1. Trang chủ
  2. » Giáo án - Bài giảng

CÔNG THỨC GIẢI NHANH NGUYÊN HÀM TÍCH PHÂN

14 2,1K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,58 MB

Nội dung

www.facebook.com/groups/TaiLieuOnThiDaiHoc01 w w fa ce bo ok c om /g ro up s/ Ta iL ie uO nT hi D H oc 01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan w 1| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan CÔNG THỨC NGUYÊN HÀM CƠ BẢN VÀ MỞ RỘNG  dx  x  C  du  u  C x 1  C    1  1 ax x a dx   C   a  1  ln a dx  x  ln x  C  x   x x  e dx  e  C u1  C    1  1 au u a dx   C   a  1  lna du  u  ln u  C  u   u u  e du  e  C  cos xdx  sin x  C  cos udu  sin u  C  sin xdx   cos x  C  sin udu   cos u  C x H oc ie iL sin kx C k u dx  tan x  C  sin u du  tan u  C du   cot u  C ro  cos  cos dx   cot x  C s/ x  cos kxdx  up  sin cos kx C k Ta  sin kxdx     u du  uO nT hi D   x dx  01 CÔNG THỨC NGUYÊN HÀM HAY GẶP  ax  b   C a c  d  ax  b   om /g CÔNG THỨC NGUYÊN HÀM MỞ RỘNG  1 bo ok  ax  b     ax  b  dx  a     dx ax  b dx  w w w fa e a c ce  ax  b  a ln ax  b  c px  q dx  ax  b e c a e kx C k  cos  ax  b  dx  a sin  ax  b   c  sin  ax  b  dx  1 cos  ax  b   c a  tg  ax  b  dx   a ln cos  ax  b   c a px  q  c p ln a dx x  a  x  a arctg a  c  c ,   1 kx  e dx   cotg  ax  b  dx  a ln sin  ax  b   c dx 1  sin  ax  b   a cotg  ax  b   c 2| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan x dx a x 2  ln  x  x  a   c  arcsin dx x a 2  x x a  x2  a2   c  x x  a a ln x x a a2  x2  c x  x2   c x a  arc cotg a dx  x arc cotg a  ln  a b dx  ln  ax  b  dx   x  a  ln  ax  b   x  c  x2   c ax  b c ie dx x a2  x2 a2 x  arcsin  c 2 a s/ Ta  sin  ax  b   a ln tg ax  e cos bx dx  up e ax  a sin bx  b cos bx  c a  b2  sin  ax  b   a ln tg ax  b c e ax  a cos bx  b sin bx  c a  b2 ro ax  e sin bx dx  x a  x2  c  arctg a dx  x arctg a  ln  a dx  x  arccos a dx  x arccos a  x arccos  c a a a  x dx  x  arcsin a dx  x arcsin a  x c a  dx  tg  ax  b   c  ax  b  a 01 x a 2 H oc dx  cos  dx ax  ln c x 2a a  x uO nT hi D  iL a bo ok c om /g CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  PHƯƠNG PHÁP ĐỔI BIẾN SỐ I Phương pháp đổi biến số dạng Để tính tích phân dạng , ta cần thực theo bước sau 1/ Quy tắc :  Bước 1: Đặt x=v(t)  Bước 2: Tính vi phân hai vế đổi cận  Bước 3: Phân tích f(x)dx=f(v(t))v'(t)dt ce  Bước 4: Tính v (b ) b  a f ( x)dx   v(a )  Bước 5: Kết luận : I= G (t ) fa g (t ) dt  G (t ) v(b) v(a ) v(b) v(a ) w w w 2/ Nhận dạng : ( Xem lại phần nguyên hàm ) * Chú ý : a Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu thông thường : Dấu hiệu Cách chọn 3| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01  a     t   ;  x  sin t  2   a    t   0;   \   x  cost 2  a2  x2      x  a tan t  t    ;      x  a cot t  t   0;   ax ax  ax a x x=a.cos2t x=a+  b  a  sin t  x  a  b  x   ie b Quan trọng nhận dạng : - Ví dụ : Trong dạng phân thức hữu tỷ :  H oc x2  a2     x  a sin t    t    x  a cost   t   uO nT hi D a2  x2 01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan   a x  2 k 1 k  Z  om II Đổi biến số dạng dx ro   /g * áp dụng để giải toán tổng quát : up s/ Ta iL 1 1 * dx       dx   du 2 a u k   ax  bx  c  b       a  x+       2a   2a     b  Với :  u  x+ , k  , du  dx  2a 2a   ok c Quy tắc : ( Ta tính tích phân phương pháp đổi biến số dạng theo bước sau : )  Bước 1: Khéo léo chọn hàm số u(x) đặt t : t=u(x)  Bước 2: Tính vi phân hai vế đổi cận : dt=u'(x)dx  Bước 3: Ta phân tích f(x)dx = g[u(x)]u'(x)dx = g(t)dt  f ( x)dx   a ce bo  Bước 4: Tính u (b ) b u(a)  Kết luận : I= G (t ) fa g (t )dt  G (t ) u (b) u ( a) u (b) u (a) w w w Nhận dạng : TÍCH PHÂN HÀM PHÂN THỨC HỮU TỶ  P( x) dx  ax+b  a  0 A DẠNG : I=   * Chú ý đến công thức : m m  dx  ln ax+b Và bậc P(x) cao hoắc ta   a  ax+b 4| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan    ax   P ( x) dx  bx  c 01  B DẠNG :  P( x) m  ax+b dx   Q( x)  ax+b dx   Q( x)dx  m ax+b dx chia tử cho mẫu dẫn đến  Công thức cần lưu ý :  u '( x) dx  ln u ( x)    u ( x) uO nT hi D    u '( x)dx  ln  u ( x)   u ( x) Thông thừơng ta đặt (x+b/2a)=t Tam thức : f ( x)  ax  bx  c vô nghiệm : s/ Ta iL b  u  x  P( x) P( x) 2a  Ta viết : f(x)=  ; 2 2  b      a  u  k  k    a  x        2a 2a   2a     ie  Ta có hai cách Cách 1: ( Hệ số bất định ) Cách 2: ( Nhẩy tầng lầu ) Tam thức : f ( x)  ax  bx  c có hai nghiệm kép Công thức cần ý : H oc Tam thức : f ( x)  ax  bx  c có hai nghiệm phân biệt   ax P( x) dx  bx  cx  d ro  C DẠNG : up Khi : Đặt u= ktant Cơng thức cần ý :   x dx  1  m1 1 m x  om  /g Đa thức : f(x)= ax  bx  cx  d  a   có nghiệm bội ba m bo ok c Đa thức : f(x)= ax  bx  cx  d  a   có hai nghiệm : Có hai cách giải : Hệ số bất định phương pháp nhẩy tầng lầu Đa thức : f(x)= ax  bx  cx  d  a   có ba nghiệm fa ce  PHÂN THỨC HÀM VÔ TỶ I KIẾN THỨC Cần nhớ số cơng thức tìm ngun hàm sau : f '( x ) dx  f ( x)  C f ( x) -  dx  ln x  x  b  C x b u '( x) - Mở rộng :  du  ln u ( x)  u ( x)  b  C u ( x)  b w w w - 2 5| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan  Tích phân dạng : I    ax  bx  c  a  0 dx a Lý thuyết : 01 b  x u   b     2a Từ : f(x)=ax  bx  c  a  x        du  dx 2a  4a     K  2a Khi ta có : - Nếu   0, a   f ( x)  a  u  k   H oc uO nT hi D f ( x)  a u  k (1) a  b    - Nếu :    f ( x)  a  x     (2) b 2a    f ( x)  a x  2a  a u  - Nếu :   f ( x)  a  x  x1  x  x2  (3) a  x1  x  x2  x  (4) +/ Với a0 : f ( x)  a  x  x1  x  x2   Ta iL Căn vào phân tích , ta có số cách giải sau : b Cách giải * Trường hợp :   0, a   f ( x)  a  u  k   f ( x)  a u  k s/ Khi đặt :   ce bo ok c om /g ro up  t2  c x  ; dx  tdt  b2 a b2 a bx  c  t  ax  ax  bx  c  t  a x     x    t  t0 , x    t  t1  t2  c t  a x  t  a  b2 a  a  b    * Trường hợp :    f ( x)  a  x     b a    f ( x)  a x  2a  a u   b  b  ln  x   : x  0    2a   2a a  1  Khi : I   dx   b dx    b   b a b   a x x  ln  x   : x  0 2a 2a 2a   2a  a  * Trường hợp :   0, a   x  x1  t fa - Đặt : ax  bx  c  a  x  x1  x  x2     x  x2  t w w w * Trường hợp :   0, a   x1  x  t - Đặt : ax  bx  c  a  x1  x  x2  x     x2  x  t  Tích phân dạng : I    mx  n ax  bx  c dx  a  0 6| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan b.1 : Phân tích f ( x)  mx  n ax  bx  c A.d   ax  bx  c ax  bx  c  B ax  bx  c 1 01 Phương pháp :    a   biết cách tính dx ax  bx  c  Tích phân dạng : I     mx  n  ax  bx  c  a  0 dx Phương pháp : b.1 Phân tích :  mx  n   (1) uO nT hi D    Trong H oc b.2 Quy đồng mẫu số , sau đồng hệ số hai tử số để suy hệ hai ẩn số A,B b.3 Giải hệ tìm A,B thay vào (1)   b.4 Tính I = A ax  bx  c  B dx (2)  ax  bx  c  n  m  x   ax  bx  c m     n  y  x  t  t  m   dy   x  t dx   n  b.2 Đặt :  x    y m  x   t  ax  bx  c  a   t   b   t   c      y y  y   ' dy b.3 Thay tất vào (1) I có dạng : I    Tích phân biết cách Ly  My  N ' ax  bx  c up s/ Ta iL ie ro tính    /g Tích phân dạng : I   R  x; y  dx   R  x; m om    x   x    dx  bo ok c ( Trong : R(x;y) hàm số hữu tỷ hai biến số x,y  ,  ,  ,  số biết ) Phương pháp : x  b.1 Đặt : t= m (1)  x  b.2 Tính x theo t : Bằng cách nâng lũy thừa bậc m hai vế (1) ta có dạng x    t  b.3 Tính vi phân hai vế : dx=  '  t  dt đổi cận  fa ce  x  b.4 Cuối ta tính :  R  x; m  x    w w w *) Tính tích phân: I     '   dx   R   t  ; t   '  t  dt '  mx  n dx, ax  bx  c  a  0 mx  n (trong f ( x )  liên tục đoạn  ;   ) ax  bx  c +) Bằng phương pháp đồng hệ số, ta tìm A B cho: 7| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan mx n A(2axb) B   ax2 bx c ax2 bxc ax2 bx c  Tích phân A(2axb) dx = Aln ax  bx  c ax bxc    Tích phân   *) Tính tích phân I  01  dx tính ax  bx  c  b H oc    +)Ta có I=  mxn A(2axb) B dx  dx  dx ax bxc  ax bxc  ax bx c uO nT hi D  P ( x)  Q( x) dx với P(x) Q(x) đa thức x a ie  Nếu bậc P(x) lớn bậc Q(x) dùng phép chia đa thức 1 ,  , , n đặt up s/ An P( x) A1 A2     Q ( x ) x  1 x   x  n Ta + Khi Q(x) có nghiệm đơn iL  Nếu bậc P(x) nhỏ bậc Q(x) xét trường hợp:   ro + Khi Q( x)   x    x  px  q ,   p  4q  đặt c Q( x)   x    x    với    đặt bo ok + Khi om /g P ( x) A Bx  C   Q ( x) x   x  px  q P ( x) A B C    Q( x) x   x   x    w w w fa ce  PHƯƠNG PHÁP TỪNG PHẦN Định lí Nếu u(x) v(x) hàm số có đạo hàm liên tục b  a; b thì: b b u ( x)v ( x)dx   u ( x)v( x)   v( x)u ' ( x) dx a a a   ' b b hay udv  uv b  vdu a a a   Áp dụng cơng thức ta có qui tắc cơng thức tích phân phần sau: 8| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan udv  uv ' dx cách chọn phần thích hợp f(x)  Bước 1: Viết f(x)dx dạng  Bước 3: Tính b   dv   v ( x)dx ' b  vdu  vu ' dx uv a 01 du  u ' dx v  a b a  Bước 2: Tính dv  v ' ( x )dx H oc làm u(x) phần lại uO nT hi D  Bước 5: Áp dụng công thức *Cách đặt u dv phương pháp tích phân phần b  P( x)e dx x a b b b  P( x)ln xdx  P( x)cos xdx  e cos xdx x a a a P(x) lnx P(x) dv e x dx P(x)dx cosxdx ex cosxdx Ta iL ie u s/ Chú ý: Điều quan trọng sử dụng cơng thức tích phân phần làm để chọn u up dv  v ' dx thích hợp biểu thức dấu tích phân f(x)dx Nói chung nên chọn u phần ro f(x) mà lấy đạo hàm đơn giản, chọn dv  v ' dx phần f(x)dx vi phân hàm /g số biết có nguyên hàm dễ tìm om Có ba dạng tích phân thường áp dụng tích phân phần:   P( x)Q( x)dx mà P(x)là đa thức chứa x Q(x) c  Nếu tính tích phân ok  e , cos ax, ce bo hàm số: ax fa w w    Nếu tính tích phân w du  P ' ( x)dx u  P( x)   sin ax ta thường đặt   dv  Q( x)dx v  Q( x) dx   P( x)Q( x)dx mà P(x) đa thức x Q(x) hàm số ln(ax)   du  Q '  x  dx u  Q ( x )   ta đặt   dv  P( x) dx v  P ( x)dx   9| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan   Nếu tính tích phân I  e  ax  cos bxdx J  eax sin bxdx   H oc 01 du  ae ax dx ax u  e   ta đặt   dv  cos bxdx v  sin bx  b uO nT hi D  du  ae ax dx ax u  e   đặt   dv  sin bxdx v   cos bx  b Trong trường hợp này, ta phải tính tích phân phần hai lần sau trở thành tích phân ban đầu Từ suy kết tích phân cần tính iL dx asinx  b cos x  c Ta  Tính I  ie  TÍCH PHÂN CÁC HÀM LƯỢNG GIÁC Đổi biến số để hữu tỉ hóa tích phân hàm lượng giác Phương pháp: s/ x 2dt t  tan  dx  1 t2 up Đặt dx  bo ce fa w w w 2dt biết cách tính  2at  b  c dx a sin x  b sin x cos x  c cos x  d Phương pháp: I  Đặt c Tính I  om  asinx  b cos x  c    c  b  t ok I /g ro 1 t2 2t Ta có: sin x  cos x  1 t2 1 t2 dx   a  d  sin x  b sin x cos x   c  d  cos x 2 dx cos x   a  d  tan x  b tan x   c  d   t  tgx  dt  dx dt tính I  2 cos x  a  d  t  bt   c  d   10 10| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan Tính I  m sin x  n cos x  p dx a sin x  b cos x  c  01 Phương pháp: m sin x  n cos x  p  A  a sin x  b cos x  c   B  a cos x  b sin x   C , x +) Vậy uO nT hi D a cos x  b sin x dx  a sin x  b cos x  c dx  C  a sin x  b cos x  c Tích phân  dx a cos x  b sin x  a sin x  b cos x  c dx  ln a sin x  b cos x  c  C Tích phân dx  asinx bcosx c tính  R sin x,cos x  dx , với R sin x,cos x  hàm hữu tỉ theo sinx, cosx up Nguyên hàm dạng s/ Tích phân tính ie  = A dx  B iL  m sin x  n cos x  p dx = a sin x  b cos x  c Ta I H oc +)Tìm A, B, C cho: ro Để tính nguyên hàm ta đổi biến số đa dạng tích phân hàm hữu tỉ mà ta biết cách tính tích phân .c 2t 1 t2 ;cos x  1 t2 1 t2 ok Ta có sin x  om /g  Trường hợp chung: Đặt t  tan x  dx  2dt 1 t2  Những