1. Trang chủ
  2. » Giáo Dục - Đào Tạo

các dạng bài phương trình và hệ phương trình nâng cao hay nhất

51 192 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 0,92 MB

Nội dung

𝑐á𝑐 𝑏à𝑖 ℎệ phương trình ℎ𝑎𝑦 𝑣à 𝑘ℎó (Nguyễn Trường Phát TP.HCM) 𝑥 + 𝑥 √𝑥 − 3√𝑥 − 2𝑥𝑦 + 6𝑦 − = 0(1) 𝑏à𝑖 1: { √𝑥 + 2𝑦 + + √𝑥 − 2𝑦 + = 3(2) 𝑔𝑖ả𝑖 𝑥 + 2𝑦 + ≥ đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ { 𝑥≥0 𝑝𝑡(1): (√𝑥) + (√𝑥) − 3√𝑥 − − 2𝑥𝑦 + 6𝑦 = 𝑥(√𝑥 + 1) − 3(√𝑥 + 1) − 2𝑦(𝑥 − 3) = (𝑥 − 3)(√𝑥 + 1) − 2𝑦(𝑥 − 3) = 𝑣ậ𝑦 𝑥 = ℎ𝑎𝑦 √𝑥 + − 2𝑦 = (∗∗)𝑣ớ𝑖 𝑥 = 𝑡ℎế 𝑣à𝑜 (2)𝑡ℎì 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑦 = 16 𝑣à 𝑦 = − 𝑡ℎế 𝑥 = 𝑣à 𝑦 = 16 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎 𝑡ℎế 𝑥 = 𝑣à 𝑦 = − 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑐ũ𝑛𝑔 𝑡ℎõ𝑎 (∗)𝑣ớ𝑖 √𝑥 − 2𝑦 + = 𝑡ℎế 𝑣à𝑜 (2) √𝑥 + √𝑥 + + √𝑥 − √𝑥 + = 3(𝑙𝑖ê𝑛 ℎợ𝑝 𝑣ớ𝑖 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 1) 𝑡ℎế 𝑣à𝑜 (∗)𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑦 = 𝑣ớ𝑖 𝑥 = 1, 𝑦 = 𝑡ℎế 𝑣à𝑜 (1) 𝑐ũ𝑛𝑔 𝑡ℎõ𝑎 𝑣ậ𝑦 ℎ𝑝𝑡 𝑡𝑟ê𝑛 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑛ℎư 𝑠𝑎𝑢: (1,1); (3,16); (3, − ) 2𝑥 + = 𝑦 + 4𝑦√𝑥(1) 𝑏à𝑖 2: { 𝑦 + √𝑥 + = 𝑦√𝑥(2) 𝑔𝑖ả𝑖 đ𝑘 để ℎ𝑝𝑡 𝑡𝑟ê𝑛 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à 𝑥 ≥ để ý 𝑝𝑡(2): 𝑦 + = 𝑦√𝑥 − √𝑥 𝑙ấ𝑦(2)𝑡ℎế 𝑣à𝑜 (1) 𝑡𝑎 𝑐ó đượ𝑐: 2𝑥 − 4𝑦√𝑥 = (𝑦 + 1)(𝑦 − 1) = (𝑦√𝑥 − √𝑥)(𝑦 − 1) √𝑥 = ℎ𝑎𝑦 2√𝑥 − 4𝑦 = 𝑦 − 2𝑦 + √𝑥 = ℎ𝑎𝑦 2√𝑥 = 𝑦 + 2𝑦 + 𝑣ớ𝑖 𝑥 = 𝑡ℎì 𝑦 = ±1 𝑡ℎế 𝑣à𝑜 (2)𝑡𝑎 𝑛ℎậ𝑛 𝑥 = 0, 𝑦 = −1 𝑦 + 2𝑦 + 𝑣ớ𝑖 √𝑥 = 𝑡ℎế 𝑣à𝑜 (2) 𝑦 + 2𝑦 + 𝑦 + 2𝑦 + 𝑦+ +1 = 𝑦( ) 2 𝑦 + 4𝑦 + = 𝑦 + 2𝑦 + 𝑦 𝑦 = −1 𝑡ℎì 𝑥 = ℎ𝑎𝑦 𝑦 = ±√3, 𝑥 = ± 4√3 𝑣ớ𝑖 𝑦 = −1 𝑣à 𝑥 = 𝑡ℎế 𝑛𝑔ượ𝑐 𝑙ạ𝑖 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎 𝑣ớ𝑖 𝑦 = √3 𝑣à 𝑥 = + 4√3 𝑡ℎế 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎 𝑣ớ𝑖 𝑦 = −√3 𝑣à 𝑥 = − 4√3 𝑡ℎế 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑘ℎô𝑛𝑔 𝑡ℎõ𝑎 𝑣ậ𝑦 𝑛𝑔ℎ𝑖ệ𝑚 𝑐ủ𝑎 ℎ𝑝𝑡 𝑡𝑟ê𝑛 𝑙ầ𝑛 𝑙ượ𝑡 𝑙à: (0, −1); (√3, + 4√3) √3𝑥 − + 4(2𝑥 + 1) = √𝑦 − + 3𝑦(1) 𝑏à𝑖 3: { (𝑥 + 𝑦)(2𝑥 − 𝑦) + 6𝑥 + 3𝑦 + = 0(2) 𝑔𝑖ả𝑖 đ𝑘 để ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ { 𝑦≥1 𝑥≥ 𝑝𝑡(2): 2𝑥 − 𝑥𝑦 + 2𝑥𝑦 − 𝑦 + 6𝑥 + 3𝑦 + = 2𝑥 + 𝑥𝑦 − 𝑦 + 6𝑥 + 3𝑦 + = 2𝑥 + 𝑥(𝑦 + 6) − 𝑦 + 3𝑦 + = 𝑑𝑒𝑛𝑡𝑎 = 𝑦 + 12𝑦 + 36 − 8(−𝑦 + 3𝑦 + 4) = 9𝑦 − 12𝑦 + = (3𝑦 − 2)2 ≥0 −𝑦 − + 3𝑦 − 2𝑦 − 𝑦 − 𝑥= = = 4 𝑣ậ𝑦 [ −𝑦 − − 3𝑦 + −4𝑦 − 𝑥= = = −𝑦 − 4 𝑣ớ𝑖 𝑥 = 𝑦−4 𝑡ℎế 𝑣à𝑜 (1)𝑡𝑎 đượ𝑐 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à 𝑦 = 12, 𝑥 = 𝑣ớ𝑖 𝑥 + 𝑦 = −1 𝑡ℎì 𝑣ơ 𝑛𝑔ℎ𝑖ệ𝑚 𝑑𝑜 𝑥 + 𝑦 > 𝑣ậ𝑦 ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ (4,12) 𝑏à𝑖 4: { (𝑥 + 2)√𝑦 + − (𝑦 + 2)√𝑥 + = 0(1) 𝑥 − 𝑦 − 3𝑥 𝑦 − 5𝑦 + = 0(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: 𝑦 ≥ −1 𝑝𝑡(1): (𝑥 + 4𝑥 + 4)(𝑦 + 1) = (𝑦 + 4𝑦 + 4)(𝑥 + 1) 𝑥 𝑦 + 𝑥 + 4𝑥 𝑦 + 4𝑥 + 4𝑦 + = 𝑦 𝑥 + 𝑦 + 4𝑦𝑥 + 4𝑦 + 4𝑥 + 𝑥 4𝑦 + 𝑥 = 𝑥 2𝑦2 + 𝑦2 𝑥 𝑦(𝑥 − 𝑦) = (𝑦 − 𝑥 )(𝑦 + 𝑥 ) 𝑣ậ𝑦 𝑥 = 𝑦 ℎ𝑎𝑦 𝑥 𝑦 = −(𝑦 + 𝑥 ) 𝑣ớ𝑖 𝑥 = 𝑦 𝑡ℎế 𝑣à𝑜 (2): −3𝑦 − 5𝑦 + = 0[ 𝑦=1 𝑦=− 𝑥2 𝑣ớ𝑖 𝑥 𝑦 + 𝑦 = −𝑥 => 𝑦 = − 𝑡ℎế 𝑣à𝑜 (2) 𝑥 +1 2 𝑥2 𝑥2 𝑥2 𝑥 −( ) + 3𝑥 ( ) + 5( )+8= 𝑥 +1 𝑥 +1 𝑥 +1 𝑥 (𝑥 + 1)2 − 𝑥 + 3𝑥 (𝑥 + 1) + 5𝑥 (𝑥 + 1) + 8(𝑥 + 1)2 = 𝑥 (𝑥 + 2𝑥 + 1) − 𝑥 + 3𝑥 + 3𝑥 + 5𝑥 + 5𝑥 + 8(𝑥 + 1)2 = 𝑥 + 2𝑥 + 3𝑥 + 8𝑥 + 5𝑥 + 8(𝑥 + 2𝑥 + 1) = 𝑥 + 5𝑥 + 16𝑥 + 21𝑥 + = (𝑝𝑡 𝑣ô 𝑛𝑔ℎ𝑖ệ𝑚 𝑑𝑜 𝑥 + 5𝑥 + 16𝑥 + 21𝑥 + > 0) 2𝑥 + 𝑥 + √𝑥 + = 2𝑦 + 𝑦 + √2𝑦 + 1(1) 𝑏à𝑖 5: { 𝑥 + 2𝑦 − 2𝑥 + 𝑦 − = 0(2) 𝑔𝑖ả𝑖 𝑥 ≥ −2 đ𝑘 để 𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ { 𝑦≥− 𝑝𝑡(1) − 𝑝𝑡(2): 𝑥 − 2𝑦 + 3𝑥 − 𝑦 + + √𝑥 + = 2𝑦 + 𝑦 + √2𝑦 + (𝑥 + 1)2 + (𝑥 + 1) + √(𝑥 + 1) + = (2𝑦)2 + 2𝑦 + √2𝑦 + 𝑥é𝑡 𝑓(𝑡) = 𝑡 + 𝑡 + √𝑡 + 𝑣ậ𝑦 𝑓 ′ (𝑡) = 2𝑡 + + √𝑡 + 𝑡ứ𝑐 𝑓(𝑥 + 1) = 𝑓(2𝑦)𝑣ậ𝑦 𝑥 + = 2𝑦(3) >0 𝑙ấ𝑦 (3)𝑡ℎế (2): (2𝑦 − 1)2 + 2𝑦 − 2(2𝑦 − 1) + 𝑦 − = 4𝑦 − 4𝑦 + + 2𝑦 − 4𝑦 + + 𝑦 − = 6𝑦 − 7𝑦 + = [ 𝑦=1 𝑦= 𝑣ớ𝑖 𝑦 = 𝑣ậ𝑦 𝑥 = 𝑣ớ𝑖 𝑦 = 𝑣ậ𝑦 𝑥 = − 𝑥 𝑦√𝑥 + 𝑥 𝑦 = 2𝑥 √𝑥 + 2𝑥 𝑦(1) 𝑏à𝑖 6: { 𝑦√𝑥 (√2𝑥 − − 1) = √5(2𝑥 − 6)(2) 𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥 𝑦(√𝑥 + 𝑦) = 2𝑥 (√𝑥 + 𝑦) 𝑣ậ𝑦 √𝑥 = −𝑦 ℎ𝑎𝑦 𝑥 = ℎ𝑎𝑦 𝑦 = 2𝑥 𝑥 − 3𝑦 − 3𝑥 𝑦 + 𝑥𝑦 + 𝑥 = 3𝑦(1) 𝑏à𝑖 7: 3 3𝑥 + 36𝑦 − = 𝑥 √27𝑦 + { 2𝑥 + (2) 𝑥 𝑔𝑖ả𝑖 𝑝𝑡(1): (𝑥 − 3𝑦)(𝑥 + 𝑦 ) = −(𝑥 − 3𝑦) 𝑣ậ𝑦 𝑥 = 3𝑦 ℎ𝑎𝑦 𝑥 + 𝑦 = −1(𝑝𝑡 𝑣𝑛 𝑑𝑜 𝑥 + 𝑦 ≥ 0) 𝑣ớ𝑖 𝑥 = 3𝑦 => 𝑦 = 𝑥 𝑡ℎế (2): 3𝑥 + 4𝑥 − = 𝑥 √𝑥 + + (𝑙𝑖ê𝑛 ℎợ𝑝 ) 𝑥 3 2𝑥(𝑥 + 3) − 𝑦(𝑦 + 3) = 3𝑥𝑦(𝑥 − 𝑦)(1) 𝑏à𝑖 8: { (𝑥 − 2)2 = 4(2 − 𝑦)(2) 𝑔𝑖ả𝑖 𝑝𝑡(1)2𝑥 + 6𝑥 − 𝑦 − 3𝑦 = 3𝑥 𝑦 − 3𝑥𝑦 2𝑥 − 3𝑥 𝑦 + 3𝑥𝑦 − 𝑦 + 6𝑥 − 3𝑦 = (2𝑥 − 𝑦)(𝑥 − 𝑥𝑦 + 𝑦 ) + 3(2𝑥 − 𝑦) = 2𝑥 = 𝑦 ℎ𝑎𝑦 𝑥 − 𝑥𝑦 + 𝑦 = −3 (𝑝𝑡 𝑣𝑛) 𝑣ờ𝑖 2𝑥 = 𝑦 𝑡ℎế 𝑣à𝑜 (2): (𝑥 − 2)2 = 4(2 − 2𝑥) 𝑥 − 4𝑥 + = − 8𝑥 (𝑥 + 2𝑥 − 2)(… ) = => 𝑥 = −1 ± √3 𝑏à𝑖 9: { √𝑥 + + √−2 − 𝑥 + √−1 − 10𝑦 = 8(1) 𝑥√𝑦 − 4𝑦 + + √𝑥 + = 𝑦√𝑥 + − √𝑦 − 4𝑦 + 5(2) (đã 𝑔𝑖ả𝑖 𝑟ồ𝑖 ‼!) 2(2𝑥 − 1)3 + 2𝑥 = (2𝑦 − 1)√𝑦 − + 1(1) 𝑏à𝑖 10: { √4𝑥 − + √2𝑦 − = 2√2(2) 𝑔𝑖ả𝑖 𝑦≥1 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ { 𝑥≥ 𝑝𝑡(1): 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ℎ𝑜 1 8𝑥 − 12𝑥 + 6𝑥 − + 𝑥 = (𝑦 − ) √𝑦 − + 2 8𝑥 − 12𝑥 + 6𝑥 − (2𝑥 − 1)3 + 3 √𝑦 − = (√𝑦 − 1) + 2 2𝑥 − √𝑦 − = (√𝑦 − 1) + 2 𝑥é𝑡 𝑓(𝑡) = 𝑡 + 𝑡 => 𝑓 ′ (𝑡) = 3𝑡 + > 2 𝑣ậ𝑦 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑛ê𝑛 