Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
3,07 MB
Nội dung
H THNG BI TP TRC NGHIM I S LP 10-CHNG II CH HM Sễ - HM S BC - HM S BC Loi I CNG V HM S Cõu im no sau õy thuc th hm s y = x + x ? A ( 2;6 ) Cõu B ( 1; 1) Cho hm s: y = C ( 2; 10 ) D ( 0; ) x Trong cỏc im sau õy, im no thuc th x 3x + hm s: A M ( 2;3) Cõu B 15 Tp xỏc nh ca hm s y = A Cõu Cõu Hm s y = D x l x x+3 B R\ [ 0;3] C R\ { 1} , x ( ;0 ) , x ( 0; + ) D R\ { 0;1} l: C R\ { 0;3} D R x +1 xỏc nh trờn [ 0;1) khi: x 2m + B m C m < hoc m D m hoc m < Tp xỏc nh ca hm s: f ( x ) = x + x l hp no sau õy? x2 + A R B R\ { 1;1} C R\ { 1} Tp hp no sau õy l xỏc nh ca hm s: y = A ; + ữ Cõu D M ( 1;0 ) x Tp xỏc nh ca hm s y = x A m < Cõu C B R A R\ { 0} Cõu C M ( 12; 12 ) x , x ( ;0 ) Cho hm s y = x + , x [ 0; 2] Tớnh f ( ) , ta c kt qu: x , x ( 2;5] A Cõu B M ( 0; 1) B ; + ữ C ; D R\ { 1} 2x D R x Cho hm s: y = x Tp xỏc nh ca hm s l: x + x > Trang A [ 2; + ) B R\ { 1} C R D { x R / x v x 2} Cho hai hm s f ( x ) v g ( x ) cựng ng bin trờn khong ( a; b ) Cú th kt Cõu 10 lun gỡ v chiu bin thiờn ca hm s y = f ( x ) + g ( x ) trờn khong ( a; b ) ? A.ng bin B.Nghch bin C.Khụng i D.Khụng kt lun C Trong cỏc hm s sau, hm s no tng trờn khong ( 1;0 ) ? Cõu 11 A y = x B y = C y = x D y = x x Trong cỏc hm s sau õy: y = x , y = x + x , y = x + x cú bao nhiờu hm Cõu 12 Cõu 13 Cõu 14 s chn? A.0 B.1 Hm s no sau õy l hm s l? C.2 x A y = C y = x B y = + D.3 x x D y = + Xột tớnh chn, l ca hai hm s f ( x ) = x + x , g ( x ) = x A f ( x ) l hm s chn, g ( x ) l hm s chn B f ( x ) l hm s l, g ( x ) l hm s chn C f ( x ) l hm s l, g ( x ) l hm s l D f ( x ) l hm s chn, g ( x ) l hm s l Cõu 15 Xột tớnh cht chn l ca hm s y = x3 + x + Trong cỏc mnh sau, tỡm Cõu 16 mnh ỳng? A y l hm s chn B y l hm s l C y l hm s khụng cú tớnh chn l D y l hm s va chn va l Cho hm s y = 3x x + Trong cỏc mnh sau, mnh no ỳng? Cõu 17 A y l hm s chn B y l hm s l C y l hm s khụng cú tớnh chn l D y l hm s va chn va l Trong cỏc hm s sau, hm s no khụng phi l hm s l? A y = x + Cõu 18 Cõu 19 B y = x3 x C y = x + x x D y = Trong cỏc hm s sau, hm s no khụng phi l hm s chn? A y = x + + x B y = x + x C y = x + + x D y = x + x Cho hm s: y = x Trong cỏc im sau õy im no thuc th x 3x + ca hm s ? A M ( 2; ) B M ( 0; 1) 1 C M ; ữ 2 D M ( 1; ) Trang Cõu 20 Cho hm s: y = f ( x ) = x Tỡm x f ( x ) = A x = B x = hay x = C x = D x = Cho hm s: y = f ( x ) = x x Kt qu no sau õy ỳng? Cõu 21 Cõu 22 Cõu 23 Cõu 24 Cõu 25 A f ( ) = 2; f ( 3) = B f ( ) khụng xỏc nh; f ( 3) = C f ( 1) = ; f ( ) khụng xỏc nh D.Tt c cỏc cõu trờn u ỳng Tp xỏc nh ca hm s f ( x ) = x + + x l: x x + A D = R B D = R \{1} C D = R \ {5} Tp xỏc nh ca hm s f ( x) = x + D D = R \ {5; 1} l: x A D = ( 1; 3] B D = ( ;1) [ 3; + ) C D = ( ;1) ( 3; + ) D D = Tp xỏc nh ca hm s y = 3x + l: ( x 2) x + A D = R \{2} B D = ( 4; + ) \ { 2} C D = [ 4; + ) \ { 2} D D = Tp hp no sau õy l xỏc nh ca hm s: y = x - ? ộ3 A ; +Ơ ở2 ữ ữ ữ ứ ổ 3ự - Ơ ; ỳ C ỗ ỗ ỗ ố 2ỳ ỷ B R ùỡ ùỹ D Ă \ ý ùợù ùỵ ù Hm s y = x - 3x + x + - cú xỏc nh l: Cõu 26 x - x +1 A [- 2; - 1) ẩ ( 1; 3] B ( - 2; - 1] ẩ [1; 3) C [- 2;3] \ {- 1;1} D [- 2; - 1) ẩ ( - 1;1) ẩ ( 1;3] x0 Cho hm s: y = x Tp xỏc nh ca hm s l hp no sau Cõu 27 x+2 x >0 õy? A [ 2; + ) B R\ { 1} D { x R x 1; x 2} C R Cõu 28 Hm s y = 7x cú xỏc nh l : x 19 x + 12 A ; [ 4;7 ] C ; ( 4; ) Cõu 29 B ; ữ [ 4; ) D ; ữ ( 4;7 ] Tp xỏc nh ca hm s y = x + l x A D = R \ { 3} B D = [ 3; + ) C D = ( 3; + ) D D = ( ;3) Trang Cõu 30 A D = [ 5; 13] Cõu 31 l 13 x Tp xỏc nh ca hm s y = x + Hm s y = x2 x + x 2 D [ 5;13) cú xỏc nh l: ( ) ( 3; + ( ) ( 3; + \ A ; C ; C ( 5;13] B D = ( 5; 13) ) ( ) B ; 3; + \ D ; 3; ữ ) ( ) Tp xỏc nh ca hm s y = x + x l hp no sau õy? Cõu 32 x2 + A R Cõu 33 C R\ { 1} B R\ { 1} Tp xỏc nh ca hm s y = x + + D R\ { 1} l x A D = ( 1; + ) \ { 2} B D = [ 1; + ) \ { 2} A y = f ( x ) l hm s chn B y = f ( x ) l hm s l A f ( x ) v g ( x ) cựng l B f ( x ) l, g ( x ) chn A f ( x ) v g ( x ) cựng chn B f ( x ) v g ( x ) cựng l C D = [ 1; + ) \ { 2} D D = ( 1; + ) \ { 2} Cho hm s y = f ( x ) = 3x - 4x + Trong cỏc mnh sau, mnh no Cõu 34 ỳng? Cõu 35 C y = f ( x ) l hm s khụng cú tớnh chn l D y = f ( x ) l hm s va chn va l Cho hai hm s f ( x ) = x3 3x v g ( x ) = x3 + x Khi ú C f ( x ) chn, g ( x ) l D f ( x ) l, g ( x ) khụng chn khụng l Cho hai hm s f ( x ) = x + x v g ( x ) = x + x + Khi ú: Cõu 36 C f ( x ) chn, g ( x ) l Cõu 37 Cõu 38 Cõu 39 Cho hai hm s f ( x ) = v g ( x ) = x + x Khi ú: x A f ( x ) v g ( x ) u l hm l B f ( x ) v g ( x ) u l hm chn A y = x + + x 2 C y = x + + x D y = C f ( x ) l, g ( x ) chn D f ( x ) chn, g ( x ) l Trong cỏc hm s sau, hm s no khụng phi l hm s chn B y = x + x Trong cỏc hm s sau, hm s no tng trờn khong ( 1;0 ) ? A y = x Cõu 40 D f ( x ) l, g ( x ) chn B y = x C y = x x +1 + x x2 + D y = x Cõu no sau õy ỳng? A.Hm s y = a x + b ng bin a > v nghch bin a < Trang B.Hm s y = a x + b ng bin b > v nghch bin b < C Vi mi b , hm s y = a x + b nghch bin a D Hm s y = a x + b ng bin a > v nghch bin b < Xột s bin thiờn ca hm s y = Mnh no sau õy ỳng? Cõu 41 x2 A Hm s ng bin trờn ( ;0 ) , nghch bin trờn ( 0; + ) B.Hm s ng bin trờn ( 0; + ) , nghch bin trờn ( ; ) C.Hm s ng bin trờn ( ;1) , nghch bin trờn ( 1; + ) D.Hm s nghch bin trờn ( ;0 ) ( 0; + ) Cho hm s f ( x ) = Khi ú: Cõu 42 x +1 A f ( x ) tng trờn khong ( ; 1) v gim trờn khong ( 1; + ) B f ( x ) tng trờn hai khong ( ; 1) v ( 1; + ) C f ( x ) gim trờn khong ( ; 1) v gim trờn khong ( 1; + ) D f ( x ) gim trờn hai khong ( ; 1) v ( 1; + ) Xột s bin thiờn ca hm s y = x Chn khng nh ỳng Cõu 43 x A Hm s nghch bin trờn tng khong xỏc nh ca nú B.Hm s ng bin trờn tng khong xỏc nh ca nú C Hm s ng bin trờn ( ;1) , nghch bin trờn ( 1; + ) D.Hm s ng bin trờn ( ;1) Cho hm s y = 16 x Kt qu no sau õy ỳng? Cõu 44 x+2 A f (0) = 2; f (1) = 15 C f ( ) = ; f ( ) khụng xỏc nh B f (0) = 2; f ( 3) = D f (0) = 2; f (1) = 11 24 14 x , x0 Cho hm s: f ( x) = x + Giỏ tr f ( ) , f ( ) , f ( ) l Cõu 45 , x C k < D k > Cho hm s y = ax + b (a 0) Mnh no sau õy l ỳng? A Hm s ng bin a > C Hm s ng bin x > - Cõu 53 B Hm s ng bin a < b a D Hm s ng bin x < - th ca hm s y = - x + l hỡnh no? A B y O C x y x y x O Cõu 54 O D O y b a x Hỡnh v sau õy l th ca hm s no ? y O x A y = x B y = x C y = 2x D y = 2x Trang Cõu 55 Hỡnh v sau õy l th ca hm s no? y A y = x Cõu 56 B y = x + 1 x C y = 1- x D y = x - Hỡnh v sau õy l th ca hm s no? y O B y = - x A y = x x C y = x vi x Ê 0.D y = - x vi x < Vi giỏ tr no ca a v b thỡ th hm s y = ax + b i qua cỏc im Cõu 57 ( ) ( ) A - 2; , B 1; - A a = - v b = - B a = v b = C a = v b = D a = - v b = - Phng trỡnh ng thng i qua hai im A - 1; v B 3; l: Cõu 58 ( ) ( ) x -x 3x 3x B y = C y = D y = + + + + 4 4 22 Cho hm s y = x - x Trờn th ca hm s ly hai im A v B honh Cõu 59 ln lt l - v Phng trỡnh ng thng AB l A y = 3x 4x - 3x 4x B y = C y = D y = - - + + 4 3 4 3 th hm s y = ax + b ct trc honh ti im x = v i qua im Cõu 60 A y = ( ) M - 2; vi cỏc giỏ tr a,b l 1 ; b = B a = - ; b = 2 1 C a = - ; b = - D a = ; b = - 2 Khụng v th, hóy cho bit cp ng thng no sau õy ct nhau? A a = Cõu 61 A y = x - v y = 2x + ổ2 x + v y = - ỗ ỗ xC y = ỗ ỗ ỗ ố2 B y = x v y = x - ữ 1ữ ữ ữ ữ ứ D y = 2x - v y = 2x + Trang Cõu 62 Cho hai ng thng d : y = x + 100 v d : y = - x + 100 Mnh no sau 2 õy ỳng? A d1 v d2 trựng B d1 v d2 ct v khụng vuụng gúc C d1 v d2 song song vi Cõu 63 Cõu 64 D d1 v d2 vuụng gúc Ta giao im ca hai ng thng y = x + v y = - x + l ổ4 18ữ ổ4 18ử ổ 18ử ổ 18ử ữ ữ ữ ữ ữ ỗ ; ữ ỗ ;ỗ- ; ữ ỗ- ;A ỗ B ỗ C ỗ D ỗ ữ ữ ữ ữ ữ ữ ữ ữ ỗ ỗ ỗ ỗ 7ứ 7ứ ố7 ứ ố7 ố 7ứ ố Cỏc ng thng y = - 5( x + 1) ; y = 3x + a ; y = ax + ng quy vi giỏ tr ca a l A - 10 B - 11 C - 12 D - 13 Mt hm s bc nht y = f ( x) , cú f ( - 1) = v f ( 2) = - Hm s ú l Cõu 65 - 5x - - 5x + C y = D y = 2x 3 Cho hm s y = f (x) = x + Giỏ tr ca x f ( x) = l Cõu 66 A x = - B x = - C x = - hoc x = - D x = Vi nhng giỏ tr no ca m thỡ hm s f ( x) = ( m + 1) x + ng bin trờn Ă Cõu 67 A y = - 2x + B y = ? A m = B m = C m < D m > - Cho hm s f ( x) = ( m - 2) x + Vi giỏ tr no ca m thỡ hm s ng bin Cõu 68 trờn Ă ? nghch bin trờn Ă ? A Vi m thỡ hm s ng bin trờn Ă , m < thỡ hm s nghch bin trờn Ă B Vi m < thỡ hm s ng bin trờn Ă , m = thỡ hm s nghch bin trờn Ă C Vi m thỡ hm s ng bin trờn Ă , m > thỡ hm s nghch bin trờn Ă D Vi m > thỡ hm s ng bin trờn Ă , m < thỡ hm s nghch bin trờn Ă ổ ữ th ca hm s y = ax + b i qua cỏc im A 0;- , B ỗ Giỏ tr ca ữ ;0 ỗ ữ Cõu 69 ỗ ố5 ữ ứ ( ) a, bl: A a = ; b = - B a = 5; b = - C a = 1; b = - D a = - 5; b = Phng trỡnh ng thng i qua hai im: A 3;1 , B - 2;6 l: Cõu 70 ( ) ( ) A y = - x + B y = - x + C y = 2x + D y = x - Phng trỡnh ng thng i qua hai im: A 5;2 , B - 3;2 l: Cõu 71 ( ) Cõu 72 A y = B y = - C y = 5x + Trong mt phng ta Oxy cho ng thng ( ) D y = ( d) cú phng trỡnh y = kx + k2 Tỡm k ng thng ( d) i qua gc ta : Trang A k = B k = C k = - D k = hoc k = - Phng trỡnh ng thng i qua giao im ng thng y = 2x + 1, Cõu 73 y = 3x v song song vi ng thng y = 2x + 15 l Cõu 74 A y = 2x + 11- B y = x + C y = 6x - D y = 4x + Cho hai ng thng (d ) v (d ) ln lt cú phng mx + ( m 1) y 2( m + 2) = , 3mx - ( 3m + 1) y 5m = Khi m = trỡnh: thỡ ( d1) v (d ) A song song B ct ti mt im C vuụng gúc D trựng Phng trỡnh ng thng i qua im A ( 1;- 1) v song song vi trc Ox l: Cõu 75 A y = B y = - C x = D x = - Hm s y = x + - 4x bng hm s no sau õy? Cõu 76 ùỡù - 3x + x ùỡù - 3x + x A y = B y = ùù - 5x - x < ùù - 5x - x < ợ ợ ùỡù - 3x + x - ùỡù - 3x + x - C y = D y = ùù - 5x + x < - ùù - 5x - x < - ợ ợ Hm s y = x + + x - c vit li l Cõu 77 ỡù - 2x + x Ê - ỡù 2x - x Ê - ùù ùù ù - < x Ê - < x Ê A y = B y = ùớ ùù ùù ùù 2x - x > ùù - 2x + x > ợ ợ ỡù 2x + ỡù - 2x + x Ê - x Ê - ùù ùù ù - < x Ê - < x Ê C y = D y = ùớ ùù ùù ùù - 2x - x > ùù 2x - x > ợ ợ Hm s y = x + x c vit li l: Cõu 78 ùỡù x x ùỡù x A y = B y = ùù 2x x < ùù 2x x < ợ ợ ỡù 2x x ù C y = D ùù x < ợ ỡù - 2x x y = ùớ ùù x < ợ Cho hm s y = 2x - Bng bin thiờn no sau õy l bng bin thiờn ca Cõu 79 hm s ó cho Trang A C Cõu 80 C Cõu 82 Cõu 83 - Ơ y +Ơ x - Ơ +Ơ y +Ơ +Ơ B 0 +Ơ +Ơ D x - Ơ y +Ơ x - Ơ y +Ơ +Ơ - - Ơ +Ơ - Ơ Hm s y = x + 2cú bng bin thiờn no sau õy? A Cõu 81 x x - Ơ y +Ơ x - Ơ +Ơ y - +Ơ +Ơ x B 0 +Ơ +Ơ y x D y - Ơ +Ơ +Ơ - Ơ - Ơ +Ơ +Ơ - Ơ th sau õy biu din hm s no? A y = 2x - B y = x - C y = - 2x - th sau õy biu din hm s no? D y = - x A y = x + B y = x - C y = - x - th sau õy biu din hm s no? D y = - x + A y = - x + ỡù 2x Hm s y = ùớ Cõu 84 ùù x + ợ B y = - x - C y = x - D y = x + x cú th x < Trang 10 Cõu 85 A B C D th sau õy biu din hm s no? A y = x Cõu 86 B y = 2x C y = x D y = - x th sau õy biu din hm s no? A y = x + B y = x - C y = x + D y = x - Hm s y = x - cú th no cỏc th sau õy? Cõu 87 A B Trang 11 C Hm s y = x + x + cú th l Cõu 88 A D B C D Xỏc nh m hai ng thng sau ct ti mt im trờn trc honh: Cõu 89 ( m - 1) x + my - = ; mx + ( 2m 1) y + = Giỏ tr m l: B m = C m = D m = 12 12 Xột ba ng thng sau: 2x y + = ; x + 2y 17 = ; x + 2y = Cõu 90 A Ba ng thng ng qui B Ba ng thng giao ti ba im phõn bit C Hai ng thng song song, ng thng cũn li vuụng gúc vi hai ng thng song song ú D Ba ng thng song song Bit th hm s y = kx + x + ct trc honh ti im cú honh bng Cõu 91 A m = Giỏ tr ca k l: A k = B k = C k = - D k = - Cho hm s y = x - cú th l ng thng ng thng to vi hai Cõu 92 trc ta mt tam giỏc cú din tớch bng: A B C D 2 Cho hm s y = 2x - cú th l ng thng ng thng to vi Cõu 93 hai trc ta mt tam giỏc cú din tớch bng: 9 3 A B C D 4 Tỡm m th hm s y = ( m - 1) x + 3m - i qua im A ( - 2;2) Cõu 94 Trang 12 A m = - B m = C m = D m = Xỏc nh ng thng y = ax + b , bit h s gúc bng - 2v ng thng qua Cõu 95 A ( - 3;1) A y = - 2x + B y = 2x + C y = 2x + D y = - 2x - Cho hm s y = 2x + cú th l ng thng Khng nh no sau õy Cõu 96 l khng nh sai? A Hm s ng bin trờn Ă B ct trc honh ti im A ( 2;0) Cõu 97 C ct trc tung ti im B ( 0;4) D H s gúc ca bng Cho hm s y = ax + b cú th l hỡnh bờn Giỏ tr ca a v b l: A a = - 2v b = B a = C a = - 3v b = D a = Cõu 98 Cõu 99 v b = 2 v b = Trong cỏc hm s sau, hm s no nghch bin trờn Ă A y = x - B y = C y = - x + D y = 2x + Xỏc nh hm s y = ax + b , bit th hm s i qua hai im M ( - 1;3) v N ( 1;2) A y = Cõu 100 x+ 2 B y = x + C y = x + 2 D y = - x + Hm s y = 2x - cú th l hỡnh no bn hỡnh sau: Hỡnh A Hỡnh Hỡnh B Hỡnh Hỡnh C Hỡnh Hỡnh D Hỡnh Loi HM S BC HAI Cõu 101 Tung nh I ca parabol ( P ) : y = x x + l Trang 13 A Cõu 102 Cõu 103 Cõu 104 B Cõu 106 A y gim trờn ( 2; + ) B y gim trờn ( ; ) C y tng trờn ( 2; + ) D y tng trờn ( ; + ) Hm s no sau õy nghch bin khong ( ;0 ) ? D y = ( x + 1) A y tng trờn ( 0; + ) B y gim trờn ( ; ) C th ca y cú nh I ( 1;0 ) D y tng trờn ( 2; + ) Bng bin thiờn ca hm s y = x + x + l bng no sau õy? x y C x y + B x y + + + + D x y + + + Hỡnh v bờn l th ca hm s no? y A y = ( x + 1) Cõu 108 C y = ( x + 1) B y = x + Cho hm s: y = x x + Trong cỏc mnh sau, tỡm mnh ỳng? A Cõu 107 D Hm s no sau õy cú giỏ tr nh nht ti x = ? 3 A y = x x + B y = x + x + C y = x + 3x + D y = x x + 2 Cho hm s y = f ( x ) = x + x + Mnh no sau õy l ỳng? A y = x + Cõu 105 C B y = ( x 1) x C y = ( x + 1) 2 D y = ( x 1) Hỡnh v bờn l th ca hm s no? y A y = x + x B y = x + x x C y = x x D y = x x + Cõu 109 Parabol y = ax + bx + i qua hai im M ( 1;5 ) v N ( 2;8 ) cú phng trỡnh l: Cõu 110 A y = x + x + B y = x + x + C y = x + x + D y = x + x + Parabol y = ax + bx + c i qua A ( 8;0 ) v cú nh A ( 6; 12 ) cú phng trỡnh l: A y = x 12 x + 96 C y = x 36 x + 96 B y = x 24 x + 96 D y = 3x 36 x + 96 Trang 14 Cõu 111 Parabol y = ax + bx + c t cc tiu bng ti x = v i qua A ( 0;6 ) cú Cõu 112 phng trỡnh l: A y = x + x + B y = x + x + C y = x + x + D y = x + x + Parabol y = ax + bx + c i qua A ( 0; 1) , B ( 1; 1) , C ( 1;1) cú phng trỡnh l: A y = x x + B y = x x C y = x + x Cho M ( P ) : y = x v A ( 2; ) AM ngn nht thỡ: Cõu 113 D y = x + x + A M ( 1;1) B M ( 1;1) C M ( 1; 1) D M ( 1; 1) Giao im ca parabol ( P ) : y = x + x + vi trc honh: Cõu 114 A ( 1; ) ; ( 4; ) B ( 0; 1) ; ( 0; ) C ( 1; ) ; ( 0; ) D ( 0; 1) ; ( 4; ) Giao im ca parabol (P): y = x 3x + vi ng thng y = x l: Cõu 115 A ( 1;0 ) ; ( 3; ) B ( 0; 1) ; ( 2; 3) C ( 1; ) ; ( 2;1) D ( 2;1) ; ( 0; 1) Giỏ tr no ca m thỡ th hm s y = x + 3x + m ct trc honh ti hai im Cõu 116 phõn bit? 9 9 A m < B m > C m > D m < 4 4 Khi tnh tin parabol y = x sang trỏi n v, ta c th ca hm s: Cõu 117 A y = ( x + 3) Cõu 118 B y = x + C y = ( x 3) D y = x Cho hm s y = x x + th hm s ny cú th c suy t th hm s y = x bng cỏch 16 n v, ri lờn trờn n v 3 16 B Tnh tin parabol y = x sang phi n v, ri lờn trờn n v 3 16 C Tnh tin parabol y = x sang trỏi n v, ri xung di n v 3 16 D Tnh tin parabol y = x sang phi n v, ri xung di n v 3 Nu hm s y = ax + bx + c cú a < 0, b < v c > thỡ th ca nú cú dng: Cõu 119 A B C D y y y y O O x x O x x O A Tnh tin parabol y = x sang trỏi Cõu 120 Nu hm s y = ax + bx + c cú th nh sau thỡ du cỏc h y s ca nú l: A a > 0; b > 0; c > B a > 0; b > 0; c < O C a > 0; b < 0; c > D a > 0; b < 0; c < x Trang 15 Cõu 121 Cho phng trỡnh: ( 9m ) x + ( n ) y = ( n 3) ( 3m + ) Vi giỏ tr no ca m v n thỡ phng trỡnh ó cho l ng thng song song vi trc Ox ? 2 A m = ; n = B m ; n = 3 3 C m = ; n D m = ; n Cho hm s f ( x ) = x x + Khi ú: Cõu 122 A f ( x ) tng trờn khong B f ( x ) gim trờn khong C f ( x ) luụn tng Cõu 123 ( ;3) ( ;3) v gim trờn khong ( 3; + ) v tng trờn khong ( 3; + ) D f ( x ) luụn gim Cho hm s y = x x + Trong cỏc mnh sau õy, tỡm mnh ỳng? A y tng trờn khong ( 0; + ) C th ca y cú nh I ( 1;0 ) Cõu 124 B y gim trờn khong ( ; ) D y tng trờn khong ( 1; + ) Hm s y = x + x Khi ú: A Hm s ng bin trờn ( ; ) v nghch bin trờn ( 2; + ) B Hm s nghch bin trờn ( ; ) v ng bin trờn ( 2; + ) C Hm s ng bin trờn ( ; 1) v nghch bin trờn ( 1; + ) Cõu 125 D Hm s nghch bin trờn ( ; 1) v ng bin trờn ( 1; + ) Cho hm s y = f ( x ) = x x + Khi ú: A Hm s tng trờn khong Cõu 126 ( ;0 ) ( ; ) B Hm s gim trờn khong ( 5; + ) C Hm s tng trờn khong D Hm s gim trờn khong ( ; ) Cho hm s y = f ( x ) = x x + 12 Trong cỏc mnh sau mnh no ỳng? A Hm s luụn luụn tng B Hm s luụn luụn gim C Hm s gim trờn khong ( ; ) v tng trờn khong ( 2; + ) Cõu 127 D Hm s tng trờn khong ( ; ) v gim trờn khong ( 2; + ) Cho hm s y = f ( x ) = x + 5x + Trong cỏc mnh sau mnh no sai? 29 A y gim trờn khong ; + ữ B y tng trờn khong ( ;0 ) D y tng trờn khong ; ữ Cho parabol ( P ) : y = x + x Khng nh ỳng nht cỏc khng nh Cõu 128 sau l: A ( P ) cú nh I ( 1;2 ) B ( P ) cú trc i xng x = C y gim trờn khong ( ;0 ) C ( P ) ct trc tung ti im A ( 0;1) D C a,b,c , u ỳng Trang 16 Cõu 129 ng thng no cỏc ng thng sau õy l trc i xng ca parabol y = x + x + ? 5 5 B x = C x = D x = 2 4 nh ca parabol y = x + x + m nm trờn ng thng y = nu m bng Cõu 130 A B C D Parabol y = 3x x + Cõu 131 A x = A Cú nh I ; ữ 3 C Cú nh I ; ữ 3 B Cú nh I ; ữ 3 D i qua im M ( 2;9 ) Cho Parabol y = x v ng thng y = x Khi ú: Cõu 132 A Parabol ct ng thng ti hai im phõn bit B Parabol ct ng thng ti im nht ( 2; ) C Parabol khụng ct ng thng D Parabol tip xỳc vi ng thng cú tip im l ( 1; ) Parabol ( P ) : y = x + x + Khi ú Cõu 133 A Cú trc i xng x = v i qua im A ( 0;1) B Cú trc i xng x = v i qua im A ( 1;6 ) C Cú trc i xng x = v i qua im A ( 2;9 ) D Cú trc i xng x = v i qua im A ( 3;9 ) Cho parabol ( P ) : y = ax + bx + bit rng parabol ú ct trc honh ti x = 1 Cõu 134 v x2 = Parabol ú l: x + x+2 B y = x + x + C y = x + x + D y = x 3x + Cho parabol ( P ) : y = ax + bx + bit rng parabol ú i qua hai im A ( 1;5 ) v A y = Cõu 135 B ( 2;8 ) Parabol ú l Cõu 136 A y = x x + B y = x + x + C y = x + x + D y = x 3x + Cho parabol ( P ) : y = ax + bx + bit rng parabol ú i qua hai im A ( 1; ) v B ( 1; ) Parabol ú l Cõu 137 A y = x + x + B y = x x + C y = x + x + D y = x + x + Bit parabol y = ax + bx + c i qua gc ta v cú nh I ( 1; 3) Giỏ tr a, b, c l A a = 3, b = 6, c = B a = 3, b = 6, c = C a = 3, b = 6, c = D a = 3, b = 6, c = Bit parabol ( P ) : y = ax + x + i qua im A ( 2;1) Giỏ tr ca a l Cõu 138 A a = B a = C a = D a = Trang 17 Cõu 139 Cho hm s y = f ( x ) = ax + bx + c Biu thc f ( x + 3) f ( x + ) + f ( x + 1) cú giỏ tr bng A ax bx c B ax + bx c C ax bx + c D ax + bx + c Cho hm s y = f ( x ) = x + x Cỏc giỏ tr ca x f ( x ) = l Cõu 140 A x = B x = C x = 1, x = D x = 1, x = Bng bin thiờn ca hm s y = x + x l: Cõu 141 x x + + + + B + + A y y x C + x D y Bng bin thiờn no di õy l ca hm s y = x + x + l: Cõu 142 x x + + + + A B y y y x C y + x D y Bng bin thiờn no di õy l ca hm s y = x x + ? Cõu 143 x x + + + B + A y y x C + x D y th hm s y = x x cú dng no cỏc dng sau õy? Cõu 144 A y + + + + + + + B Trang 18 C D th hm s y = x + x cú dng l? Cõu 145 A B C D Tỡm ta giao im ca hai parabol: y = x x v y = x + x + l Cõu 146 2 11 A ; 1ữ B ( 2;0 ) , ( 2;0 ) C 1; ữ, ; ữ D ( 4; ) , ( 1;1) 50 Parabol ( P ) cú phng trỡnh y = x i qua A, B cú honh ln lt l Cõu 147 Cõu 148 v Cho O l gc ta Khi ú: A Tam giỏc AOB l tam giỏc nhn B Tam giỏc AOB l tam giỏc u C Tam giỏc AOB l tam giỏc vuụng D Tam giỏc AOB l tam giỏc cú mt gúc tự Parabol y = m x v ng thng y = x ct ti hai im phõn bit ng vi: A Mi giỏ tr m B Mi m C Mi m tha m < v m D Mi m < v m Ta giao im ca ng thng y = x + v parabol y = x x + l: Cõu 149 A ; 1ữ 11 C 1; ữ, ; ữ 50 B ( 2;0 ) , ( 2; ) D ( 1; ) , ( 2;5 ) Trang 19 Cõu 150 Cho parabol y = x x Hóy chn khng nh ỳng nht cỏc khng nh sau: A ( P ) cú nh I ( 1; 3) B Hm s y = x x tng trờn khong C ( P ) ct Ox ti cỏc im A ( 1;0 ) , B ( 3; ) D Parabol cú trc i xng l y = ( ;1) v gim trờn khong ( 1; + ) Trang 20 ... y = ỗ ỗ ỗ 2 B y = x v y = x - ữ 1ữ ữ ữ ữ ứ D y = 2x - v y = 2x + Trang Cõu 62 Cho hai ng thng d : y = x + 100 v d : y = - x + 100 Mnh no sau 2 õy ỳng? A d1 v d2 trựng B d1 v d2 ct v khụng... 2; 2) Cõu 94 Trang 12 A m = - B m = C m = D m = Xỏc nh ng thng y = ax + b , bit h s gúc bng - 2v ng thng qua Cõu 95 A ( - 3;1) A y = - 2x + B y = 2x + C y = 2x + D y = - 2x - Cho hm s y = 2x... Loi HM S BC HAI Cõu 101 Tung nh I ca parabol ( P ) : y = x x + l Trang 13 A Cõu 1 02 Cõu 103 Cõu 104 B Cõu 106 A y gim trờn ( 2; + ) B y gim trờn ( ; ) C y tng trờn ( 2; + ) D y tng trờn