trường hợp đặc biệt: R  sin x,cos x  hàm số chẵn với sinx cosx nghĩa bo +) Nếu ce R   sin x,  cos x   R  sin x,cos x  đặt t  tan x t  cot x , sau đưa w w w fa tích phân dạng hữu tỉ theo biến t +) Nếu R  sin x,cos x  hàm số lẻ sinx nghĩa là: R   sin x,cos x    R  sin x,cos x  đặt t  cos x +) Nếu 11 R  sin x,cos x  hàm số lẻ cosx nghĩa là: 11| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan R  sin x,  cos x    R  sin x,cos x  đặt t  sin x TÍCH PHÂN MỘT SỐ HÀM ĐẶC BIỆT 01 1.Cho hàm số y  f ( x) liên tục lẻ đoạn   a; a  Khi I H oc a  f ( x)dx  I y  f ( x) liên tục chẵn đoạn  a; a  Khi a a a uO nT hi D 2.Cho hàm số  f ( x)dx  2 f ( x)dx Chứng minh : Ta có a  I f ( x)dx  a  f ( x)dx (1) ie a  a f ( x)dx   f ( x)dx cách đặt x  t   t  a   dx  dt iL Ta tính J  0 a a a a 0 Ta a a a  f ( x)dx  2 f ( x)dx ro Thay (2) vào (1) ta I  a /g y  f ( x) liên tục chẵn đoạn   :   Khi om 3.Cho hàm số s/  f ( x)dx   f (t )dt   f (t )dt   f ( x)dx (2) up J  a    f ( x ) dx  Đặt t= -x  dt= - dx ok Chứng minh: c f (x) I   x dx  a 1  ce bo at  Ta có f(x) = f(-t)= f(t); a +1= a +1= at fa Khi x= -  t =  w w w Vậy x ; x =  I  f (x)   a x  1dx   -t  t =-   a t f (t )  a t  dt    at    a t  f ( t ) dt   12 f (t )   f (t )dt   t dt   f ( x)dx  I a     12| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan   f ( x) I   x dx   f ( x ) dx a 1   Suy  2 0  f (sin x)dx   f (cos x)dx H oc  01 4.Cho f(x) liên tục đoạn 0;   Khi     x  dx   dt Khi x = t  , x  t =  0     2 0  f (sin x)dx   f (sin(  t )dt   f (cos t )dt   f (cos x)dx iL Do ie t Ta Đặt uO nT hi D Chứng minh: 0;1   2     2   xf (cos x)dx    /g 0;1 ro  *Nếu f(x) liên tục   xf (sin x)dx   f (sin x)dx up *Nếu f(x) liên tục s/ Nhận xét : Bằng cách làm tương tự ta có cơng thức f (cos x)dx  w w fa ce bo ok c om  w 13 13| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 w w fa ce bo ok c om /g ro up s/ Ta iL ie uO nT hi D H oc 01 http://hoc24h.vn/ Thầy NGUYỄN TIẾN ĐẠT https://www.facebook.com/thaydat.toan w 14 14| Toán thầy Đạt – Chuyên luyện thi Đại Học khối 11, 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 ... tích phân phần hai lần sau trở thành tích phân ban đầu Từ suy kết tích phân cần tính iL dx asinx  b cos x  c Ta  Tính I  ie  TÍCH PHÂN CÁC HÀM LƯỢNG GIÁC Đổi biến số để hữu tỉ hóa tích phân. .. số biết có ngun hàm dễ tìm om Có ba dạng tích phân thường áp dụng tích phân phần:   P( x)Q( x)dx mà P(x)là đa thức chứa x Q(x) c  Nếu tính tích phân ok  e , cos ax, ce bo hàm số: ax fa w... cơng thức tích phân phần làm để chọn u up dv  v '' dx thích hợp biểu thức dấu tích phân f(x)dx Nói chung nên chọn u phần ro f(x) mà lấy đạo hàm đơn giản, chọn dv  v '' dx phần f(x)dx vi phân hàm

Ngày đăng: 16/01/2018, 23:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w