𝑓(2𝑥 − 1) = 𝑓(√𝑦 − 1) 𝑣ậ𝑦 2𝑥 − = √𝑦 − 1(𝑡ℎế 𝑣à𝑜 (2)) 4𝑥 − 4𝑥 + = 𝑦 − 𝑦 = 4𝑥 − 4𝑥 + √4𝑥 − + √2(4𝑥 − 4𝑥 + 2) − = 2√2 √4𝑥 − + √8𝑥 − 8𝑥 + = 2√2(𝑙𝑖ê𝑛 ℎợ𝑝 𝑥 = 𝑙ư𝑢 ý 𝑠𝑎𝑢 𝑘ℎ𝑖 𝑙𝑖ê𝑛 ℎợ𝑝 𝑛ℎớ 𝑏ấ𝑚 𝑛𝑔ℎ𝑖ệ𝑚 𝑙ạ𝑖 𝑙ầ𝑛 𝑛ữ𝑎 𝑡𝑟á𝑛ℎ 𝑛𝑔ℎ𝑖ệ𝑚 𝑘é𝑝) 𝑥 = 𝑡ℎì 𝑦 = 𝑣ậ𝑦 ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ (1,2) (𝑥 − 𝑦)(𝑥 + 𝑦 + 𝑦 ) = 𝑥(𝑦 + 1)(1) 𝑏à𝑖 11: { (𝑦 + 2)2 √𝑥 + 4𝑥 = + (2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ 𝑥 ≥ 𝑝𝑡(1): 𝑥 + 𝑥𝑦 + 𝑥𝑦 − 𝑥𝑦 − 𝑦 − 𝑦 = 𝑥𝑦 + 𝑥 𝑥 + 𝑥𝑦 − 𝑦 − 𝑦 = 𝑥𝑦 + 𝑥 𝑥(𝑥 + 𝑦 ) = 𝑥(𝑦 + 1) + 𝑦 (𝑦 + 1) 𝑥(𝑥 + 𝑦 ) = (𝑥 + 𝑦 )(𝑦 + 1) 𝑣ậ𝑦 𝑥 + 𝑦 = ℎ𝑎𝑦 𝑥 = 𝑦 + 𝑣ớ𝑖 𝑥 + 𝑦 = (𝑝𝑡𝑣𝑛)𝑑𝑜 𝑥 + 𝑦 > 𝑣ớ𝑖 𝑦 = 𝑥 − 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) √𝑥 (𝑥 + 1)2 𝑥 + 2𝑥 + + 4𝑥 = + =1+ 3 3√𝑥 + 4𝑥 = 𝑥 + 2𝑥 + 4(𝑙𝑖ê𝑛 ℎợ𝑝 𝑣ớ𝑖 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 2) 𝑣ớ𝑖 𝑥 = 𝑡ℎì 𝑦 = 𝑣ậ𝑦 ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: (2,1) 𝑥 + 𝑦 − 6𝑥 + 15𝑥 + 3𝑦 − 14 = 0(1) 𝑏à𝑖 12: { 4 √𝑥 + √𝑦 + √𝑥 + √𝑦 = 4(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à 𝑥, 𝑦 ≥ á𝑝 𝑑ụ𝑛𝑔 𝐵Đ𝑇 𝑏𝑢ℎ𝑖𝑎, 𝑑ấ𝑢=𝑥ả𝑦 𝑟𝑎 𝑘ℎ𝑖 𝑥 = 𝑦 = 𝑡ℎế 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎 𝑣ậ𝑦 ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ (1,1) + (𝑥𝑦)3 = 19𝑥 (1) 𝑏à𝑖 13: { 𝑦 + 𝑥𝑦 = −6𝑥 (2) 𝑔𝑖ả𝑖 𝑇𝐻1: 𝑥 = 𝑡ℎế 𝑣à𝑜 (1) 𝑝𝑡𝑣𝑛 𝑇𝐻2: 𝑥 ≠ 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1)𝑐ℎ𝑜 𝑥 : + 𝑦 = 19 𝑥 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(2)𝑐ℎ𝑜 𝑥 : 𝑦 𝑦2 + = −6 𝑥2 𝑥 𝑡𝑎 𝑐ó − 𝑝𝑡(1) − 19 𝑝𝑡(2) = 19𝑦 19𝑦 − − 6𝑦 − − =0 𝑥 𝑥 𝑥 2𝑥 [ 𝑦=− 𝑥 𝑦=− 3𝑥 𝑦=− 16(𝑥𝑦)3 − 9𝑦 = (2𝑥𝑦 − 𝑦)(4𝑥𝑦 + 3)(1) 𝑏à𝑖 14: { 4𝑥 𝑦 + 2𝑥𝑦 + 𝑦 = 3(2) 𝑔𝑖ả𝑖 𝑡ℎế (2) 𝑣à𝑜 (1): 16𝑥 𝑦 − 9𝑦 = 𝑦 (2𝑥 − 1)(4𝑥 + 6𝑥 + 1) 𝑣ậ𝑦 𝑦 = ℎ𝑎𝑦 16𝑥 − = 8𝑥 + 12𝑥 + 2𝑥 − 4𝑥 − 6𝑥 − 𝑦 = ℎ𝑎𝑦 8𝑥 − 8𝑥 + 4𝑥 − = + 6𝑦 = 𝑏à𝑖 15: 𝑥 − √𝑥 − 2𝑦(1) 𝑦 √𝑥 + √𝑥 − 2𝑦 = 𝑥 + 3𝑦 − 2(2) { 𝑔𝑖ả𝑖 𝑦≠0 𝑥 − 2𝑦 ≥ đ𝑘 để ℎ𝑝𝑡 𝑡𝑟ê𝑛 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ { 𝑥 + √𝑥 − 2𝑦 ≥ 𝑝𝑡(1): 2𝑦 + 6𝑦 = 𝑥 − 𝑦√𝑥 − 2𝑦 đặ𝑡 𝑡ℎử ℎệ 𝑠ố ∶ 𝑥 − 2𝑦 + 𝑎𝑏 + (𝑎 + 𝑏)√𝑥 − 2𝑦 = { 𝑥 − 2𝑦 + 𝑎𝑏 = 𝑥 − 2𝑦 − 6𝑦 𝑎 + 𝑏 = −𝑦 (−𝑦)𝑏 − 𝑏 + 6𝑦 = 0(∗) { 𝑎 = (−𝑦) − 𝑏 𝑑𝑒𝑛𝑡𝑎(∗) = 𝑦 + 24𝑦 = (5𝑦)2 ≥ 𝑦 − 5𝑦 √𝑥 − 2𝑦 = −2 = 2𝑦 [ 𝑦 + 5𝑦 √𝑥 − 2𝑦 = −2 = −3𝑦 (𝑥 + 𝑦)(𝑥 + 4𝑦 + 𝑦) + 3𝑦 = 0(1) 𝑏à𝑖 16: { √𝑥 + 2𝑦 + − 𝑦 + 𝑦 + = 0(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ 𝑥 + 2𝑦 ≥ −1 để ý 𝑝𝑡(1): 𝑥 + 4𝑥𝑦 + 2𝑥𝑦 + 4𝑦 + 𝑦 + 3𝑦 = 𝑥 + 𝑥(4𝑦 + 2𝑦) + 4𝑦 + 𝑦 + 3𝑦 = 𝑑𝑒𝑛𝑡𝑎 = 16𝑦 + 16𝑦 + 4𝑦 − 16𝑦 − 4𝑦 − 12𝑦 = 4𝑦 ≥ −4𝑦 − 2𝑦 − 2𝑦 = −3𝑦 − 𝑦 [ −4𝑦 − 2𝑦 + 2𝑦 𝑥= = −𝑦 − 𝑦 𝑥= (∗)𝑣ớ𝑖 𝑥 = −3𝑦 − 𝑦 𝑡ℎế 𝑣à𝑜 (2): √−𝑦 − 𝑦 + − 𝑦 + 𝑦 + = 0( 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑦 = −1) 𝑣ậ𝑦 𝑦 = −1 𝑡ℎì 𝑥 = −2 𝑡ℎế 𝑣à𝑜 đ𝑘 𝑡ℎấ𝑦 𝑡ℎõ𝑎 (∗∗)𝑣ớ𝑖 𝑥 = −𝑦 − 𝑦 𝑡ℎế 𝑣à𝑜 (2): √𝑦 − 𝑦 + − 𝑦 + 𝑦 + = 𝑥 𝑥 𝑥 𝑥 𝑥 𝑝𝑡(1): √( ) + ( ) + = − ( ) 𝑦 𝑦 𝑦 𝑦 𝑦 đặ𝑡 𝑎 = 𝑥 đư𝑎 𝑣ề 𝑝𝑡 𝑣ô 𝑡ỷ 𝑡ℎ𝑒𝑜 𝑎: 𝑦 √𝑎3 + 𝑎2 + 𝑎 = 𝑎 − 𝑎2 (𝑣ậ𝑦 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑛𝑔ℎ𝑖ệ𝑚 𝑎 = 𝑣à 𝑎 = −1) 𝑎 = 𝑡ℎì 𝑥 = 𝑡ℎế 𝑡ℎử 𝑣à𝑜 𝑝𝑡(2): (𝑝𝑡𝑣𝑛) 𝑎 = −1 𝑡ℎì 𝑥 = −𝑦 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2): √5𝑥 − + √9 − 𝑥 = 2𝑥 + 3𝑥 − 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑥 = 8𝑦 − + √𝑥 = √2𝑦(−3𝑥 + 5𝑥 − 2)(1) 𝑏à𝑖 64: { √𝑥 + 5𝑦 − √9𝑦 − 𝑥 = 4𝑦 − 𝑥(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ 0, 𝑥 ≥ (𝑐ũ𝑛𝑔 𝑡ươ𝑛𝑔 𝑡ự 𝑛ℎư 𝑏à𝑖 𝑡𝑟ê𝑛)𝑇𝐻1: 𝑛ế𝑢 𝑦 = 𝑡ℎì 𝑥 = 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1) 𝑡ℎấ𝑦 𝑘ℎô𝑛𝑔 𝑡ℎõ𝑎 𝑇𝐻2: 𝑛ế𝑢 𝑦 ≠ 𝑡ℎì 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(2)𝑐ℎ𝑜 𝑦: 𝑥 𝑥 𝑥 √( ) + − √9 − ( ) = − 𝑦 𝑦 𝑦 đặ𝑡 𝑎 = 𝑥 𝑣ậ𝑦 𝑔𝑖ả𝑖 𝑝𝑡 𝑣ô 𝑡ỷ 𝑡ℎ𝑒𝑜 𝑎: 𝑦 √𝑎2 + − √9 − 𝑎3 = − 𝑎 (𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑎 = 2) 𝑣ậ𝑦 𝑥 = 2𝑦 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1) (𝑑à𝑛ℎ 𝑐ℎ𝑜 𝑏ạ𝑛 đọ𝑐 ‼) 𝑥 + 𝑥 = 𝑦 − 𝑦(1) 𝑏à𝑖 65: { 𝑦 + 𝑦 = 𝑥 − 𝑥(2) 𝑔𝑖ả𝑖 { 𝑥(𝑥 + 1) = 𝑦(𝑦 − 1)(𝑦 + 1)(1) 𝑦(𝑦 + 1) = 𝑥(𝑥 − 1)(𝑥 + 1)(2) 𝑙ấ𝑦 𝑝𝑡(1) 𝑝𝑡(2): 𝑥𝑦(𝑥 + 1)(𝑦 + 1) = 𝑥𝑦(𝑥 + 1)(𝑦 + 1)(𝑥 − 1)(𝑦 − 1) 𝑥=0 𝑦=0 𝑣ậ𝑦 [ 𝑥 = −1 𝑦 = −1 (𝑥 − 1)(𝑦 − 1) = 𝑣ớ𝑖 𝑥 = 𝑡ℎì 𝑦 = 𝑣à 𝑦 = ±1 𝑣ớ𝑖 𝑦 = 𝑡ℎì 𝑥 = 𝑣à 𝑥 = −1 𝑣à 𝑥𝑦 − 𝑥 − 𝑦 = 𝑙ấ𝑦 𝑝𝑡(1) + 𝑝𝑡(2): 𝑥 + 𝑦 + 2(𝑥 + 𝑦) = (𝑥 + 𝑦)(𝑥 − 𝑥𝑦 + 𝑦 ) 𝑥𝑦 − (𝑥 + 𝑦) = { (𝑥 + 𝑦)2 − 2(𝑥 + 𝑦) − 2𝑥𝑦 = (𝑥 + 𝑦)((𝑥 + 𝑦)2 − 3𝑥𝑦) 3√4(𝑥 + 𝑥) + 2√2𝑦 − 𝑦 = 3(𝑥 + 𝑦) + 2(1) 𝑏à𝑖 66: { 2016√𝑦 − + 𝑦 + = 𝑥 + 2𝑦(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ (𝑑𝑜 𝑝𝑡(2)) 𝑣à 𝑦 ≥ 𝑝𝑡(1): 3√4𝑥(𝑥 + 1) + 2√2𝑦 − 𝑦 ≤ + 2𝑥 + 𝑥 + + 𝑦 + 2𝑦 − = 3(𝑥 + 𝑦) + 𝑥=1 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎) 𝑑ấ𝑢 "=" xảy : { 𝑦=1 4√𝑥 + + 𝑥𝑦√4 + 𝑦 = 0(1) 𝑏à𝑖 67: { 𝑦4 − 𝑥 +𝑥 =𝑦 +𝑦 + (2) 𝑔𝑖ả𝑖 𝑥𝑦 ≥ đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ { 𝑥 ≥ −1 để ý 𝑝𝑡(1): 16𝑥 + 16 = 4(𝑥𝑦)2 + 𝑥 𝑦 (4 − 𝑥𝑦 )(4 + 𝑥𝑦 ) + 4𝑥(4 − 𝑥𝑦 ) = 𝑣ậ𝑦 𝑥𝑦 = ℎ𝑎𝑦 + 𝑥𝑦 + 4𝑥 = 𝑥𝑦 = ℎ𝑎𝑦 𝑥(4 + 𝑦 ) = −4 => 𝑦 = − − 4(𝑣𝑠 𝑥 ≠ 0) 𝑥 4𝑥𝑦 + (𝑥𝑦 − 2)2𝑥𝑦 + 𝑥𝑦 = 3(1) 𝑏à𝑖 68: { (𝑥 + 𝑥𝑦 + 2)(3 𝑥 + 8𝑥 + 12𝑥 + 𝑥𝑦 + 20) = 5(𝑥 + 𝑥𝑦)3 (2) 𝑔𝑖ả𝑖 𝑝𝑡(1): (2𝑥𝑦 )2 + (𝑥𝑦 − 2) 2𝑥𝑦 + (𝑥𝑦 − 2) − = (2𝑥𝑦 − 1)(2𝑥𝑦 + 1) + (𝑥𝑦 − 2)(2𝑥𝑦 + 1) = 𝑣ậ𝑦 2𝑥𝑦 + 𝑥𝑦 − = ℎ𝑎𝑦 2𝑥𝑦 = −1(𝑙𝑜ạ𝑖) 𝑥𝑦 = (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) 