1. Trang chủ
  2. » Trung học cơ sở - phổ thông

De so 3 kèm đáp án

7 99 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 669,13 KB

Nội dung

SỞ GD & ĐT HÀ NỘI ĐỀ THI THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT CHU VĂN AN Môn thi: TOÁN ĐỀ THI THỬ Thời gian làm bài: 180 phút Câu (1,0 điểm) Khảo sát biến thiên vẽ đồ thị hàm số y  x2 x2 x2  Câu (1,0 điểm) Tìm giá trị lớn giá trị nhