1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file

25 684 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,07 MB

Nội dung

Bài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file wordBài toán vận dụng cao Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN ỨNG DỤNG Có lời giải file word

PHẦN CUỐI: BÀI TOÁN VẬN DỤNG (8.9.10) Chủ đề NGUYÊN HÀM TÍCH PHÂN - ỨNG DỤNG Câu 1: (SGD VĨNH PHÚC)Gọi S  t  diện tích hình phẳng giới hạn đƣờng y  x  1 x  2 , y  , x  , x  t (t  0) Tìm lim S  t  t  A  ln  B ln  C  ln D ln  Hướng dẫn giải Chọn B Cách 1: *Tìm a, b, c cho  x  1 x  2  a bx  c  x  ( x  2)2   a  x     bx  c  x  1   ax2  4ax  4a  bx2  bx  cx  c a  b  a       a  b  x   4a  b  c  x  4a  c  4a  b  c   b  1  4a  c  c  3   *Vì  0;t  , y   x  1 x    nên ta có: t  t   1 x3  Diện tích hình phẳng: S  t     d x     0  x   x  22 dx     x  1 x      t  1    x 1      dx   ln   x   x    x  2   x2 x20 0  t  ln t 1 1   ln  t2 t2  t 1   t 1    lim ln   lim *Vì lim  0   t  t  t  t  t    t2 1  t 1   ln    ln  Nên lim S  t   lim  ln t  t  2  t2 t2 Cách 2: Dùng Máy tính cầm tay Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 t   Diện tích hình phẳng: S  t      dx     x  1 x    Cho t  100 ta bấm máy  100      dx  0,193   x  1 x  2    Dùng máy tính kiểm tra kết ta đƣợc đáp án B  Câu 2:  sin x (NGUYỄN KHUYẾN TPHCM) Cho tích phân I   dx J   dx  tan x cosx  sin x 0   với    0;  , khẳng định sai  4  cos x dx cosx  sin x A I   B I  J  ln sin   cos C I  ln  tan  D I  J   Hướng dẫn giải Chọn C Ta 1 cos    nên A  tan   sin  cos   sin  cos   d  cos x  sin x  cos x  sin x I J  dx   ln cos x  sin x cos x  sin x cos x  sin x 0    ln cos   sin  B  I  J   dx  x 0   D Câu 3: (NGUYỄN KHUYẾN TPHCM) Cho hàm số f  x   x   4t  8t  dt Gọi m, M lần lƣợt giá trị nhỏ nhất, giá trị lớn hàm số f  x  đoạn  0;6 Tính M  m A 18 B 12 C 16 D Hướng dẫn giải f  x  x   4t  8t  dt   t  4t  x  x  x  , với x  f   x   x  4; f   x    x   1;6 f    3; f    1; f    15 Suy M  15, m  1 Suy M  m  16 Đáp án: C Câu 4: (NGUYỄN KHUYẾN TPHCM) Giả sử  x 1  x  số nguyên dƣơng Tính 2a  b bằng: A 2017 B 2018 2017 1  x  dx  a a C 2019 1  x   b b  C với a, b D 2020 Hướng dẫn giải Ta có:  x 1  x  2017 dx    x   11  x  2017  dx   1  x  2017  1  x  2018  1  x  dx   2018 2018 1  x   2019 2019 C Vậy a  2019, b  2018  2a  b  2020 Chọn D Câu 5: (NGUYỄN KHUYẾN TPHCM) Cho F  x  nguyên hàm hàm số f  x   e 3 x F     ln Tập nghiệm S phƣơng trình 3F  x   ln  x3  3  là: A S  2 B S  2; 2 C S  1; 2 D S  2;1 Hướng dẫn giải Ta có: F  x    dx  ex  x     dx  x  ln  e  3  C x x  e 3  e 3     1 Do F     ln nên C  Vậy F  x   x  ln  e x  3 3 Do đó: 3F  x   ln  e x  3   x  Chọn A Câu 6: (NGUYỄN KHUYẾN TPHCM) Cho f ( x), g ( x) hàm số liên tục đoạn  2;  thỏa mãn  A  [3g ( x)  f ( x)]dx  C 6 3 f ( x)dx  3;  f ( x)dx  7;  g ( x)dx  Hãy tìm mệnh đề KHƠNG B  [3 f ( x)  4]dx  ln e6 ln e6  [2f ( x) 1]dx  16 D  [4 f ( x)  g ( x)]dx  16 Hướng dẫn giải Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55  6 f ( x)dx   f ( x)dx   f( x)dx  10 6 3 Ta có:  [3g ( x)  f ( x)]dx  3 g ( x)dx   f ( x)dx  15   nên A 3 2  [3 f ( x)  4]dx  3 f( x)dx  4 dx    nên B ln e6 6 2 2  [2f ( x) 1]dx   [2f ( x) 1]dx  2 f( x)dx 1 dx  20   16 nên C ln e6  6 3 [4f ( x)  g ( x)]dx   [4f ( x)  g ( x)]dx   f( x)dx   g ( x)dx  28  10  18 Nên D sai Chọn đáp án D Câu 7: (NGUYỄN KHUYẾN TPHCM) Giả 2x 3 2x  e (2 x  5x  x  4)dx  (ax  bx  cx  d )e  C Khi a  b  c  d A -2 B C sử D Hướng dẫn giải Chọn B Ta  (ax e 2x (2 x3  x  x  4)dx  (ax3  bx  cx  d )e2 x  C nên  bx  cx  d )e x  C  '  (3ax  2bx  c)e x  2e x (ax  bx  cx  d )   2ax3  (3a  2b) x  (2b  2c) x  c  2d  e x  (2 x3  x  x  4)e2 x  2a  a  3a  2b  b     Do  Vậy a  b  c  d   2b  2c  2 c  2 c  2d  d  Câu 8: (NGUYỄN KHUYẾN TPHCM) Cho biết  f ( x)dx  15 Tính giá 1 P   [f (5  3x)  7]dx A P  15 B P  37 C P  27 Hướng dẫn giải D P  19 trị t   3x  dx   Để tỉnh ta P dt x 0t 5 x   t  1 đặt nên 5  dt 1 P   [f (t )  7]( )   [f (t )  7]dt    f (t ) dt   dt  3 1  1 1  1 1  15  7.(6)  19 3 chọn đáp án D Câu 9: (NGUYỄN KHUYẾN TPHCM) Cho hàm số f  x   a sin x  b cos x thỏa mãn   f '    2  adx  Tính tổng a  b bằng: 2 a b A B C D Hướng dẫn giải Chọn C f '  x   2a cos x  2b sin x   f '    2  2a  2  a  2 b b a  adx   dx   b 1   b  Vậy a  b    ln Câu 10: (TRẦN HƢNG ĐẠO NB) Biết rằng:    x  2e  a  dx  ln  b ln  c ln Trong 1  x a, b, c số nguyên Khi S  a  b  c bằng: A B C D Hướng dẫn giải Chọn C   0  x  2ex   dx  0 xdx  ln ln ln Tính  xdx  ln Tính  2e x x ln 1  ln  2e dx 1 x ln 2 dx Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 dt Đổi cận : x  ln  t  5, x   t  t 1 ln 5 dt  1 d x   0 2ex  3 t t 1 3  t 1  t dt   ln t 1  ln t   ln  ln  ln  ln  ln  ln Đặt t  2e x   dt  2e x dx  dx  ln    x  2e   dx  ln  ln  ln  a  2, b  1, c  1 1  x Vậy a  b  c  Câu 11: (LẠNG GIANG SỐ 1) Diện tích hình phẳng giới hạn đồ thị  C  hàm số  x  x  3 hai tiếp tuyến  C  xuất phát từ M  3; 2  13 11 A B C D 3 3 y Hướng dẫn giải Chọn A Ta y   2x  4  x  Gọi  x0 ; y0  tọa độ tiếp điểm Khi đó, y0   x0  x0  3 y  x0   x0  Phƣơng trình tiếp tuyến  C  điểm tọa độ  x0 ; y0  y   x0   x  x0    x0  x0  3 Vì tiếp tuyến qua điểm M  3; 2  nên 2   x0    x0    x0   y   x  1 x0  x0  3     x0   y  3x  11 Diện tích hình phẳng cần tìm S  1    x  x  3    x  1 dx   1    x  x  3   3x  11  dx   Câu 12: (LẠNG GIANG SỐ 1) Tích phân x   cos x dx  a  b ln , với a , b số thực Tính 16a  8b A B C Hướng dẫn giải Chọn A D u  x du  dx   Đặt  Ta  dx d v  v  tan x   cos x     1    1  1 I  x tan x   tan xdx   ln cos x   ln   ln  a  , b   2 8 8 0 Do đó, 16a  8b  Câu 13: (LẠNG GIANG SỐ 1) Giả sử f  x  dx   A 12  f  z  dz  Tổng B  C f  t  dt   f  t dt D Hướng dẫn giải Chọn C Ta  f  x  dx    f  t  dt  ;  5 f  z  dz    f  t  dt  0 5 3   f  t  dt   f  t  dt   f  t  dt   f  t  dt    f  t  dt   f  t  dt   f  t  dt   f  t  dt  ln  Câu 14: (LẠNG GIANG SỐ 1) Tích phân A e2 x1  a dx  e  Tính tích a.b x e b B C D 12 Hướng dẫn giải Chọn B ln  e2 x 1  dx  ex  e x 1 ln  e x ln  ln e x 1dx  ln  e x dx  ln  e x 1d  x  1  ln  e d x  x 1    2e  e     1  e   a  1, b   ab  2   Câu 15: (LÝ TỰ TRỌNG TPHCM) Biết   sin x  x  x3 dx  3 a  3  c  d với a, b, c, d b l số nguyên Tính a  b  c  d Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 A a  b  c  d  28 B a  b  c  d  16 C a  b  c  d  14 D a  b  c  d  22 Hướng dẫn giải Chọn A