𝑥√4𝑦 + + 2𝑦√𝑥 + = 0(1) 𝑏à𝑖 69: {2(1 + 23𝑥−4𝑦 ) 2.23𝑥 + = 2−2𝑦 (1 + 2−2𝑦 + 22𝑥 )(2) + 2−2𝑦 + 2−4𝑦 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ 0, 𝑦 ≥ 4(𝑥𝑦)2 + 𝑥 = 4(𝑥𝑦)2 + 4𝑦 𝑣ậ𝑦 𝑥 = ±2𝑦 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) 2𝑥(4𝑥 − 𝑦 + 2) + 4𝑥 (𝑦 − 1) = √𝑦 − − 2𝑥 + 𝑦 − 3𝑦 + 2(1) 𝑏à𝑖 70: { (√𝑦 − − 1)√2𝑥 + = 8𝑥 − 13(𝑦 − 2) + 82𝑥 − 29(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: 2𝑥 + ≥ 0, 𝑦 − ≥ 𝑝𝑡(1): 2𝑥(4𝑥 − 𝑦 + 2) + 4𝑥 (𝑦 − 1) = √𝑦 − − 2𝑥 + (𝑦 − 2)(𝑦 − 1) 2𝑥(4𝑥 − 𝑦 + 2) + (𝑦 − 1)(4𝑥 − 𝑦 + 2) = √𝑦 − − 2𝑥 (2𝑥 + 𝑦 − 1)(4𝑥 − 𝑦 + 2) = −(4𝑥 − 𝑦 + 2) √𝑦 − + 2𝑥 𝑣ậ𝑦 4𝑥 − 𝑦 + = ℎ𝑎𝑦 2𝑥 − 𝑦 + = (2𝑥 + 1) + (𝑦 − 2) =− (𝑝𝑡𝑣𝑛 𝑑𝑜 đ𝑘) √𝑦 − + 2𝑥 𝑣ớ𝑖 4𝑥 − 𝑦 + = 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑔𝑖ả𝑖 𝑛ó 𝑡ℎ𝑒𝑜 𝑝𝑝 đ𝑜á𝑛 𝑛𝑔ℎ𝑖ệ𝑚 20√6 − 𝑥 − 17√5 − 𝑦 − 3𝑥√6 − 𝑥 + 3𝑦√5 − 𝑦 = 0(1) 𝑏à𝑖 71: { 2√2𝑥 + 𝑦 + + 3√3𝑥 + 2𝑦 + 11 = 𝑥 + 6𝑥 + 13(2) 𝑔𝑖ả𝑖 2𝑥 + 𝑦 + ≥ đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≤ 6, 𝑦 ≤ 𝑣à { 3𝑥 + 2𝑦 + 11 ≥ 𝑝𝑡(1): (20 − 3𝑥)√6 − 𝑥 = (17 − 3𝑦)√5 − 𝑦 2√6 − 𝑥 + 3(√6 − 𝑥) = 2√5 − 𝑦 + 3(√5 − 𝑦) 𝑥é𝑡 𝑓(𝑡) = 2𝑡 + 3𝑡 𝑣ậ𝑦 𝑓 ′ (𝑡) = + 9𝑡 > 𝑛ê𝑛 − 𝑥 = − 𝑦 𝑣ậ𝑦 𝑥 − 𝑦 = (𝑡ℎế 𝑣à𝑜 (2)) (5 + 16𝑥 −2𝑦 ) 72𝑦−𝑥 +2 = + 16.4𝑥 −2𝑦 (1) 𝑏à𝑖 72: { 𝑥 + 17𝑥 + 10𝑦 + 17 = 2(𝑥 + 4)√4𝑦 + 11(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ − 11 𝑝𝑡(1)đặ𝑡 𝑡 = 𝑥 − 2𝑦 ∶ (5 + 16𝑡 ) 7−𝑡+2 = + 16.4𝑡 𝑣ậ𝑦 𝑡 = => 𝑥 − 2𝑦 = 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) 𝑔𝑖ả𝑖 𝑏ì𝑛ℎ 𝑡ℎườ𝑛𝑔 12𝑥 − 𝑦(2𝑥 − 4𝑥 + 3) − 12𝑥 + = 0(1) 𝑏à𝑖 73: { 512𝑦 + √ 3√3𝑦 + 𝑦! − 362882 − √3 = 0(2) 𝑔𝑖ả𝑖 để ý 𝑝𝑡(1): (12 − 2𝑦)𝑥 + 𝑥(4𝑦 − 12) − 3𝑦 + = 𝑑𝑒𝑛𝑡𝑎 = 16𝑦 − 96𝑦 + 144 − 4(−3𝑦 + 3)(12 − 2𝑦) = 16𝑦 − 96𝑦 + 144 − 4(−36𝑦 + 6𝑦 + 36 − 6𝑦) 𝑑𝑒𝑛𝑡𝑎 = −8𝑦 + 72𝑦 ≥ 𝑣ậ𝑦 ≤ 𝑦 ≤ 𝑛ℎậ𝑛 𝑡ℎấ𝑦 𝑟ằ𝑛𝑔 𝑦 𝑝𝑡(2): 512 + √ 3√3𝑦 + 𝑦! = 5129 + √ √3.9 + 9! 𝑣ậ𝑦 𝑦 = 𝑙à 𝑛𝑔ℎ𝑖ệ𝑚 𝑐ủ𝑎 ℎ𝑝𝑡 𝑡ℎế 𝑣à𝑜 𝑡ì𝑚 đượ𝑐 𝑥 = (√𝑥 + − 1) (√𝑦 + + 𝑦) = √𝑥(1) 𝑏à𝑖 74: { 2𝑥 (𝑦 + 1) − (𝑥 + 1)𝑥𝑦 = 2(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ −1 𝑇𝐻1: 𝑛ế𝑢 𝑥 = 𝑡ℎì 𝑝𝑡𝑣𝑛 𝑇𝐻2: 𝑛ế𝑢 𝑥 ≠ 𝑡ℎì 𝑡𝑎 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1)𝑐ℎ𝑜 √𝑥: 1 √1 + + = √𝑦 + + 𝑦 𝑥 √𝑥 𝑥é𝑡 𝑓(𝑡) = √𝑡 + + 𝑡 𝑣ậ𝑦 𝑓 ′ (𝑡) = 𝑣ậ𝑦 √𝑥 = 𝑦 => 𝑡 √𝑡 + + > 0( 𝑑𝑜 đ𝑘 𝑙à 𝑡 ≥ −1) = 𝑥(đ𝑘 𝑦 ≠ 0) 𝑦2 2(𝑥 − 2𝑦 − 1)√𝑥 − + 2(𝑥 + 4𝑦 + 2)√𝑥 + = 𝑥 + 24(1) 𝑏à𝑖 75: { √𝑥 − 2𝑦 − + 2√𝑥 + 4𝑦 + = √2𝑦 + + √𝑥 + 28𝑦 + 14(2) 𝑔𝑖ả𝑖 𝑥≥1 𝑥 − 2𝑦 − ≥ 𝑥 + 4𝑦 + ≥ đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦≥− {𝑥 + 28𝑦 + 14 ≥ 𝑝𝑡(2): √𝑥 − (2𝑦 + 1) − √2𝑦 + = √𝑥 + 14(2𝑦 + 1) − √4𝑥 + 8(2𝑦 + 