1. Trang chủ
  2. » Thể loại khác

Tổng hợp Hình Học Không Gian

72 127 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 8,09 MB

Nội dung

Biên sọan: Trần Văn Hùng - THPT Nguyễn Bỉnh KhiêmHÌNH HỌC KHÔNG GIAN Email: tranhung18102000@yahoo.comA. LÝ THUYẾTPhần 1ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIANQUAN HỆ SONG SONGI. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN1. Xác định một mặt phẳng • Ba điểm không thẳng hàng thuộc mặt phẳng. (mp(ABC), (ABC))• Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. (mp(A,d))• Hai đường thẳng cắt nhau thuộc mặt phẳng. (mp(a, b))2. Một số qui tắc vẽ hình biểu diễn của hình không gian• Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.• Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau.• Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng.• Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt.II. HAI ĐƯỜNG THẲNG SONG SONG1. Định nghĩa, ( )/ /a b Pa ba b⊂⇔∩ = ∅2. Tính chất• Nếu ba mặt phẳng phân biệt cắt nhau từng đôi một theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng qui hoặc đôi một song song.• Nếu hai mặt phẳng cắt nhau lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.• Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.III. ĐƯỜNG THẲNG và MẶT PHẲNG SONG SONG1. Định nghĩad // (P) ⇔ d ∩ (P) = ∅2. Tính chất• Nếu đường thẳng d không nằm trên mặt phẳng (P) và d song song với đường thẳng d′ nằm trong (P) thì d song song với (P).• Nếu đường thẳng d song song với mặt phẳng (P) thì mọi mặt phẳng (Q) chứa d mà cắt (P) thì cắt theo giao tuyến song song với d.• Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng cũng song song với đường thẳng đó.• Nếu hai đường thẳng a và b chéo nhau thì có duy nhất một mặt phẳng chứa a và song song với b.IV. HAI MẶT PHẲNG SONG SONG1. Định nghĩa(P) // (Q) ⇔ (P) ∩ (Q) = ∅2. Tính chất• Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q).• Nếu đường thẳng d song song với mp(P) thì có duy nhất một mp(Q) chứa d và song song với (P).• Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì song song với nhau.• Cho một điểm A ∉ (P). khi đó mọi đường thẳng đi qua A và song song với (P) đều nằm trong một mp(Q) đi qua A và song song với (P).1 Biờn san: Trn Vn Hựng - THPT Nguyn Bnh KhiờmHèNH HC KHễNG GIAN Email: tranhung18102000@yahoo.com Nu mt mt phng ct mt trong hai mt phng song song thỡ cng ct mt phng kia v cỏc giao tuyn ca chỳng song song vi nhau. Hai mt phng song song chn trờn hai cỏt tuyn song song nhng on thng bng nhau. nh lớ Thales: Ba mt phng ụi mt song song chn trờn hai cỏt tuyn bt kỡ nhng on thng tng ng t l. nh lớ Thales o: Gi s trờn hai ng thng d v d ln lt ly cỏc im A, B, C v A, B, C sao cho:' ' ' ' ' 'AB BC CAA B B C C A= =Khi ú, ba ng thng AA, BB, CC ln lt nm trờn ba mt phng song song, tc l chỳng cựng song vi mt mt phng.Phn 2 VECT TRONG KHễNG GIANQUAN H VUễNG GểC TRONG KHễNG GIANI. HAI NG THNG VUễNG GểC1. Vect ch phng ca ng thng: 0a rr l VTCP ca d nu giỏ ca ar song song hoc trựng vi d.2. Gúc gia hai ng thng: a//a, b//b ả( )ã( ), ', 'a b a b= Gi s ur l VTCP ca a, vr l VTCP ca b, ( , )u v =r r. Khi ú: ả( )0 00 0 00 180,180 90 180neỏua bneỏu = < Nu a//b hoc a b thỡ ( )=0, 0a bChỳ ý: ( ) 0 00 , 90a b3. Hai ng thng vuụng gúc: a b ả( )0, 90a b = Gi s ur l VTCP ca a, vr l VTCP ca b. Khi ú . 0a b u v =r r. Lu ý: Hai ng thng vuụng gúc vi nhau cú th ct nhau hoc chộo nhau.II. NG THNG VUễNG GểC VI MT PHNG1. nh ngha:d (P) d a, a (P)2. iu kin ng thng GV.Lưu Huy Thưởng 0968.393.899 HÌNH HỌC GIẢI TÍCH TRONG KHƠNG GIAN PHẦN I VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng cách xác định vectơ pháp tuyến - Vec-tơ pháp tuyến mặt phẳng vec-tơ có giá vng góc với mặt phẳng - Một mặt phẳng có vơ số vec-tơ pháp tuyến (các vec-tơ có giá song song trùng nhau) - Để xác định vec-tơ pháp tuyến mặt phẳng có số cách sau: + Xác định trực tiếp: Dựa vào mối quan hệ song song, vuông góc yếu tố: mặt phẳng – mặt phẳng, đường thẳng – mặt phẳng… + Xác định gián tiếp: Tìm vec-tơ khơng phương vng góc với vec-tơ pháp tuyến mặt phẳng BÀI TẬP HT Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : x + 2y − 3z + = điểm A(2; −1;1) Viết phương trình mặt phẳng (Q) qua A song song với (P) Giải Ta có: (Q ) / /(P ) nên phương trình mặt phẳng (Q) có dạng : (Q ) : x + 2y − 3z + D = 0, (D ≠ 1) Ta có : (Q) qua A nên suy : D = Vậy, phương trình mặt phẳng (Q ) : x + 2y − 3x + = HT Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1 y +1 z −2 điểm A(1; 0; −1) Viết = = −2 phương trình mặt phẳng (P) qua A vng góc với d Giải Ta có, (P ) ⊥ d nên phương trình mặt phẳng (P) có dạng : x − 2y + z + D = Mặt khác, (P) qua A nên suy D = Vậy, phương trình mặt phẳng x − 2y + z = HT Trong không gian với hệ tọa độ Oxyz, cho điểm không thẳng hàng A(1;2; −1), B(−1; 0;2),C (2; −1;1) Viết phương trình mặt phẳng (ABC) Giải Ta có: AB = (−2; −2; 3), AC = (1; −3;2) Mặt phẳng (ABC) có vec-tơ pháp tuyến: n = [AB; AC ] = (5; 7; 8) Vậy, phương trình mặt phẳng (ABC ) : 5(x − 1) + 7(y − 2) + 8(z + 1) = ⇔ 5x + 7y + 8z − 11 = HT Trong không gian với hệ tọa độ Oxyz, , cho hai điểm A(2;4;1), B(–1;1;3) mặt phẳng (P): x – 3y + 2z – = Viết phương trình mặt phẳng (Q) qua hai điểm A, B vuông góc với mặt phẳng (P) Giải Ta có: AB = (−3; −3;2) Gọi nP , nQ vec-tơ pháp tuyến mặt phẳng (P) (Q) với nP = (1; −3;2) A, B ∈ (Q ) AB ⊥ n  Q Ta có:  ⇒   ( Q ) ⊥ ( P ) n ⊥ nP   Q   Suy ra, (Q) có vec-tơ pháp tuyến : nQ = nP , AB  = (0; −8; −12) ≠ Vậy, phương trình mặt phẳng (Q ) : 2y + 3z − 11 = BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page GV.Lưu Huy Thưởng 0968.393.899 HT Trong khơng gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua hai điểm A(2;1; 3), B(1; −2;1) x = −1 + t  song song với đường thẳng d :  y = 2t  z = −3 − 2t  Giải Ta có BA = (1; 3;2) , d có VTCP u = (1;2; −2)  n ⊥ BA   ⇒ (P) có vec-tơ pháp tuyến n = BA, u  = (−10; 4; −1) Gọi n VTPHƯƠNG TRÌNH (P) ⇒  n ⊥ u  ⇒ Phương trình (P): 10x − 4y + z − 19 = HT Trong không gian với hệ tọa độ Oxyz, d2 : cho hai đường thẳng cắt d1 : x y −2 z +1 = = ; −1 x −1 y −1 z −1 Viết phương trình mặt phẳng (P) chứa đường thẳng d1; d2 = = −1 Giải Gọi n vec-tơ pháp tuyến (P) u1, u2 vec-tơ phương d1; d2 với u1 = (1; −1;2); u2 = (−1;2;1) Gọi A giao điểm d1; d2 Suy ra, A(1;1;1) (P ) ⊃ d1 n ⊥ u1 Ta có:  ⇒   (P ) ⊃ d2 n ⊥ u2   Suy ra, (P) có vec-tơ pháp tuyến n = [u1, u2 ] = (−5; −3;1) Vậy, phương trình mặt phẳng (P ) : −5x − 3y + z + = HT Trong không gian với hệ tọa độ Oxyz, cho đường thẳng song song d1 d2 có phương trình: (d1 ); x −1 y +1 z −2 x − y −1 z − , (d2 ) : Lập phương trình mặt phẳng (P) chứa d1 d2 = = = = Giải Ta có: A(1; −1;2) ∈ d1; B(4;1; 3) ∈ d2 , AB = (3;2;1) Gọi u1 vec-tơ phương d1 Gọi n vec-tơ pháp tuyến (P) Ta có, (P) chứa hai đường thẳng song song d1, d2 nên (P) có vec-tơ pháp tuyến: n = [u1; AB ] = (1;1; −5) Suy ra, phương trình mặt phẳng (P ) : x + y − 5z + 10 = BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page GV.Lưu Huy Thưởng HT Trong khô ng gian vớ 0968.393.899 x y +1 z Oxyz i hệtọ a đô ̣ , cho đie] m M(1; –1; 1) và hai đường thẳng (d1 ) : = = −2 −3 x y −1 z − Chứ ng minh đie] mM , d1, d2 cù ng na` m trê n mộ t mặ t phab ng Viec t phương rı t̀nh mặ t = = phab ng đó Giải (d2 ) : Ta có: d1 qua M1(0; −1; 0) có u1 = (1; −2; −3) , d2 qua M (0;1; 4) có u2 = (1;2; 5) Suy : u1; u2  = (−4; −8; 4) ≠ , M1M = (0;2; 4) ⇒ u1; u2  M1M = ⇒ d1, d2 đồng phẳng Gọi (P) mặt phẳng chứa d1, d2 ⇒ (P) có VTPHƯƠNG TRÌNH n = (1;2; −1) qua M1 nên có phương trình x + 2y − z + = Kiểm tra thấy điểm M (1; –1;1) ∈ (P ) Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu HT Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : x + y + z − = mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 1)2 = 25 Viết phương trình mặt phẳng (Q ) song song với (P) tiếp xúc với (S) Giải Ta có: (P ) / /(Q ) Suy ra, phương trình mặt phẳng (Q ) : x + y + z + D = (D ≠ −1) Mặt cầu (S) có tâm I (1; −2;1) , bán kính: R = (Q) tiếp xúc với mặt cầu (S) khi: d(I ;(Q )) = R ⇔ D =  =5⇔ D = − 3  D Vậy, phương trình mặt phẳng (Q1 ) : x + y + z + = 0;(Q2 ) : x + y + z − = HT 10 Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S ) : x + y + z − 2x + 6y − 4z − = Viết phương trình mặt phẳng (P) song song với giá véc tơ v = (1;6;2) , vng góc với mặt phẳng (α) : x + 4y + z − 11 = tiếp xúc với (S) Giải Ta có: (S) có tâm I (1; −3;2) bán kính R = VTPHƯƠNG TRÌNH (α) n = (1; 4;1) ⇒ VTPHƯƠNG TRÌNH (P) là: nP = n, v  ... B h a b c a a a B h  THỂ TÍCH KHỐI ĐA DI Ệ N I/ Các công thức thể tích của khối đa diện: 1. THỂ TÍCH KHỐI LĂNG TRỤ:   B: dieän tích ñaùy h : chieàu cao       Thể tích khối hộp chữ nhật    Thể tích khối lập phương      2. THỂ TÍCH KHỐI CHÓP  1 3   B : dieän tích ñaùy h : chieàu cao    3. TỈ SỐ THỂ TÍCH TỨ DIỆN  !"### $%&'()*+,"" "-  SABC SA 'B'C ' V SA SB SC V SA ' SB' SC' = C' B' A' C B A S Chú ý: ./012345,62 7  012345899:2   0123459;8- 7 7 7 a b c + +  7/0124&2$<,  7 a /=5-9<,5-9-$(2$<,$><,?2 ,@A-$(2$<,5B,4CD'2E&4$( F/GH2DI<,H2DI 2-$(2$<, BÀI TẬP .59"-$(&2$,6212J2",622-&9 @B a "  K%-9"L  MNOD,2%&4"OL 75-9&2$<,"-$(?2>?27MNOD,2%&4    2&",622-  K%-9"OL 5-9"-$(&2$,62>",622-$(B "K%-9" . F5-9"P-$(P5,62>",622-$( >"?2 a   K%4-9"P   2&D,2%&4"%&$<,$C45-9"P Q5-9"-",622-,R26&B"  a K%4-9" S-9"-&A"&2$<,?&D2&9,622- ,B.%4-9" T-9"-$(&2,62E5B,,622-4">@ D'2DN2E&M4&2$B"+9$(2- U SU α = K%4 -9" V-9"P-$(P5"&2$<, ""PK%4-9"P W-9"P-$(P5;8",622-&A$(@P B"7 K%4-9" .U-9"P-$(P52,62X",622-&A $(@P"P7 K%4-9"P  59"P-$(5,62",622-&A$(@P2- 2;"$(@PFQ U K%4-9"P .7-9"-$(&2$,62X70C"$<,&A >@"+9&A$(@2-SU U K%-9" =P.7  .H2DI###-$(&2$<,?2>?2 a 5 B,@,622-4#>@D'2D,2%&4K%H2DI Nguyeãn Vaên Huy – 0968 64 65 97 Hình hoïc khoâng gian 2016 Bài Cho hình chóp S ABC có đáy ABC tam giác vuông cân C , cạnh huyền 3a Hình chiếu vuông góc S xuống mặt đáy trùng với trọng tâm tam giác ABC SB  a 14 Tính theo a thể tích khối chóp S ABC khoảng cách từ điểm B đến mặt phẳng SAC  Lời giải Gọi M , N trung điểm AB, AC Suy G  CM  BN trọng tâm tam giác ABC Theo giả thiết, ta có SG   ABC  Tam giác ABC vuông cân C , suy CA  CB  Ta có CM  AB  AB  3a CM  AB 3a a , suy GM  CM  ; S a 10 ; SG  SB  GB  a 9a2 Diện tích tam giác vuông ABC S ABC  CA.CB  3a Thể tích khối chóp S ABC V S ABC  S ABC SG  (đvtt) Ta có d  B, SAC   3d G, SAC  BG  BM  GM  M A B K N Kẻ GE  AC  E  AC  G E C Gọi K hình chiếu G SE , suy GK  SE 1 GE  AC  AC  SGE  , Ta có   AC  SG suy AC  GK 2  Từ 1 2 , suy GK  SAC  nên d G, SAC   GK Do GE  AC suy GE  BC Ta có Trong tam giác vuông SGE , ta có BC a GE NG    suy GE  BC NB SG.GE a GK   SG  GE Vậy d  B, SAC   3d G, SAC   3GK  a Bài Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a , tam giác SAB nằm mặt phẳng vuông góc với đáy Gọi M , N trung điểm AB , A D Tính thể tích khối chóp S ABCD khoảng cách từ M đến mặt phẳng SCN  Lời giải Tam giác SAB có M trung điểm AB nên SM  AB Mà SAB    ABCD  theo giao tuyến AB nên SM   ABCD  S Do SM đường cao tam giác SAB cạnh a nên SM  a B Diện tích hình vuông ABCD cạnh a S ABCD  a2 Thể tích khối chóp S ABCD V S ABCD  S ABCD SM  (đvtt) 1|Trang M a3 A C K E N D http://thayhuy.net Nguyeãn Vaên Huy – 0968 64 65 97 Hình hoïc khoâng gian 2016  AMD   DNC  Ta có AMD  DNC suy   ADM   DCN     ADM   90 DNC   90 suy Mà  AMD  ADM Gọi E  DM  CN Kẻ MK  SE  K  SE  CN  DM Ta có   CN  SMD   CN  MK hay CN  DM 1 2  CN  SM Từ 1 2  , suy MK  SCN  nên d  M , SCN   MK Ta có DM  AD  AM  Suy ME  DM  DE  a ; DE  3a 10 DC DN DC  DN 2  a 5 Trong tam giác vuông SME , ta có MK  SM ME SM  ME 2  3a 3a Vậy d  M , SCN   MK  Bài Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với BC  a , cạnh bên SA  2a Hình chiếu vuông góc S mặt đáy trùng với tâm đáy, mặt phẳng SBC  tạo với đáy góc 60 Tính theo a thể tích khối chóp S ABCD khoảng cách đường thẳng BC mặt phẳng SAD  Lời giải Gọi O  AC  BD Theo giả thiết ta có SO   ABCD  Gọi M trung điểm BC , suy OM  BC BC  OM Ta có   BC  SOM   BC  SM Do BC  SO   600   SBC ,  ABCD   SM , OM  SMO Tam giác SAC có SO vừa trung tuyến vừa đường cao nên cân S Suy SC  SA  2a a 15   3a ; Trong tam giác vuông SOM , ta có SO  SM sin SMO a 15 a 15  OM  SM cos SMO ; AB  2OM  a 15 Diện tích hình chữ nhật ABCD S ABCD  AB.BC  5a3 Thể tích khối chóp S ABCD VS ABCD  S ABCD SO  (đvtt) Trong tam giác vuông SMC , ta có SM  SC  MC  2|Trang http://thayhuy.net Nguyeãn Vaên Huy – 0968 64 65 97 Hình hoïc khoâng gian 2016 S K B A M N O C D Ta có d  BC, SAD   d  M , SAD   2d O, SAD  Kéo dài MO cắt A D N , suy ON  AD Kẻ OK  SE  K  SE  1  AD  ON Ta có   AD  SON   AD  OK 2   AD  SO Từ 1 2 , suy OK  SAD  nên d O, SAD   OK Trong tam giác vuông SON , ta có OK  SO.ON SO  ON 2 SO.OM  SO  OM 2  3a 3a Vậy d  BC , SAD   2d O, SAD   2OK  Bài Cho hình chóp S ABC có đáy ABC tam giác vuông với AB  BC  a , cạnh bên SA  2a vuông góc với đáy Gọi M trung điểm AC Tính theo a thể tích khối chóp S ABC khoảng cách hai đường thẳng SM BC Lời giải Từ giả thiết suy tam giác ABC vuông cân B Diện tích tam giác vuông ABC S ABC  AB.BC  Thể tích khối chóp S ABC VS ABC  S ABC SA  a2 S a3 (đvtt) Gọi N trung điểm AB , suy BC  MN nên BC  SMN  Do d  BC, SM   d  BC, SMN   d  B, SMN   d  A, SMN  Vì BC  MN mà BC  AB nên MN  AB Kẻ AK  SN  K  SN  1 A  MN  AB Ta có   MN  SAB  , M C N  MN  SA suy   Gv LÊ VIẾT NHƠN KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 2017 50 CÂU TỔNG ÔN OXYZ Bài thi: TOÁN Thời gian làm 90 phút, không kể thời gian phát đề ( Đề thi gồm có 20 trang ) Mã đề 357 Họ, tên thí sinh ………………………………………………………… Số báo danh …………………………………………………………… HỆ TRỤC TỌA ĐỘ Câu 1:     Trong không gian Oxyz , tìm toạ độ véctơ u  i  j  k    A u  1;  1 B u   1; 2;1 C u   2;1; 1  D u   1;1;  (SỞ GIÁO DỤC CẦN THƠ) Hướng dẫn giải Chọn A        Ta có i  1;0;0  , j   0;1;0  , k   0;0;1 Nên u  i  j  k  1; 2; 1    Trong không gian Oxyz , cho ba vectơ: a  (2; 5; 3) , b  0;2; 1 , c  1;7;2 Tọa độ   1  vectơ x  4a  b  3c là:   53    121 17  ;  A x  11; ;  B x  5;  3   3     55   1  C x  11; ;  D x   ; ;18  3   3  Câu 2: (TRƯỜNG THPT HAI BÀ TRƯNG_HUẾ) Hướng dẫn giải Chọn C  1  1  4a  (8; 20;12) ,  b  0;  ;  , 3c  3;21;6  3    1   55  x  4a  b  3c  11; ;   3  Câu 3: Trong không gian Oxyz , cho bốn điểm A 1; 2; 0, B 1; 0; 1 C 0; 1;2, D 0; m; k  Hệ thức m k để bốn điểm ABCD đồng phẳng : A m  k  C 2m  3k  D 2m  k  (TRƯỜNG THPT HAI BÀ TRƯNG_HUẾ) B m  2k  Hướng dẫn giải Chọn B    AB  (0;2; 1) AC  (1;1;2) AD  (1; m 2; k)      AB  AC  (5; 1; 2)  AB  AC AD  m  2k   Giáo viên sưu tầm tổng hợp: Lê Viết Nhơn  Trang 1/20 - Mã đề thi 357       Vậy bốn điểm ABCD đồng phẳng  AB  AC AD   m  2k      Câu 4: Trong không gian Oxyz , cho hai véc tơ a  2;1; 2 , b  0;  2; Tất giá trị       m để hai véc tơ u  2a  3mb v  ma  b vuông là:  A  26  B 11  26 18 C 26   D 26  (TRƯỜNG THPT HAI BÀ TRƯNG_HUẾ) Hướng dẫn giải Chọn A    Ta có: u  2a  3mb  2;2  3m 2; 4  3m    v  ma  b  2m; m  2; 2m   Khi đó: u.v   4m   3m m   4  3m 2m              26  Trong không gian Oxyz , cho hình hộp ABCD.A B C D  có A 1;1; 6 , B 0; 0; 2 ,  9m 2  6m    m  Câu 5: C 5;1;2 và  D  2;1; 1 Thể tích khối hộp cho bằng: A 12 B 19 C 38 D 42 (TRƯỜNG THPT HAI BÀ TRƯNG_HUẾ) Hướng dẫn giải Chọn C      Thể tích khối hộp đa cho V  6VABCD   AB, AC  AD       Ta có: AB  1; 1; 4 , AC  6; 0; 8 AD   1; 0;5          Do đó: AB, AC   8; 16; 6 Suy AB, AC  AD   38 Vậy V  38     Câu 6: Trong không gian Oxyz , cho điểm A 2; 0; 2, B 3; 1; 4,C 2;2; 0 Tìm điểm D mặt phẳng Oyz  có cao độ âm cho thể tích khối tứ diện ABCD khoảng cách từ D đến mặt phẳng Oxy  Khi có tọa độ điểm D thỏa mãn toán là: A D 0; 3; 1 B D 0; 3; 1 C D 0;1; 1 D D 0;2; 1 (TRƯỜNG THPT HAI BÀ TRƯNG_HUẾ) Hướng dẫn giải Chọn A Vì D  Oyz   D 0;b; c  , cao độ âm nên c  Giáo viên sưu tầm tổng hợp: Lê Viết Nhơn Trang 2/20 - Mã đề thi 357    Khoảng cách từ D 0;b; c  đến mặt phẳng Oxy  : z   c     c  1 c  Suy tọa độ D 0;b; 1 Ta có:    AB  1; 1; 2, AC  4;2;2; AD  2;b;1          AB; AC   2; 6; 2  AB; AC  AD  4  6b   6b   b  1          VABCD  AB; AC  AD  b    b   Mà VABCD   b     b  1 Câu 7: D 0; 3; 1  D 0; 1; 1 Chọn đáp án D 0; 3; 1    Trong không gian với hệ tọa độ Oxyz , cho ba điểm A  3; 4;0  , B  0; 2;  , C  4; 2;1 Tìm tọa độ điểm D thuộc trục Ox cho AD  BC :  D  0;0;0   D  0;0;  A  B D  0; 6;  C   D  6;0;0   D  6;0;  D D  6;0;0  (TTLT ĐH DIỆU HIỀN_CẦN THƠ) Hướng dẫn ... Do có trường hợp thoả mãn, tức a = Khi chọn b = 1, c = 1, d = Vậy: (P): y − z + = BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 13 GV.Lưu Huy Thưởng 0968.393.899 HT 38 Trong không gian với hệ toạ... x − y + z + = BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page GV.Lưu Huy Thưởng 0968.393.899 + Với (2) ⇒ Phương trình mặt phẳng (P): 7x + 5y + z + = x = t  HT 17 Trong không gian với hệ toạ độ... B = HT 27 , C = ⇒ (P ) : −23x + 5y + 13z – = 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(−1;2; −3), B(2; −1; −6) mặt phẳng BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page GV.Lưu Huy Thưởng

Ngày đăng: 08/11/2017, 23:34

TỪ KHÓA LIÊN QUAN

w