1. Trang chủ
  2. » Khoa Học Tự Nhiên

Nghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điện (Luận án tiến sĩ)

107 176 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 107
Dung lượng 29,4 MB

Nội dung

Nghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điệnNghiên cứu ổn định và tối ưu hệ thống phức hợp nhiều thành phần ứng dụng cho hệ thống điện

- 2017 T PGS TS Thái Quang Vinh 2017 chí NCS lý cho M CL C 10 11 13 Tính 13 M 13 15 15 17 17 18 18 20 26 28 29 29 31 35 39 45 45 46 - 47 55 58 60 60 61 62 66 68 75 - 77 77 79 79 80 - SMES 81 - 85 85 86 90 91 95 96 97 97 97 100 101 DANH M C HÌNH V Hình 2.1: N 30 Hình 2.2: 33 Hình 2.3 34 34 Hình 2.4 34 Hình 2.5 48 Hình 2.6 52 Hình 2.7 53 Hình 2.8 56 Hình 2.9 57 Hình 2.10 57 Hình 2.11 58 Hình 2.12 58 Hình 3.1 62 62 62 Hình 3.2 64 Hình 3.3 i 67 Hình 3.4 72 Hình 3.5 72 Hình 3.6 73 Hình 3.7: 74 Hình 3.8: 75 79 Hình 4.1 Hình 4.2: 80 Hình 4.3: 82 Hình 4.4: Mơ hình m 83 - Hình 4.5: 84 84 Hình 4.6 C 84 - 87 Hình 4.7 88 Hình 4.8 khác 92 92 - 92 Hình 4.9 Hai 93 Hình 4.10 93 Hình 4.11 94 Hình 4.12 94 Hình 4.13 95 DANH M C B NG [41] 68 71 u PD 89 95 10 0.025 0.025 A#1 A#2 A#3 A#4 A#5 A#5 0.02 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 101520 30 40 Time (sec) (a) ng h Hình 4.9 0 101520 30 40 Time (sec) (b) 50 i c a ph t 50 c s d ng cho mô ph ng 0.01 -0.01 A#5-PI A#5-FLC -0.02 -0.03 10 20 30 Time (sec) (a) 40 50 -3 x 10 A#1-PI A#4-PI A#1-FLC A#4-FLC -5 -10 -15 Hình 4.10 10 20 30 Time (sec) (b) 40 50 ng sai l ch t n s u n #1, #4 #5 ng h p mô ph ng th nh t 93 0.025 40 A#1 A#2 A#3 A#4 A#5 0.02 A#1 A#2 A#3 A#4 A#5 35 30 25 0.015 20 0.01 15 10 0.005 0 PI FLC Type of Controller (a) Hình 4.11 So sánh t tc u ch nh (giá tr i) th i gian xác l p cho ng h p mô ph ng th nh t 0.025 0.02 PI FLC Type of Controller (b) 40 A#1 A#2 A#3 A#4 A#5 35 30 25 0.015 20 0.01 15 10 0.005 Hình 4.12 t tc PI FLC SMES Type of Controller (a) A#1 A#2 A#3 A#4 A#5 PI FLC SMES Type of Controller (b) u ch nh (giá tr i) th i gian xác l p cho ng h p mô ph ng th hai 94 0.01 A#5-FLC A#5-FL_SMES -0.01 10 20 30 Time (sec) (a) 40 50 -3 10 x 10 A#2-FLC A#3-FLC A#2-SMES A#3-SMES -5 Hình 4.13 u n Area Area Area Area Area PI 0.0048 0.0049 0.0049 0.0049 0.0195 10 20 30 Time (sec) (b) 40 ng t n s ng h p mô ph ng th hai ng h p mô ph ng PD-FL FL-SMES 0.0028 0.0021 0.0029 0.0022 0.0029 0.0020 0.0029 0.0023 0.0114 0.0090 PI 0.0035 0.0051 0.0051 0.0053 0.0189 50 u n 2, ng h p mô ph ng PD-FL FL-SMES 0.0019 0.0015 0.0030 0.0024 0.0033 0.0024 0.0033 0.0028 0.0114 0.0087 4.4.2 hình 4.13, 4.14 4.13 4.14 mô 95 thành công 4.5 K t lu - - 96 K T LU N KI N NGH t qu nghiên c u trung vào Khi ó ng phát tri n c a nghiên c u 97 - - - - 98 - - SMES - - - 99 DANH M C CÁC CƠNG TRÌNH KHOA H Thai Quang Vinh, Vu Duy Thuan, Mai Ngoc Thang, Maxim Shcherbakov, Nataliya Shcherbakova, Valeriy Kamaev, Hybrid renewable energy systems control based onpredictive models and genetic algorithms, Processding of scientific workshop , 2016 Pp 27-38, Hanoi Vu Duy Thuan, Nguyen Ngoc Khoat, Thai Quang Vinh, Modeling and control of a large-scale systems A typical application for interconnected Multimachine power systems, International conference on information and convergence technology for smart society, 2016, Vol.2 No.1 pp 61-65, Ho Chi Minh Vu Duy Thuan, Thai Quang Vinh, Nguyen Ngoc Khoat, An Efficient Decentralized Control Strategy Applied to an Interconnected Multi-Machine Electric Power Grid, Indian Journal of Science & Technology, 2016, Volume 9, Issue 22 Vu Duy Thuan, Thai Quang Vinh, Hoang Ngoc Nhan, Nguyen Ngoc Khoat, Ngo Si Tan, A Novel Integration of PD-Type Fuzzy Logic Controllers and SMES Devices to Maintain