1) 𝑥 − 2(2𝑦 + 1) √𝑥 − (2𝑦 + 1) + √2𝑦 + = −3(𝑥 − 2(2𝑦 + 1)) √𝑥 + 14(2𝑦 + 1) + √4𝑥 + 8(2𝑦 + 1) 𝑣ậ𝑦 𝑥 − 2(2𝑦 + 1) = ℎ𝑎𝑦 𝑝𝑡 𝑐ò𝑛 𝑙ạ𝑖 𝑣ơ 𝑛𝑔ℎ𝑖ệ𝑚 𝑑𝑜 𝑉𝑇 > 𝑚à 𝑉𝑃 < 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1)𝑣ớ𝑖 2𝑦 + = 𝑥 (4𝑥 + 2)√𝑥 + 𝑥 + + (2𝑥 − 𝑦)√𝑦 + 4𝑥 − 4𝑥𝑦 + = 𝑦 − 4𝑥 − 1(1) 𝑏à𝑖 76: { √𝑦 + + √2 − 𝑥 = 𝑥 + 𝑦 − 2(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ −4 𝑣à 𝑥 ≤ 𝑝𝑡(1): (4𝑥 + 2)√𝑥 + 𝑥 + + (2𝑥 − 𝑦)√(2𝑥 − 𝑦)2 + = 𝑦 − 4𝑥 − (2𝑥 + 1)√(2𝑥 + 1)2 + + (2𝑥 + 1) = (𝑦 − 2𝑥)√(𝑦 − 2𝑥)2 + + (𝑦 − 2𝑥) 𝑥é𝑡 𝑓(𝑡) = 𝑡√𝑡 + + 𝑡 𝑣ậ𝑦 𝑓 ′ (𝑡) > 𝑛ê𝑛 𝑡𝑎 𝑐ó 2𝑥 + = 𝑦 − 2𝑥 => 4𝑥 + =𝑦 2𝑥 𝑦 + 3𝑥𝑦 = 4𝑥 + 9𝑦(1) 𝑏à𝑖 77: { 7𝑦 + = 2𝑥 + 9𝑥(2) 𝑔𝑖ả𝑖 4𝑥 2𝑥 + 9𝑥 − 𝑝𝑡(1) 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2): 𝑦 = = 2𝑥 + 3𝑥 − 28𝑥 = (2𝑥 + 3𝑥 − 9)(2𝑥 + 9𝑥 − 6)(∗∗) −9 ± 3√33 𝑝𝑡(∗∗): 𝑥 = −2, 𝑥 = , 𝑥 = (𝑡ℎế 𝑡ừ𝑛𝑔 𝑐á𝑖 𝑣à𝑜 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑦) 𝑏à𝑖 78: { 𝑥 + 𝑦 + 𝑧 = 20102 (1) 𝑥 + 𝑦 + 𝑧 = 20103 (2) 𝑔𝑖ả𝑖 𝑡ừ 𝑝𝑡(1): 𝑡𝑎 𝑠𝑢𝑦 𝑟𝑎 đượ𝑐 |𝑥|, |𝑦|, |𝑧| ≤ 2010 𝑠𝑢𝑦 𝑟𝑎 𝑥 + 𝑦 + 𝑧 ≤ |𝑥 | + |𝑦 | + |𝑧 | ≤ 2010(𝑥 + 𝑦 + 𝑧 ) = 20103 𝑥 = 𝑣à 𝑥 = 2010 𝑑ấ𝑢 =𝑥ả𝑦 𝑟𝑎 𝑘ℎ𝑖 {𝑦 = 𝑣à 𝑦 = 2010 𝑧 = 𝑣à 𝑧 = 2010 𝑥 + + 𝑦 + 𝑥𝑦 = 𝑦(1) 𝑦 𝑏à𝑖 79: { 𝑥+𝑦−2= (2) + 𝑥2 𝑔𝑖ả𝑖 𝑣ì 𝑦 = 𝑘ℎô𝑛𝑔 𝑝ℎả𝑖 𝑙à 𝑛𝑔ℎ𝑖ệ𝑚 𝑐ủ𝑎 ℎ𝑝𝑡 𝑛ê𝑛 𝑡𝑎 𝑥é𝑡 𝑦 ≠ 𝑘ℎ𝑖 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1)𝑐ℎ𝑜 𝑦 𝑥2 + +𝑦+𝑥 =1 𝑦 𝑦 𝑥2 + đặ𝑡 𝑎 = ,𝑏 = 𝑥 + 𝑦 𝑦 𝑎+𝑏 =1 => 𝑎 = 1, 𝑏 = { 𝑏−2= 𝑎 𝑏à𝑖 80: { √𝑥 − 𝑦 + 3𝑦 𝑥 + √6𝑥 − 𝑥 = 𝑥√2𝑦 − + 𝑥(1) √2𝑥 − − √𝑦 − = 𝑥 − 𝑥 − 𝑦 − 5(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ , 𝑦 ≥ 𝑝𝑡(1): 𝑡𝑎 𝑣ì 𝑥 = 𝑘ℎô𝑛𝑔 𝑝ℎả𝑖 𝑛𝑔ℎ𝑖ệ𝑚 𝑐ủ𝑎 ℎ𝑝𝑡 𝑛ê𝑛 𝑥é𝑡 𝑥 ≠ 𝑡𝑎 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1)𝑐ℎ𝑜 𝑥: 𝑦 𝑦 √1 − ( ) + ( ) + √6𝑥 − = √2𝑦 − + 𝑥 𝑥 𝑦 𝑦 −( ) + 3( ) 𝑥 𝑥 3 𝑦 𝑦 𝑦 𝑦 ( √1 − (𝑥 ) + (𝑥 ) ) + √1 − (𝑥 ) + (𝑥 ) + = 2𝑦 − 6𝑥 √2𝑦 − + √6𝑥 − 𝑦 𝑦 − ( ) ( − 3) 𝑥 𝑥 = 𝑦 𝑦 𝑦 𝑦 ( √1 − (𝑥 ) + (𝑥 ) ) + √1 − (𝑥 ) + (𝑥 ) + 2(𝑦 − 3𝑥) √2𝑥 − + √6𝑥 − 𝑣ậ𝑦 𝑦 = 3𝑥 𝑣à 𝑝𝑡 𝑐ò𝑛 𝑙ạ𝑖 𝑣𝑛 𝑑𝑜 𝑉𝑇 < 𝑚à 𝑉𝑃 >) 𝑡ℎế 𝑦 = 3𝑥 𝑣à𝑜 𝑝𝑡(2) 𝑑à𝑛ℎ 𝑐ℎ𝑜 𝑏ạ𝑛 đọ𝑐 ‼! √𝑥 + 𝑥 + 𝑥 − 𝑦 = 𝑦 − 𝑥(1) 𝑏à𝑖 81: { √𝑥 + 𝑥 − + (𝑦 − 1)√𝑦 + + (𝑥 + 𝑥 − 3)(𝑦 − 1) = 7(2) 𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥 + 𝑥 + 𝑥 − 𝑦 = 𝑦 − 2𝑥𝑦 + 𝑥 (𝑦 ≥ 𝑥) 𝑥 + 𝑥 − 𝑦 = 𝑦 − 2𝑥𝑦 𝑦 + 𝑦(−2𝑥 + 1) − 𝑥 − 𝑥 = 𝑑𝑒𝑛𝑡𝑎 = 4𝑥 − 4𝑥 + − 4(−𝑥 − 𝑥) = 4𝑥 + + 4𝑥 = (2𝑥 + 1)2 ≥ 𝑦= [ 2𝑥 − − 2𝑥 − = −𝑥 + 𝑥 − 1(𝑝𝑡𝑣𝑛 𝑑𝑜 𝑦 − 𝑥 ≥ 𝑚à − 𝑥 − < 0) 2𝑥 − + 2𝑥 + 𝑦= = 𝑥 + 𝑥(𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) 3√𝑥 − 2𝑥𝑦 + 𝑦 + 𝑥 − 𝑦 = 4(1) 𝑏à𝑖 82: { 𝑥√𝑥 − 𝑦 − (𝑥 + 1)√𝑦 + (𝑥 + 2)√𝑦 + = 17(2) 𝑔𝑖ả𝑖 𝑦≥0 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: {𝑦 ≥ −3 𝑥≥𝑦 𝑝𝑡(1): 3√(𝑥 − 𝑦)2 + 𝑥 − 𝑦 = 𝑣ậ𝑦 𝑥 − 𝑦 = 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑔𝑖ả𝑖 𝑏ì𝑛ℎ 𝑡ℎườ𝑛𝑔 ‼! 