ∞ −αR(1) (α)z eαR (1) (α)x dH(x) z (α)x dH(x) (4.37) z ≤ γe−αR (1) (α)z E eαR (1) (α)X1 (4.38) Thay z α1 (u0 (1 + ik ) + αy) vào (4.38) sử dụng (4.28), ta có N1 (1) ψ1 (u0 , α, is ) (1) rsk ≤ k=0 ∞ γE eαR (1) e−R (α)X1 (1) (α)(u0 (1+ik )+αy) dF (y) N1 = γE e αR(1) (α)(X1 −Y1 ) = γE e−u0 R (1) (1) (α)(1+I1 ) e−u0 R k=0 (1) | I0 (1) (α)(1+ik ) (1) (1) P(I1 = ik | I0 = is ) = is (4.39) Với giả thiết quy nạp ψn(1) (u0 , α, is ) ≤ γE e−u0 R (1) (1) (α)(1+I1 ) (1) | I0 = is (4.40) Ta chứng minh (4.40) với n + Thật vậy, với ≤ x < α1 (u0 (1 + ik ) + αy), ta thay u0 u0 (1 + ik ) + α(y − x) is thay ik vào (4.40), ta có ψn(1) (u0 (1 + ik ) + α(y − x), α, ik ) ≤ γE e−(u0 (1+ik )+α(y−x))R ≤ γe−(u0 (1+ik )+α(y−x))R (1) (1) (α) (1) (α)(1+I1 ) (1) | I0 = ik (4.41) Từ (4.28), (4.41) z thay α1 (u0 (1 + ik ) + αy) vào (4.37), ta có N1 (1) ψn+1 (u0 , α, is ) (1) rsk ≤ k=0 N1 (1) rsk + k=0 ∞ ∞ γe−R (α)(u0 (1+ik )+α(y−x)) dH(x)dF (y) α (u0 (1+ik )+αy) α (u0 (1+ik )+αy) ∞ (1) 110 γe−R (1) (α)(u0 (1+ik )+α(y−x)) dH(x)dF (y) N1 (1) rsk = k=0 ∞ ∞ γe−R (1) (α)(u0 (1+ik )+α(y−x)) dH(x)dF (y) N1 =E e αR(1) (α)(X1 −Y1 ) γe−u0 R (1) (α)(1+ik ) (1) rsk k=0 = γE e−u0 R (1) (1) (α)(1+I1 ) (1) | I0 = is (4.42) Vì vậy, (4.35) chứng minh Tương tự, H(z) ≤ γe−(1−α)R Thay z 1−α (2) (α)z E e(1−α)R (2) (α)X1 (4.43) (v0 (1 + jk ) + (1 − α)y) vào (4.43) sử dụng (4.31), ta có (2) ψ1 (v0 , α, jt ) ≤ γE e−v0 R (2) (2) (α)(1+I1 ) (2) | I0 = jt (4.44) Bằng phương pháp quy nạp ta chứng minh ψn(2) (v0 , α, jt ) ≤ γE e−v0 R (2) (2) (α)(1+I1 ) (2) | I0 = jt với n = 1, 2, , Đặt L4 = ∈ R | < γe−u0 R0 (1+i∗ ) ; < γe−v0 R0 (1+j∗ ) ; ≥ γe−u0 R0 (1+i∗ )−v0 R0 (1+j∗ ) (4.45) i∗ = {i0 , i1 , , iN1 } j∗ = {j0 , j1 , , jN2 } (1) (2) Hệ 4.2.3 Nếu ∈ L4 tồn α để ψn (u0 , α, is ) ≤ ψn (v0 , α, jt ) ≤ với s = 0, 1, , N1 t = 0, 1, , N2 Đặc biệt, = γe−u0 R0 (1+i∗ )−v0 R0 (1+j∗ ) α = u0 (1+i∗ ) u0 (1+i∗ )+v0 (1+j∗ ) Chứng minh Do < γe−u0 R0 (1+i∗ ) suy Giả thiết ∈ L4 < γ < γe−u0 R0 (1+i∗ ) điều tương đương với −u0 R0 (1 + i∗ ) < ln γ 111 (4.46) Tương tự, điều kiện < γe−v0 R0 (1+j∗ ) cho ta 0