Network Frequency of a Large-Scale Power System, Journal of Computer Science and Cybernetics, 2016, Vol 32, No 3, pp 225-241 100 TÀI LI U THAM KH O ra, LATS, , 2012 2006 2010 , tr 414 419, 2005 , tr 420 425, 2005 Thái Quang Vinh, Tu , tr 456 461, 2002 Lê Hùng Lân, robust , tr 314 322, 1996 , , LATS, , 2012 hành Phu: , 2002 Tr 115- 119 10 : 101 , tr 137 143, 2002 11 , tr 239 244, 2005 12 hóa, tr 288 293, 2005 13 , tr 370 375, 2005 14 , tr 289 294, 2002 15 16 Ng 2002 -Tr 75-85, 2002 The adaptive fuzzy controller for a , rotary crane model, 2011 17 Antonio G E., Antonio J C and Claudio C: Energy system analysis and operation CRC Press, Taylor and Francis, 2008 18 Mohammadpour J, Grigoriadis KM New York: Springer: Efficient modeling and control of large-scale Systems 2001 19 Sandell N, Varaiya P, Athans M, Safonnov M: Survey of decentralized control methods for large scale systems IEEE Transactions on Automatic Control, 1978 April; 23(2), pp.108-128 20 Dragoslay D S.: Large-scale dynamic systems stability and structure Dover Publications, INC, New York, 2007, pp.63-103 21 Anderson PM, Fouad AA New York: Wiley-IEEE Press, 2nd edition: Power system control and stability 2002 22 Tirtashi MRS, Rouhani A, Naghibi E Coordinated design of output feedback 102 PSS and UPFC controllers for enhancing dynamic stability of power system Indian Journal of Science and Technology, 2014; 7(11), pp 1805-1812 23 Jalili S, Effatnejad R Simultaneous coordinated design of power system stabilizer band (PSS3B) and SVC by using hybrid big bang big crunch algorithm in multi-machine power system Indian Journal of Science and Technology, 2015; 8(3), pp 62-71 24 Murty PSR India: BS Publications: Operation and control in power systems 2008 25 Zhang G USA: EPRI Palo Alto: EPRI power systems dynamics tutorial 2009 26 Ernst D, Glavic M, Wehenkel L Power systems stability control: reinforcement learning framework IEEE Transactions on Power Systems, 2004; 19(1), pp 427-435 27 Richard GF Boca Raton: CRC Press LLC: Power system dynamics and stability.2001 28 K Mizukami, S Y Zhang, H S Wu: Sufficient Conditions for Robust Stability of Large-Scale Dynamical Systems Including Delayed States and Parameter Perturbations in Interconnections Journal of optimization theory and applacations Vol 85, No 3, pp 727-739, 6/1995 29 Ligang WU, Changhong WANG, Huijun GAO, Qingshuang ZENG: Sliding mode control of uncertain systems with distributed time-delay: parameterdependent Lyapunov functional approach Journal of Control Theory and Applications 2, 2006 pp.159 167 30 X G Yan, J Lam, H S Li, and I M Chen: Decentralized Control of Nonlinear Large-Scale Systems Using Dynamic Output Feedback Journal of optimization theory and application Vol 104, No 2, pp 459 475, 2/2000 31 B R Barmish, M Corless and G Leitmann: A new class of stabilizing controllers for uncertain dynamical systems Slam J Control and optimization, Vol 21, No 2, March 1983 32 Rasmus Halgaard, B Jorgensen, K Poulsen: Decentralized large-scale power balancing, Innovative Smart Grid Technologies Europe (ISGT EUROPE), 4th IEEE/PES: 06 January 2014 33 Ernst D, Glavic M, Wehenkel L Power systems stability control: reinforcement 103 learning framework IEEE Transactions on Power Systems, 2004; 19(1), pp 427-435 34 Richard GF Boca Raton: CRC Press LLC: Power system dynamics and stability 2001 35 Ngoc-Khoat N, Qi H, Thi-Mai-Phuong D An Evaluation of Different Controllers Based on the Network Frequency Maintenance Strategy for a Large and Multi-Control-Area Interconnected Power System Electric Power Components and Systems, 2015; 43(11), pp 1257-1267 36 Zecevic AI, Neskovic G, Siljak DD