4(𝑥 + 𝑦)√𝑥 − + 4(𝑥 + 3𝑦) 3√𝑥 − 8𝑦 = 3(1) 𝑏à𝑖 83: { 𝑥 + 2𝑦 3 2(𝑥 + 𝑦)√ = √𝑥 + 3𝑥 𝑦 + 𝑥 + 3𝑦(2) 𝑥 𝑔𝑖ả𝑖 𝑥 ≥ 8𝑦 𝑥≥1 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 + 2𝑦 ≥0 𝑥 { 𝑥≠0 𝑝𝑡(2): √𝑥(𝑥 + 2𝑦) + (√𝑥 + 2𝑦) 3 = √𝑥 (𝑥 + 3𝑦) + 𝑥 + 3𝑦 √𝑥 𝑏3 đặ𝑡 𝑎 = √𝑥 + 2𝑦, = 𝑥 + 3𝑦 𝑥 𝑎3 𝑏3 𝑎 √𝑥 + =𝑏+ 𝑥 √𝑥 (𝑎√𝑥 − 𝑏) + (𝑎√𝑥 − 𝑏) + √𝑥 √𝑥 (𝑎 − (𝑎 − ( 𝑏 √𝑥 𝑎2 + 𝑣ậ𝑦 𝑎√𝑥 − 𝑏 = ℎ𝑎𝑦 + 𝑏 √𝑥 ) (𝑎 + ) )=0 𝑎𝑏 √𝑥 + 𝑏2 )=0 𝑥 𝑎𝑏 𝑏 + √𝑥 𝑥 = 0(𝑝𝑡𝑣𝑛 𝑑𝑜 𝑉𝑇 > ) 𝑥 𝑣ậ𝑦 √(𝑥 + 2𝑦)𝑥 = √𝑥 (𝑥 + 3𝑦) (𝑥 + 2𝑦𝑥)3 = 𝑥 (𝑥 + 3𝑦)2 𝑥 + 6𝑥 𝑦 + 12𝑥 𝑦 + 8(𝑥𝑦)3 = 𝑥 (𝑥 + 6𝑥𝑦 + 9𝑦 ) = 𝑥 + 6𝑥 𝑦 + 9𝑥 𝑦 3𝑥 𝑦 + 8(𝑥𝑦)3 = 𝑣ậ𝑦 [ 𝑦=0 3𝑥 + 8𝑦 = (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) (3𝑥 + 3𝑥𝑦) (1 + √1 + 9𝑥 ) (√5 + 𝑦 − √1 + 𝑦) = 8(1) 𝑏à𝑖 84: { −243𝑥 (1 + 𝑦) + 18𝑥 (1 + 𝑦) + 78𝑥 = √27𝑥 − 14(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ 𝑦 ≥ −1 để ý 𝑝𝑡(1): 3𝑥(1 + 𝑦) (1 + √1 + 9𝑥 ) = 2(√5 + 𝑦 + √1 + 𝑦) 𝑇𝐻1: + 𝑦 = 𝑣ậ𝑦 𝑦 = −1 𝑝𝑡(1)𝑡ℎấ𝑦 𝑣ô 𝑛𝑔ℎ𝑖ệ𝑚 𝑇𝐻2: + 𝑦 ≠ 𝑡𝑎 𝑐ℎ𝑖𝑎 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1)𝑐ℎ𝑜 + 𝑦 5+𝑦 3𝑥 (1 + √1 + (3𝑥)2 ) = 2√ + (1 + 𝑦)2 √1 + 𝑦 3𝑥 + √(3𝑥)2 𝑥é𝑡 𝑓(𝑡) = 𝑡 + + (3𝑥)4 √𝑡 𝑡4 + ′ (𝑡) =1+ 𝑣ậ𝑦 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑛ê𝑛 ∶ 3𝑥 = = √( ) +( ) +( ) √1 + 𝑦 √1 + 𝑦 √1 + 𝑦 𝑣ậ𝑦 𝑓 2𝑡 + 4𝑡 2√𝑡 + 𝑡 √1 + 𝑦 =1+ + 2𝑡 √𝑡 + => + 𝑦 = 4𝑥𝑦 + = 𝑥 + 2√𝑥𝑦(1) 𝑏à𝑖 85: { −1 −1 (𝑥 √𝑥) + 8𝑦√𝑦 = (√𝑥) + 6√𝑦(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 > 𝑣à 𝑦 ≥ 9𝑥 >0 𝑝𝑡(2): 1 + 𝑦) = + √𝑦 (2 √ 𝑥 √ (√𝑥) 3 + 2(√𝑥𝑦) = 𝑥 + 6(√𝑥) √𝑦 𝑙ấ𝑦 𝑝𝑡(1)𝑡ℎế 𝑝𝑡(2): 2√𝑥𝑦 − 4𝑥𝑦 + 2(√𝑥𝑦) = 6𝑥(√𝑥𝑦) 𝑣ậ𝑦 𝑥 = ℎ𝑎𝑦 𝑦 = ℎ𝑎𝑦 − 4√𝑥𝑦 + 2𝑥𝑦 = 6𝑥 𝑣ớ𝑖 𝑥 = − 4√𝑥𝑦 + 2𝑥𝑦 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(1) (2015 − 2𝑥)√4 − 𝑥 + (4𝑦 − 2013)√3 − 2𝑦 = 0(1) 𝑏à𝑖 86: { 2√7𝑥 − 8𝑦 + 3√14𝑥 − 18𝑦 = 𝑥 + 6𝑥 + 13(2) 𝑔𝑖ả𝑖 𝑥≤4 𝑦≤ đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 7𝑥 − 8𝑦 ≥ {14𝑥 − 18𝑦 ≥ 𝑝𝑡(1): 2007(√4 − 𝑥) + 2(√4 − 𝑥) = 2007(√3 − 2𝑦) + 2(√3 − 2𝑦) 𝑥é𝑡 𝑓(𝑡) = 2007𝑡 + 2𝑡 𝑣ậ𝑦 𝑓 ′ (𝑡) = 2007 + 3𝑡 > 𝑛ê𝑛 − 𝑥 = − 2𝑦 => 𝑥 − 2𝑦 = (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) 𝑥 − (𝑥𝑦 + ) = √3𝑥 + + 3(1) 𝑥 𝑏à𝑖 87: (đ𝑘 𝑥, 𝑦 12𝑥 + 8𝑥 2 (2𝑥 + 1) − (2) = (2𝑥𝑦 + 1) + 8𝑦 − 𝑥2 𝑥 𝑦+1 { ∈ [−1; +∞)) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≠ 𝑝𝑡(2): 4𝑥 + 4𝑥 − 12 − = 4(𝑥𝑦)2 + 4𝑥𝑦 + 8𝑦 − 𝑥 𝑥 𝑥𝑦 + 𝑥 8 4𝑥 − + 4𝑥 = (𝑥𝑦 + ) − + (𝑥𝑦 + ) 𝑥 𝑥 𝑥 𝑥𝑦 + 𝑦 𝑥é𝑡 𝑓(𝑡) = 4𝑡 − + 4𝑡 𝑣ậ𝑦 𝑓 ′ (𝑡) > 𝑡 𝑣ậ𝑦 𝑥 = 𝑥𝑦 + 𝑏à𝑖 88: { (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) 𝑑ù𝑛𝑔 𝑐𝑎𝑟𝑛𝑎𝑑𝑜 𝑐ℎ𝑜 𝑝𝑡 𝑏ậ𝑐 3) 𝑥 2017𝑥−𝑦−2 (√𝑥 + + 𝑥) (√𝑦 + 4𝑦 + − 𝑦 − 2) = 1(1) 2√𝑦 + 4𝑦 + = 2√𝑥 − + 𝑥 (2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ 𝑥 ≥ 𝑝𝑡(1): 2017𝑥 (√𝑥 + + 𝑥) = (√(𝑦 + 2)2 + + (𝑦 + 2)) 2017𝑦+2 𝑡𝑎 𝑥é𝑡 𝑓(𝑡) = 2017𝑡 (√𝑡 + + 𝑡) 𝑣ậ𝑦 𝑓 ′ (𝑡) > 𝑣ậ𝑦 𝑥 = 𝑦 + (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) 𝑡𝑎 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à 𝑦 = 0, 𝑥 = 2) (3𝑦 + 8)√𝑥 + = 10𝑦 − 3𝑥𝑦 + 12(1) 𝑏à𝑖 89: { (𝑏𝑦 𝑁𝑔𝑢𝑦ễ𝑛 𝑇ℎế 𝑇â𝑛 ) 5𝑦 √2 − 𝑥 − = 6𝑦 + 𝑥𝑦 √2 − 𝑥(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ −2 ≤ 𝑥 ≤ 𝑝𝑡(2): (5 − 𝑥)𝑦 √2 − 𝑥 − = 6𝑦 (𝑦√2 − 𝑥) − + 3𝑦 √2 − 𝑥 − 6𝑦 = (𝑦√2 − 𝑥 − 2)(𝑦 (2 − 𝑥) + 2𝑦√2 − 𝑥 + 4) + 3𝑦 (𝑦√2 − 𝑥 − 2) = 𝑣ậ𝑦 𝑦√2 − 𝑥 − = ℎ𝑎𝑦 𝑦 (2 − 𝑥) + 2𝑦√2 − 𝑥 + + 3𝑦 = (𝑝𝑡𝑣𝑛 𝑑𝑜 𝑉𝑇 > 0) 𝑣ớ𝑖 𝑦√2 − 𝑥 − = 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) 𝑡𝑎 đượ𝑐 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 1.2 √𝑥 − 𝑦 + + √3𝑥 + 2𝑦 + = 3𝑥 + 1(1) (𝑏𝑦 𝑁𝑔𝑢𝑦ễ𝑛 𝑇ℎế 𝑇â𝑛) 𝑏à𝑖 90: { 𝑥√𝑥 − + √𝑥 + 3𝑦 + = (𝑦 + 5)√𝑦 + 1(2) 𝑔𝑖ả𝑖 𝑦≥0 𝑥≥2 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 − 𝑦 + ≥ 3𝑥 + 2𝑦 + ≥ { 𝑥 + 3𝑦 + ≥ 3 𝑝𝑡(2): (√𝑥 − 2) − (√𝑦 + 1) + 2√𝑥 − − 4√𝑦 + + √𝑥 + 3𝑦 + = 2 (√𝑥 − − √𝑦 + 1) ((√𝑥 − 2) + √(𝑥 − 2)(𝑦 + 1) + (√𝑦 + 1) ) + 2(√𝑥 − − √𝑦 + 1) − √4𝑦 + + √𝑥 + 3𝑦 + = 2 (𝑥 − 𝑦 − 3) ((√𝑥 − 2) + √(𝑥 − 2)(𝑦 + 1) + (√𝑦 + 1) ) + (√𝑥 − + √𝑦 + 1) 𝑥−𝑦−3 √𝑥 + 3𝑦 + + √4𝑦 + + 2(𝑥 − 𝑦 − 3) √ 𝑥 − + √𝑦 + =0 𝑥 − 𝑦 − = 0(𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) 𝑣ậ𝑦 [ (√𝑥 − 2) + √(𝑥 − 2)(𝑦 + 1) + (√𝑦 + 1) (√𝑥 − + √𝑦 + 1) + + (√𝑥 − + √𝑦 + 1) (√𝑥 + 3𝑦 + + √ 𝑥 + 3𝑥 + 𝑦 2𝑦 − 𝑥 − √ − √𝑦 − = (1) 2 𝑏à𝑖 91: 3 2 {𝑥 − 5𝑥 − 4𝑦 + 32𝑦 + √𝑥 − 35 = √2(𝑦 − 1) + √−𝑥 + 9𝑥 − 19𝑥 + 11(2) 𝑔𝑖ả𝑖 đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ 1(∗) 𝑝𝑡(1): √( 𝑥+2 𝑥+2 𝑥+2 𝑦 ) −( ) + ( ) = √𝑦 − + 𝑦 2 2 2𝑡 − 𝑡 + > 0(𝑑𝑜 đ𝑘(∗) => 𝑡 ≥ 1) 𝑥é𝑡 𝑓(𝑡) = √𝑡 − + 𝑡 𝑣ậ𝑦 𝑓 ′ (𝑡) = 𝑡 2√ 𝑡 − 𝑣ậ𝑦 𝑥+2 = 𝑦(𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)) THÔI !!CHUYÊN ĐỀ VỀ HPT CỦA CHÚNG TA KẾT THÚC TẠI ĐÂY ĐƯỢC RỒI !! BỞI VÌ KHƠNG CĨ TIME +PHIÊN BẢN NÊN KHÔNG THỂ KHÔNG TRÁNH KHỎI SAI SĨT THIẾU SĨT MONG AE THƠNG CẢM BỎ QUA Ạ !!!RẤT VUI LỊNG VỚI SỰ GĨP Ý CỦA AE CHÚC CÁC BẠN ĐỌC ĐƯỢC NHIỀU SỨC KHỎE THÀNH CÔNG TRONG CUỘC SỐNG NÀY NHA !!!!

Ngày đăng: 05/02/2018, 07:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w