) n Môn – 2017 : (5 1/ y = x3 – 3x2 – 2/ y = x4 – 2x2 : (1,5 y= 3x 2x y= 4x x2 y= x 0;3 x – 2sinx : y = f(x) = HD Đặ x x (3 x)(6 x) = x 3;6 3 x 6 x ) Cho a 6, b – 8, c C x4 ax2 + bx + c ằ x ta có: – = – 3x2 – D= ( ’=3 0,25 – 6x 0,5 x 0; y(0) 7 3x2 – 6x = x 2; y(2) 11 ’= - 0,5 + ’ – + 0,75 y – ;0), (2;+ H H H = H = = 2/ (2,5 = –7 0,25 = – 11 0,25 – 2x2 D= 0,25 ’=4 ’= x ; y(0) 4x – 4x = x ; y(1) 1 x 1; y(1) 1 – 4x 0,5 – –1 ’ – 0,5 + + – + 0,75 y –1;0), (1;+ H H H = H = y= (1,5 – 2017 3x 2x ’= – ;–1), (0;1) = =– 0,25 u y(–1) = y(1) = –1 0,25 x [0;3] (2x 1) ’> x [0;3] 0,5 + y(0) = –2 ; y(3) = + max y y(3) y y(0) 2 x[0;3] x[0;3] 0,5 0,5 4x x2 +y= D = \{2} + lim y lim x 2 x 2 4x x2 4x , x 2 x + lim y lim x 2 V x=2 5 x(4 ) 4 x lim x 4 + lim y lim 2 x x x x(1 ) 1 x x 5 x(4 ) 4 x lim x 4, lim y lim 2 x x x x(1 ) 1 x x V 0,5 0,5 y=4 x – 2sinx +y= D= ’= – 2cosx cosx = ’= /2 x k2 ; x k2 6 0,25 0,25 ’’ = + ’’ 0,25 k2 ) = > H = + ’’ k2 ) = –1 < = k2 , y( k2 )= + ( k2 ) 6 H y= Đặ k2 , y( k2 ) = ( k2) – 6 0,25 x x (3 x)(6 x) = 3 x 6 x + t2 = + (3 x)(6 x) 0,5 + t (3 x)(6 x) 18 nên t 3;3 +F(t) = t t 2 t 3;3 0,25 F’ = –t + 1; F’ + F(3) = ; F (3 2) t=1 = 9 + max f (x) max F(t) F(3) x x = x=–3, x = 3 x 6 3 t 3 0,25 + f (x) F(t) F(3 2) 3 x 6 3 t 3 Xé f’ f =4 = – 2ax – f’’ ó f’ f’ + Do a b –8 = d 3 x 6 x =3 x = – ax2 – bx – + Vì a nên x f’’ + x 9 2 – 2a ó f’ 0,25 = – (2a + b) f’ x d óf + x ta có f(x) f(1) = – (a + b + c) + Vì a 6, b –8 c nên f(x) 0, x + Hay x4 ax2 + bx + c, x 0,25 ... x 1; y(1) 1 – 4x 0,5 – –1 ’ – 0,5 + + – + 0,75 y –1;0), (1;+ H H H = H = y= (1,5 – 2017 3x 2x ’= – ;–1), (0;1) = =– 0,25 u y(–1) = y(1) = –1 0,25 x [0;3] (2x 1) ’> x [0;3]