Robust decentralized exciter control with linear feedback IEEE Transactions on Power Systems, 2004; 19(2), pp 10961103 37 Tyagi B, Srivastava SC A decentralized automatic generation control scheme for competitive electricity markets IEEE Transactions on Power Systems, 2006 February; 21(1), pp 312-320 38 Vinh TQ, Dao HM, Bang HS Decentralized stabilization of complex systems by combination of conventional and fuzzy controls, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1999; 7(4), pp 423427 39 Vinh TQ Stability of interconnected systems under two-layer Hiearchical Control Proc 3rd VICA, Hanoi, Vietnam, 1998 40 Kalsi K, Lian J, 0Zak SH Decentralized control of nonlinear interconnected systems Proc 16th Mediterranean Conference on Control and Automation, Corsica, France, 2008, pp 952-957 41 Wang Y, Hill DJ, Guo G Robust decentralized control for multi-machine power systems IEEE Transactions on Circuits and Systems, 1998; 45(3), pp 271-279 42 Jung K, Kim KY, Yoon TW, Jang G Decentralized control for multi-machine power systems with nonlinear interconnections and disturbances Conference , 2002, pp 16-19 43 Zhang GH, Wang Y, Hill DJ Global control of multi-machine power systems for transient stability enhancement IEEE International Conference on Control Applications, CCA 2007, Singapore, 2007, pp 934-939 104 44 H Bevrani and T Hiyama, Intelligent Automatic Generation Control, CRC Press, 2016 45 E.Damien, G.Mevludin and Wehendel, Power Systems Stability Control: Reinforcement Learning Framework, IEEE Trans on Power Systems, vol 19, no 1, pp 427-435, Feb, 2004 46 T Q Vinh and K Hirota, Decentralized Robust Fuzzy Sliding Mode Control Design of Interconnected Uncertain System, Joumal of Advanced Computational lntelligence, vol.6, no.1, pp 56-61, 2002 47 T Q Vinh, H M Dao and H S Bang, Decentralized Stabilization of Complex Systems by Combination of Conventional and Fuzzy Controls, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol 7, no 4, pp 423-427, 1999 48 R C Dorf and R H Bishop, Modern Control Systems, Pearson Prentice Hall, 2008 49 M J Chandrashekar and R Jayapal, Design and Comparison of I, PI, PID and Fuzzy logic controller on AGC deregulated power system with HVDC link, in 2013 International conference on Circuits, Controls and Communications (CCUBE), pp 1-6, 27-28 Dec 2013 50 K T Ateeth, N Harikrishna and P Vigneesh, Decentralized Control of MultiArea Power System Restructuring for LFC Optimization, In: 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems, pp 106-112, Dec 2012 51 P Subbaraj, and K Manickavasagam, Generation Control of Interconnected Power Systems Using Computational Intelligence Techniques, IET Gener Trans Distrib, vol 1, no 4, pp 557-563, 2007 52 D Devaraj and B Selvabala, Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional-integral - derivative controller in automatic voltage regulator system, Generation, Transmission & Distribution, IET , vol.3, no.7, pp.641-649, July 2009 53 T-M-P Dao, Y.N Wang and N-K Nguyen, Novel Hybrid Load-frequency Controller Applying Artificial Intelligence Techniques Integrated With Superconducting Magnetic Energy Storage Devices for An Interconnected 105 Electric Power Grid, Arabian Journal for Science and Engineering, vol 41, iss 9, pp 3309-3320, Sep 2016 54 N-K Nguyen, Q Huang and T-M-P Dao, An Evaluation of Different Controllers Based on the Network Frequency Maintenance Strategy for a Large and Multi-control-area Interconnected Power System, Electric Power Components and Systems, vol 43, no.11, pp 1257 1267, July 2015 55 C-H Lee, F-Y Chang and C-M Lin, An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization, IEEE