I   3   sin x 1 x  x dx       x  x3 sin x 1 x  x 6    dx     x  x3 sin xdx     x    t  Đặt t   x  dt  dx Đổi cận  x    t     3  I       t  t sin  t  dt       Suy I    2 x  sin x  dx  I    t  t sin tdt       x     3 3 (+)  sin x 3x (–)  cos x 6x (+)  sin x (–)  cos x   x  x3 sin xdx sin xdx x    sin x  3  2   27 3 Suy ra: a  27, b  3, c  2, d  Vậy a  b  c  d  28 I    x3 sin x  3x cos x  x sin x  6sin x  3  3    Câu 16: (NGƠ GIA TỰ - VP) giá trị a đoạn  ; 2  thỏa mãn 4  a sin x 0  3cos x dx  A B C Hướng dẫn giải Chọn B Đặt t   3cos x  t   3cos x  2tdt  3sin xdx Đổi cận: + Với x   t  D + Với x  a  t   cos a  A a Khi  a  2 sin x 2 2 dx   dt  t    A    A    3cos a   cos a  3 A 3  3cos x A  k  k   Do Bình luận: Khi cho a  k      a   ; 2     k  2    k    4 k  4     tích phân khơng xác định mẫu thức không xác định (trong bị âm) Vậy đáp án phải l B, nghĩa l chấp nhận a   Câu 17: (NGÔ GIA TỰ - VP) Diện tích miền phẳng giới hạn đƣờng: y  2x , y   x  v y 1 l : 1 47  1 3 A S  B S  C S  D S  ln 2 ln 50 ln Hướng dẫn giải Chọn A Xét phƣơng trình ho nh độ giao điểm đƣờng Ta có:  2x   x   x   2x   x   x    x  2  2x    x2  1 Diện tích cần tìm là: S     1 dx     x   1 dx    x   2x     ln 0   ln 2 1 x a Câu 18: (CHUYÊN PHAN BỘI CHÂU) số a   0; 20  cho  sin x sin xdx  A 20 B 19 C D 10 Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 Hướng dẫn giải Chọn D a a a 2 Ta  sin x sin xdx  2 sin x cos xdx  2 sin xd  sin x   sin x 0a  sin a  7 0 Do 0 sin a   sin a   a    k 2  20    k  10 k  2 n 1 Câu 19: (THTT 477) Giá trị lim n  A 1  1 e x   k 2 a   0; 20  Vì nên 10 giá trị k dx n B C e D Hướng dẫn giải Chọn D n 1 Ta có: I   1 e x dx n Đặt t   e x  dt  e x dx Đổi cận: Khi x  n  t   en ; x  n   t   en1 1 en1  Khi đó: I  1 en dt  t  t  1 1 en1  1 en 1 en1  en  1  d t  ln t   ln t   ln     1 en  e n 1  t 1 t  n Mà  en  e n 1 1   1 1 e   n  n   , Do đó, lim I   ln  n  e e 1  e   e  Câu 20: (THTT 477) Nếu  sin n x cos xdx  A n 64 B C D Hướng dẫn giải Chọn A Đặt t  sin x  dt  cos xdx Đổi cận: x   t  0; x  t n 1 1    Khi đó: I   t dt  n 1 n 1   1 Suy   2 n 1  t  64 n   n 1 nghiệm n  (tính đơn điệu) 64 n 1 nên Câu 21: (SỞ GD HÀ NỘI) Cho hàm số y  f  x   ax  bx  cx  d ,  a, b, c  , a   đồ thị  C  Biết đồ thị  C  tiếp xúc với đƣờng thẳng đồ thị hàm số y  f   x  cho hình vẽ dƣới đây: y  điểm ho nh độ âm Tính diện tích S hình phẳng giới hạn đồ thị  C  trục hoành A S  B S  27 C 21 D Hướng dẫn giải Chọn B Từ đồ thị suy f   x   x  f  x    f   x  dx    3x2  3 dx  x3  3x  C  C  tiếp xúc với đƣờng thẳng f   x0    3x02    x0  1 y  điểm ho nh độ x0 âm nên Do Suy f  1   C    C  : y  x  x   x  2 x 1 Xét phƣơng trình x  x      x Diện tích hình phẳng cần tìm là: 2  3x   dx  27 Câu 22: (SỞ GD HÀ NỘI) Cho y  f  x  hàm số chẵn, đạo h m đoạn 6;6 Biết  f  x  dx  1 A I  11  f  2 x  dx  Tính I   f  x  dx 1 B I  C I  D I  14 Hướng dẫn giải Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 Chọn D a Vì f  x  hàm số chẵn nên  a  2 1 f  x  dx    f  x  dx   f  x  dx  f  2 x  dx   f  x  dx  3 Xét tích phân K   f  x  dx  Đặt u  x  du  2dx  dx  du Đổi cận: x   u  2; x   u  K 6 1 f  u  du   f  x  dx    f  x  dx   22 22 6 1 1 Vậy I   f  x  dx   f  x  dx   f  x  dx   f  x  dx    14 Câu 23: (SỞ GD HÀ NỘI) Biết A T   3e 13 x dx  a b e  e  c  a, b, c  B T  C T  10  Tính T  a  b c  D T  Hướng dẫn giải Chọn C Đặt t   3x  t   3x  2tdt  3dx Đổi cận: + x   t  + x 1 t    3e 13 x    dx 2 tet dt 2 tet   et dt  tet  et 1 2 1   2e  e  e  e  2e 2 a  10   T  10 nên câu C b  c  Câu 24: (SỞ GD HÀ NỘI) Cho hàm số y  f  x  liên tục đoạn  a; b  Gọi D diện tích hình phẳng giới hạn đồ thị  C  : y  f  x  , trục ho nh, hai đƣờng thẳng x  a , x  b (nhƣ hình vẽ dƣới đây) Giả sử S D diện tích hình phẳng D Chọn công thức phƣơng án A, B, C, D cho dƣới đây? b a 0 b a A S D   f  x  dx   f  x  dx b a B S D    f  x  dx   f  x  dx C S D   f  x  dx   f  x  dx b a D S D    f  x  dx   f  x  dx Hướng dẫn giải Chọn B + Nhìn đồ thị ta thấy:  Đồ thị (C) cắt trục hoành O  0;0   Trên đoạn  a;  , đồ thị (C) dƣới trục hoành nên f  x    f  x   Trên đoạn  0;b  , đồ thị  C  trục hoành nên f  x   f  x  b b b a a a + Do đó: S D   f  x  dx   f  x  dx   f  x  dx   f  x  dx   f  x  dx Câu 25: (CHUYÊN HÙNG VƢƠNG GL) Biết I   số nguyên Tính S  a  b A S  B S  11 x  1 dx   a ln  b ln , với a , b x C S  D S  3 Hướng dẫn giải Chọn B Ta có: I   x  1 x  1 x  1 dx   dx   dx x x x Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55  5  2x 2x  22  x 1  x  2 1 dx   dx   dx   dx x x x x 2 5 3      x  dx      dx   5ln x  x    x  3ln x  2 x x   a   a  b  11  8ln  3ln    b  3 Câu 26: (BIÊN HÒA HÀ NAM) Biết I   x ln  x  1 dx  a ln  c, a, b, c số b b nguyên dƣơng v phân số tối giản Tính S  a  b  c c A S  60 B S  70 C S  72 D S  68 Hướng dẫn giải Chọn B Ta I   x ln  x  1 dx  du  dx   u  ln  x  1  2x 1 Đặt    dv  xdx v  x   x ln  x  1 x2 I   x ln  x  1 dx   dx 2 x  0 4 x   x2  1 63  8ln      dx  16ln     x  ln x    ln  4  x  1   4 0 0 a  63 a 63   ln  c  ln   b   S  70 b c   Câu 27: (PHAN ĐÌNH PHÙNG HN) Cho hình phẳng  H  giới hạn đƣờng y  x  y  k ,0  k  Tìm k để diện tích hình phẳng  H  gấp hai lần diện tích hình phẳng đƣợc kẻ sọc hình vẽ bên A k  B k   1 C k  D k   Hướng dẫn giải Chọn D Do đồ thị nhận trục Oy làm trục đối xứng nên u cầu tốn trở thành: Diện tích hình phẳng giới hạn y   x , y  k , x  diện tích hình phẳng giới hạn : y   x2 , y  x2 1, y  k , x  1 k  1  x  k dx  1 k   k   x dx    k  x 1 k  1dx  1  k   k  1 1  k   k 1 1   1  k   1  k   k  1  k   k  1  k   k  1  k   k  1  k   3 3  1  k   k   3  1 k    k   Câu 28: (CHUYÊN THÁI BÌNH) Cho hàm số y  f ( x) đồ thị y  f ( x) cắt trục Ox ba điểm ho nh độ a  b  c nhƣ hình vẽ Mệnh đề n o dƣới l đúng? A f (c)  f (a)  f (b) B f (c)  f (b)  f (a) C f (a)  f (b)  f (c) D f (b)  f (a)  f (c) Hướng dẫn giải Chọn A Đồ thị hàm số y  f ( x) liên tục đoạn  a; b  b; c  , lại f ( x) nguyên hàm f ( x) Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55  y  f ( x ) y   Do diện tích hình phẳng giới hạn đƣờng:  là: x  a  x  b b S1   a b f ( x)dx    f ( x)dx   f  x  a  f  a   f b  b a Vì S1   f  a   f  b  1  y  f ( x ) y   Tƣơng tự: diện tích hình phẳng giới hạn đƣờng:  là: x  b   x  c c c b b S2   f ( x)dx   f ( x)dx  f  x  b  f  c   f  b  c S2   f  c   f  b    Mặt khác, dựa vào hình vẽ ta có: S1  S  f  a   f  b   f  c   f  b   f  a   f  c    Từ (1), (2) (3) ta chọn đáp án A (có thể so sánh f  a  với f  b  dựa vào dấu f ( x) đoạn  a; b  so sánh f  b  với f  c  dựa vào dấu f ( x) đoạn b; c  ) Câu 29: Cho tam giác ABC diện tích quay xung quanh cạnh AC Tính thể tích V khối tròn xoay đƣợc tạo thành A.V B.V C.V Hướng dẫn giải Đáp án A SABC AB BC Chọn hệ trục vng góc Oxy CA choO 0;0 , A 1;0 , B 0; với O Phƣơng trình đƣờng thẳng AB y l trung điểm AC x , thể tích khối tròn xoay quay ABO quanh trục AC (trùng Ox ) tính D.V V x Vậy thể tích cần tìm V dx 2V 2x 1.cos x dx 2x Câu 30: Trong số dƣới đây, số ghi giá trị A B C D Hướng dẫn giải Chọn A 2 2x cos x dx 2x Ta có: 2x cos x 2x dx 2x cos x 2x dx Đặt x t ta x 2x cos x x t 2 dx 0, x t cos t t 2 t d t dx cos t t 2 dt dt cos x 2x dx Thay vào (1) 2x cos x dx 2x 2x cos x 2x 2 dx cos x 2x dx 2 2x cos x 1 Vậy x 2 dx 2x cosx dx 2x cos x dx sin x 2 2 Câu 31: ( CHUYÊN QUANG TRUNG LẦN 3)Cho f , g hai hàm liên tục 1;3 thỏa:   f  x   3g  x   dx  10 A B  2 f  x   g  x  dx  Tính C   f  x   g  x  dx D Hướng dẫn giải Chọn C Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 3   f  x   3g  x  dx  10   f  x  dx  3 g  x  dx  10  Ta 1 3 1  Tƣơng tự   f  x   g  x   dx   2 f  x  dx   g  x  dx  3 u  3v  10 u    Xét hệ phƣơng trình  , u   f  x  dx , v   g  x  dx 2u  v  v  1 3 1   f  x   g  x  dx   f  x  dx   g  x  dx     Khi Câu 32: (PHAN ĐÌNH PHÙNG) Thể tích V khối tròn xoay đƣợc sinh quay hình phẳng giới hạn đƣờng tròn (C) : x2  ( y  3)2  xung quanh trục ho nh l B V  6 A V  6 C V  3 D V  6 Hướng dẫn giải ChọnD x2  ( y  3)2   y    x2   V       x2 1       x2    dx  12   x dx 1    x   t  Đặt x  sin t  dx  cos t.dt Với   x  11  t       V  12     sin t cos tdt  12  cos  2 tdt  6 Câu 33: (CHUYÊN ĐHKHTN HUẾ) Trong mặt phẳng tọa độ Oxyz cho  E  phƣơng trình x2  y2  1,  a, b   v đƣờng tròn  C  : x  y  Để diện tích elip  E  gấp lần a b diện tích hình tròn  C  A ab  B ab  7 C ab  Hướng dẫn giải Chọn D x2 a  y2 b  1,  a, b    y  b 2 a x a b a2  x dx b Diện tích  E  S E     a2  x dx a a0 a a    Đặt x  a sin t , t    ;   dx  a cos tdt  2 D ab  49 Đổi cận: x   t  0; x  a  t  a  a b S E   a2 cos2 tdt  2ab  1+cos2t  dt   ab a0 Mà ta S C   π.R  7π Theo giả thiết ta S E  7.SC    ab  49  ab  49 Câu 34: (CHUYÊN ĐHKHTN HUẾ) Giả sử tích phân  x.ln  x  1 b tối giản Lúc c A b  c  6057 B b  c  6059 2017 b dx  a  ln Với phân c số C b  c  6058 D b  c  6056 Hướng dẫn giải Chọn B Ta I   x.ln  x  1 2017 dx  2017  x.ln  x  1 dx  du  dx u  ln  x  1  2x 1  Đặt  dv  xdx v  x   1   x2    x2  Do  x.ln  x  1 dx   ln  x  1            dx   0    2x 1  1  x2  x  3  ln     ln  0  I   x.ln  x  1 2017 3  6051 dx  2017  ln   ln 8  Khi b  c  6059 Câu 35: (NGƠ QUYỀN HP) Gọi S diện tích hình phẳng giới hạn đƣờng 2my  x2 , mx  y ,  m   Tìm giá trị m để S  A m  B m  C m  D m  2 Hướng dẫn giải Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 Chọn A Ta 2my  x  y  mx  x  (do m  ) 2m  y  2mx  y  y  2mx   y   mx   Xét phƣơng trình ho nh độ giao điểm 2my  x2 mx  y ta x  x  2mx  x  2m 2mx  x  8m3 x    2m  x  2m 2m Khi S   x  2mx dx  2m x 2m   x x 2m 3 Để S   2m 2m    2m x   2mx  dx  4m  4m   m2   m  (do m  ) Câu 36: (CHUYÊN KHTN L4) Gọi  H  phần giao hình trụ bán kính a , hai trục hình trụ vng góc với Xem hình vẽ bên Tính thể tích  H  hai khối A V H  2a  C V H   B V H  a3 3a  D V H    a3 Hướng dẫn giải Chọn đáp án A Ta gọi trục tọa độ Oxyz nhƣ hình vẽ Khi phần giao  H  vật thể đáy l phần tƣ hình tròn tâm O bán kính a , thiết diện mặt phẳng vng góc với trục Ox 2 hình vng diện tích S  x   a  x Thể tích khối  H  a a 0 2  S  x  dx    a  x dx  2a Câu 37: (CHUYÊN KHTN L4) Với số nguyên a, b thỏa mãn   x  1 ln xdx  a   ln b Tính tổng P  a  b A P  27 B P  28 C P  60 D P  61 Hướng dẫn giải Chọn C  u  ln x Đặt  ta  dv   x  1 dx  du  dx x  v  x  x  2 2   x  1 ln xdx   x  x  ln x    x  x  1 dx x  x2  3   ln    x  1 dx  ln    x  12  ln      4   ln 64 2    P  a  b  4  64  60 Câu 38: (CHUYÊN VINH L2)Trong Công viên Tốn học mảnh đất mang hình dáng khác Mỗi mảnh đƣợc trồng lo i hoa v đƣợc tạo thành đƣờng cong đẹp tốn học Ở mảnh đất mang tên Bernoulli, đƣợc tạo thành từ đƣờng Lemmiscate phƣơng trình hệ tọa độ Oxy y 16 y  x  25  x  nhƣ hình vẽ bên Tính diện tích S mảnh đất Bernoulli biết đơn vị hệ tọa độ Oxy tƣơng ứng với chiều dài mét 125 125 250 125 m  m2  m2  A S  B S  C S  D S      m2  3 Hướng dẫn giải Chọn D Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 x Vì tính đối xứng trụ nên diện tích mảnh đất tƣơng ứng với lần diện tích mảnh đất thuộc góc phần tƣ thứ hệ trục tọa độ Oxy Từ giả thuyết tốn, ta y   x  x Góc phần tƣ thứ y  x 25  x ; x   0;5 Nên S( I )  125 125 x 25  x dx  S  (m )  40 12 Câu 39: (CHUYÊN VINH L2)Gọi V thể tích khối tròn y xoay tạo thành quay hình phẳng giới hạn đƣờng y  x , y  x  quanh trục Ox Đƣờng M thẳng x  a   a   cắt đồ thị hàm y  x M a (hình vẽ bên) Gọi V1 thể tích khối tròn xoay tạo O K thành quay tam giác OMH quanh trục Ox Biết V  2V1 Khi A a  B a  2 C a  D a  H x Hướng dẫn giải Chọn D Ta x   x  Khi V    xdx  8  Ta M a; a  Khi quay tam giác OMH quanh trục Ox tạo thành hai hình nón chung đáy:  Hình nón  N1  đỉnh O , chiều cao h1  OK  a , bán kính đáy R  MK  a ;  Hình nón  N2  thứ đỉnh H , chiều cao h2  HK   a , bán kính đáy R  MK  a 1 Khi V1   R h   R h   a 3 Theo đề V  2V1  8   a  a  Câu 40: (CHUYÊN VINH L2)Gọi  H  hình phẳng giới hạn đồ thị hàm số: y  x2  4x  , trục tung trục ho nh Xác định k để đƣờng thẳng  d  qua điểm A  0;  hệ số góc k chia  H  thành hai phần diện tích A k  4 B k  8 C k  6 Hướng dẫn giải Chọn C D k  2 Phƣơng trình ho nh độ giao điểm đồ thị hàm số y  x2  x  trục hoành là: x2  x    x  Diện tích hình phẳng  H  giới hạn đồ thị hàm số: y  x2  x  , trục tung trục  x3  hoành là: S   x  x  dx    x  x   dx    x  x   3 0 0 2 2 Phƣơng trình đƣờng thẳng  d  qua điểm A  0;4  y hệ số góc k dạng: y  kx   4  Gọi B l giao điểm  d  trục ho nh Khi B  ;0   k  Đƣờng thẳng  d  chia  H  thành hai phần diện tích B  OI SOAB  S x O B1 I d 4  0 2  k  2  k    k  6 1  4 k    S OA.OB   OAB   2 k  Câu 41: (CHUYÊN 6  TUYÊN QUANG –L1) Tính tích phân 4 x  x  dx  a  b  c  Với a , b , c l số nguyên Khi x 1   biểu thức a  b2  c4 giá trị A 20 B 241 C 196 D 48 Hướng dẫn giải Chọn B 6 2 Ta  4 x  x  dx  x4  Tính I  4 6 2  dx  4 x 6 2 6 2   x 1   4   dx  4 x 1   6 2  dx  6 2  x2  dx  I  J x4   2  2  Tính J  6 2  x 1 dx  x4  6 2  1 x dx  x2  x 1 6 2  1 x2 dx 1  x  2 x  1 Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 x   t  1   Đặt t  x   dt  1   dx Khi  6 x  x  t  x   2 Khi J  dt t2    Đặt t  tan u  dt  1  tan u  du Khi t   u     t   u    Suy J   6 2 Vậy   1  tan u   24 du  du  u    2 1  tan u  a  b  16 4 x  x  dx  16  16      x 1 c    Vậy a  b2  c4  241 Câu 42: (CHU VĂN AN HN) Cho hai mặt cầu  S1  ,  S  bán kính R thỏa mãn tính chất: tâm  S1  thuộc  S  ngược lại Tính thể tích phần chung V hai khối cầu tạo (S1 ) ( S2 ) A V   R3 B V   R3 C V  5 R3 12 Hướng dẫn giải D V  2 R y (C ) : x  y  R Chọn C Gắn hệ trục Oxy hình vẽ Khối cầu S  O, R  chứa đường tròn lớn O R R  C  : x2  y  R2 Dựa vào hình vẽ, thể tích cần tính R V  2  R  R  x3  5 R3 R  x dx  2  R x    R 12  2  Câu 43: `(CHU VĂN AN HN) Cho hàm số y  x4  3x2  m đồ thị  Cm  với m tham số thực Giả sử  Cm  cắt trục Ox bốn điểm phân biệt hình vẽ : x y  Cm  S3 O S1 x S2 Gọi S1 , S2 S3 diện tích miền gạch chéo cho hình vẽ Tìm m để S1  S2  S3 5 A m   B m   C m  D m  Hướng dẫn giải Chọn D Giả sử x  b nghiệm dương lớn phương trình x  3x  m  Khi ta b  3b  m  (1) Nếu xảy S1  S2  S3 b x   3x  m dx   b5 b4  b3  mb    b  m  (2)  b   5 Từ (1) (2), trừ vế theo vế ta 4 b  2b2   b2  (do b  0) 5 Thay trở ngược vào (1) ta m  Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học kỳ,giáo án,chuyên đề 10-11-12, đề thi thử 2018, sách word) -L/H tư vấn: 016338.222.55 ... f (c) Hướng dẫn giải Chọn A Đồ thị hàm số y  f ( x) liên tục đoạn  a; b  b; c  , lại có f ( x) nguyên hàm f ( x) Chuyên cung cấp tài liệu file word dạng trắc nghiệm (đề 15p,1 tiết,học... QUANG –L1) Tính tích phân 4 x  x  dx  a  b  c  Với a , b , c l số nguyên Khi x 1   biểu thức a  b2  c4 có giá trị A 20 B 241 C 196 D 48 Hướng dẫn giải Chọn B 6 2 Ta có  4... Hướng dẫn giải Chọn D Ta có x   x  Khi V    xdx  8  Ta có M a; a  Khi quay tam giác OMH quanh trục Ox tạo thành hai hình nón có chung đáy:  Hình nón  N1  có đỉnh O , chiều cao h1 

Ngày đăng: 16/11/2017, 18:29

HÌNH ẢNH LIÊN QUAN

Câu 1: (SGD VĨNH PHÚC)Gọi  là diện tích hình phẳng giới hạn bởi các đƣờng 2 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
u 1: (SGD VĨNH PHÚC)Gọi  là diện tích hình phẳng giới hạn bởi các đƣờng 2 (Trang 1)
Diện tích hình phẳng:  - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
i ện tích hình phẳng:  (Trang 2)
Câu 11: (LẠNG GIANG SỐ 1) Diện tích hình phẳng giới hạn bởi đồ thị C của hàm số - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
u 11: (LẠNG GIANG SỐ 1) Diện tích hình phẳng giới hạn bởi đồ thị C của hàm số (Trang 6)
Diện tích hình phẳng cần tìm là: 1 3 2 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
i ện tích hình phẳng cần tìm là: 1 3 2 (Trang 11)
Tính diện tích S của hình phẳng giới hạn bởi đồ thị C và trục hoành. - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
nh diện tích S của hình phẳng giới hạn bởi đồ thị C và trục hoành (Trang 11)
x b (nhƣ hình vẽ dƣới đây). - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
x b (nhƣ hình vẽ dƣới đây) (Trang 12)
A. S 9. B. S 11. C. S 5. D. S 3. - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
9. B. S 11. C. S 5. D. S 3 (Trang 13)
Giả sử SD là diện tích hình phẳng D. Chọn công thức đúng trong các phƣơng án A, B, C, D cho dƣới đây?  - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
i ả sử SD là diện tích hình phẳng D. Chọn công thức đúng trong các phƣơng án A, B, C, D cho dƣới đây? (Trang 13)
Câu 27: (PHAN ĐÌNH PHÙNG – HN) Cho hình phẳng H giới hạn bởi các đƣờng 2 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
u 27: (PHAN ĐÌNH PHÙNG – HN) Cho hình phẳng H giới hạn bởi các đƣờng 2 (Trang 14)
y x y kx  bằng diện tích hình phẳng giới hạn bởi : 22 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
y  x y kx  bằng diện tích hình phẳng giới hạn bởi : 22 (Trang 15)
Tƣơng tự: diện tích của hình phẳng giới hạn bởi các đƣờng: - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
ng tự: diện tích của hình phẳng giới hạn bởi các đƣờng: (Trang 16)
Do đó diện tích của hình phẳng giới hạn bởi các đƣờng: - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
o đó diện tích của hình phẳng giới hạn bởi các đƣờng: (Trang 16)
Câu 32: (PHAN ĐÌNH PHÙNG) Thể tích V của khối tròn xoay đƣợc sinh ra khi quay hình phẳng giới hạn bởi đƣờng tròn ( ) :Cx2 (y3)21 xung quanh trục ho nh l  - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
u 32: (PHAN ĐÌNH PHÙNG) Thể tích V của khối tròn xoay đƣợc sinh ra khi quay hình phẳng giới hạn bởi đƣờng tròn ( ) :Cx2 (y3)21 xung quanh trục ho nh l (Trang 18)
Câu 35: (NGÔ QUYỀN – HP) Gọ iS là diện tích hình phẳng giới hạn bởi các đƣờng 2 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
u 35: (NGÔ QUYỀN – HP) Gọ iS là diện tích hình phẳng giới hạn bởi các đƣờng 2 (Trang 19)
4 hình trụ có bán kính a, hai trục hình trụ  vuông  góc  với  nhau.  Xem  hình  vẽ  bên - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
4 hình trụ có bán kính a, hai trục hình trụ vuông góc với nhau. Xem hình vẽ bên (Trang 20)
mảnh đất mang hình dáng khác nhau. Mỗi mảnh đƣợc trồng một lo i hoa v  nó đƣợc tạo thành bởi một trong  những  đƣờng  cong  đẹp  trong  toán  học - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
m ảnh đất mang hình dáng khác nhau. Mỗi mảnh đƣợc trồng một lo i hoa v nó đƣợc tạo thành bởi một trong những đƣờng cong đẹp trong toán học (Trang 21)
(hình vẽ bên). Gọi V1 là thể tích khối tròn xoay tạo - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
hình v ẽ bên). Gọi V1 là thể tích khối tròn xoay tạo (Trang 22)
Diện tích hình phẳng H giới hạn bởi đồ thị hàm số: 2 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
i ện tích hình phẳng H giới hạn bởi đồ thị hàm số: 2 (Trang 23)
Dựa vào hình vẽ, thể tích cần tính là - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
a vào hình vẽ, thể tích cần tính là (Trang 24)
Gắn hệ trục Oxy như hình vẽ - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
n hệ trục Oxy như hình vẽ (Trang 24)
Gọi S 1, S2 và S3 là diện tích các miền gạch chéo được cho trên hình vẽ. Tì mm để 123 - Bài toán vận dụng cao  Chủ đề 3. NGUYÊN HÀM – TÍCH PHÂN  ỨNG DỤNG  Có lời giải file
i S 1, S2 và S3 là diện tích các miền gạch chéo được cho trên hình vẽ. Tì mm để 123 (Trang 25)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w