TRƯỜNG THCS NGUYỄN DU **************** ĐỀ KIỂM TRA HỌC SINH GIỎI LỚP 8 (VÒNG 2) MÔN : TOÁN - THỜI GIAN : 90 PHÚT NĂM HỌC: 2007-2008 Bài 1: (2đ) a/ Cho x + y = a , x 2 + y 2 = b, x 3 + y 3 = c. Chứng minh a 3 + 2c = 3ab b/ Với giá trị nào của x thì phân thức sau bằng 0 P = 12 1 234 34 +−+− +++ xxxx xxx Bài 2: (1,5đ) Cho biểu thức: Q = 41292 4104 23 2 +++ ++ aaa aa a/ Rút gọn Q. b/ Tìm các giá trị của a để Q đạt giá trị nguyên. Bài 3: (1,5đ) Giải phương trình: 5 2012 4 2011 3 2010 2 2009 1 2008 = + + + + + + + + xxxxx Bài 4: (2đ) Cho tam giác ABC , ba đường cao AA', BB', CC' cắt nhau tại H. Chứng minh: 1 ' ' '' ' ' =++ CC HC BB HB AA HA Bài 5: (3đ) Cho hình vuông ABCD . M là điểm tùy ý trên đường chéo BD .Kẻ ME vuông góc với AB, MF vuông góc với AD. a/ Chứng minh DE = CF, DE vuông góc với CF. b/ Chứng minh DE, BF, CM đồng quy. c/ Xác định vị trí điểm M trên BD để diện tích tứ giác AEMF lớn nhất. ****************************** ĐÁP ÁN TOÁN8 j H C' B' A' CB A Bài 1: (2đ) a/ (0,75đ) a 3 + 2c = (x + y) 3 + 2(x 3 + y 3 ) = 3x 3 + 3y 3 + 3x 2 y +3xy 2 (0,25) 3ab = 3(x + y)(x 2 + y 2 ) = 3x 3 + 3y 3 + 3x 2 y +3xy 2 (0,25) Vậy: a 3 + 2c = 3ab (0,25) b/ (1,25đ) Biến đổi được P = )1)(1( )1()1( )1()1( )1)(1( 22 22 222 3 +−+ +−+ = +−+ ++ xxx xxx xxx xx (0,5) Lý luận được mẫu thức > o với mọi x. (0,25) P = 0 ⇔ (x +1) 2 (x 2 - x + 1) = 0 (0,25) ⇔ (x +1) = 0 ⇔ x = -1 (0,25) Bài 2: (1,5đ) a/ Biến đổi Q = )12()2( )12)(2(2 2 ++ ++ aa aa = 2 2 + a (a ≠ -2; a ≠ - 2 1 ) (1đ) Thiếu điều kiện trừ 0,25đ b/ Q nguyên ⇔ a + 2 là ước của 2 ⇔ a+2 { } 2;2;1;1 −−∈ (0,25) ⇔ a { } 4;0;3;1 −−−∈ (0,25) Bài 3: (1,5đ) 5 2012 4 2011 3 2010 2 2009 1 2008 = + + + + + + + + xxxxx ⇔ 0)1 2012 4 ()1 2011 3 ()1 2010 2 ()1 2009 1 ()1 2008 ( =− + +− + +− + +− + +− xxxxx (0,25) ⇔ (x-2008) 0) 2012 1 2011 1 2010 1 2009 1 2008 1 ( =++++ (0,25) Vì 0) 2012 1 2011 1 2010 1 2009 1 2008 1 ( ≠++++ (0,25) Nên x -2008 = 0 ⇔ x = 2008 (0,5) Vậy S = { } 2008 (0,25) Bài 4: (2đ) Hình vẽ 0,25đ ABCHABHACHBC SSSS =++ (0,5) ⇔ 1 =++ ABC HAB ABC HAC ABC HBC S S S S S S (0,5) ⇔ 1 '. '. '. '. '. '. =++ ABCC ABHC ACBB ACHB BCAA BCHA (0,5) ⇔ 1 ' ' ' ' ' ' =++ CC HC BB HB AA HA (0,25) M F E D C B A Bài 5: (3đ) Hình vẽ 0,25đ a/ (1đ) C/m AEMF là hình chữ nhật suy ra MF = AE C/m ∆MFO vuông cân tại F suy ra MF = FD Suy ra AE = FD (0,25) C/m ∆DAE = ∆CDF (c.g.c) suy ra DE = CF (0,25) ADE = DCF ADE+ EDC = 90 0 ⇒ DCF+ EDC = 90 0 (0,25) ⇒ CF ⊥ DE (0,25) b/ (0,75đ) C/m tương tự ta có EC = FB và EC ⊥ FB C/m ∆FEB = ∆CME (EC = FB, ADE = DCF, ME = EB) ⇒ MCE = EFB (0,25) ⇒ MCE+ FEC = EFB+ FEC = 90 0 ⇒ CM ⊥ EF (0,25) ∆CEFcó CM,DE,BF là các đường cao nên chúng đồng qui. (0,25) c/ (1đ) ME+MF=AE+EB=AB không đổi (0,25) ⇒ ME.MF lớn nhất ⇔ ME=MF (0,25) ⇔ AEMF là hình vuông (0,25) ⇔ M ≡ O là giao điểm hai đường chéo AC và BD của hình vuông ABCD PHÒNG GD-ĐT TP TAM KỲ ĐỀKHẢOSÁT HỌC SINH GIỎI TRƯỜNG THCS NGUYỄN DU MÔN : TOÁN - LỚP 8 (VÒNG 2) **************** NĂM HỌC: 2008 - 2009 THỜI GIAN : 90 PHÚT Bài 1: (2,5đ) a/ Phân tích đa thức sau thành nhân tử: x 5 – 5x 3 + 4x b/ Cho a + b = 1. Tính giá trị của biểu thức: A = a 2 (2a - 3) + b 2 (-3 + 2b) Bài 2: (2,5đ) a/ Cho a;b;c ≠ 0, a + b + c =1 và cba 111 ++ = 0 Chứng minh rằng: a 2 + b 2 + c 2 = 1 b/ Giải phương trình: 4 1994 15 1993 16 1992 17 1991 18 −= + + + + + + + xxxx Bài 3: (2đ) Cho biểu thức: M = )1)(1()1)(()1)(( 2222 yx yx xyx y yyx x −+ − ++ − −+ a/ Tìm điều kiện xác định của biểu thức M. b/ Rút gọn biểu thức M. c/ Tìm các cặp số nguyên (x;y) để biểu thức M có giá trị bằng 3. Bài 4: (3đ) Cho hình thang ABCD (AB//CD) và O là giao điểm của hai đường chéo AC, BD. Chứng minh rằng: a/ Diện tích tam giác AOD bằng diện tích tam giác BOC. b/ Tích của diện tích tam giác AOB và diện tích tam giác COD bằng bình phương onthionline.net Đềkhảosát học sinh giỏi Môn : Toán Thời gian: 120 phút Câu1 : Tìm số nguyên x, y, z thoả mãn bất đẳng thức x + y + z < xy + 3y + 2z – Câu 2: Cho a, b, c số đo ba cạnh tam giác Chứng minh : a−b b−c c−a + +