Trans on Cybernetic, vol 44, no 3, pp.329-341, March 2014 56 R Verma, S Pal and S Sathans, Intelligent Automatic Generation Control of Two-Area Hydrothermal Power System Using ANN and Fuzzy Logic, In: 2013 International Conference on Communication Systems and Network Technologies (CSNT), pp 552-556, 6-8 April 2013 57 Y M Li, S C Tong, Y J Liu and T S Li, Adaptive Fuzzy Robust Output Feedback Control of Nonlinear Systems With Unknown Dead Zones Based on a Small-Gain Approach, IEEE Trans on Fuzzy Systems , vol 22, no 1, pp 164176, Feb 2014 58 M Y Ali and A A Ayman, Non-linearities in Fuzzy Approach for Control A Two-Area Interconnected Power System, in Proc IEEE International Conference on Mechatronics and Automation, pp 706-711, Aug 2010 59 J R Timothy, Fuzzy Logic with Engineering Application, Willey, 3rd edition, 2010 60 A M S Yunus, A Abu-Siada and M A S Masoum, Application of SMES unit to improve DFIG dispatch and dynamic performance during intermittent misfire and fire-through faults, IEEE Trans on Applied Superconductivity, vol 23, no 4, pp 1-12, 2013 61 I Ngamroo, Y Mitani and K Tsuji, Application of SMES Coordinated with Solid-State Phase Shifter to Load Frequency Control, IEEE Transactions on Applied Superconductivity, vol 9, No 2, 1999 62 I Ngamroo, An optimization technique of robust load frequency stabilizer for superconducting magnetic energy storage, Energy Management, vol 46, issues 18 19, pp 3060-3090, 2005 106 Conversion and 63 I Ngamroo and S Vachirasricirikul, Coordinated Control of Optimized SFCL and SMES for Improvement of Power System Transient Stability, IEEE Transaction on Applied Superconductivity, vol 22, no 3, 2012 64 S Siddharth and G Manimaran, Model-Based Attack Detection and Mitigation for Automatic Generation Control, IEEE Trans on Smart Grid, vol 5, no 2, pp 580-591, 2014 65 K Pardis and O Umit, Decentralized Control of Large-Scale Storage-Based Renewable Energy Systems, IEEE Trans on Smart Grid, vol 5, no 3, pp 1300-1307, 2014 66 Z Kun, M Chengxiong Mao, J M Lu, D Wang, X Chen and J F Zhang, Optimal control of state-of-charge of superconducting magnetic energy storage for wind power system, Renewable Power Generation, IET , vol 8, no 1, pp 58-66, January 2014 67 J Raja, C Christober and A Rajan, Improved Power System Dynamic Performance Using SMES for Frequency Excursion, J Electrical Systems, vol 7, no 2, pp 193-205, 2011 -machine infinite bus power systems 68 with superconducting magnetic energy storage based on energy-shaping and backstepping, Control Theory & Applications, IET , vol 7, no 5, pp 757-764, March, 2013 69 Lofi A Zedeh: Fuzzy sets Information and Control 1965; 8: 338 353; Fuzzy sets and systems - Fox J, editor System Theory Brooklyn, NY: Polytechnic Press, 1965: 29 39 70 Beard: Failure accommodation in linear systems through self-reorganization; Massachusetts Institute of Technology 1971 71 Mariton: Jump Linear Systems in Automatic Control; Taylor & Francis, 1990 107 ... ng s quán tính, s i s ng t c th i ngang tr c h t Eqi s ng ngang tr c h t Efi s qi doi xdi di ufi h ng s th i gian ng n m ch t c th i theo tr c d (d c tr c), s n kháng d c tr c, p.u n kháng t c... i gian c a b u t c cho máy phát th i, s Kei h s khu u t c cho máy phát th i Ri h s Bij ph n t thu c hàng th i c t th j c a ma tr lo i b bus v t lý, p.u Qei công su t ph n kháng, p.u Ifi dòng kích... n - tính - , - - C u trúc lu n án 15 - MATLAB Simulink - tích, 16 1: T NG QUAN m c a h th ng ph c h p nhi u thành ph n Các (large- xét - 17 cv t 1.2 Tình hình nghiên c mơ hình c a h - Lyapunov

Ngày đăng: 22/02/2018, 16:50

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN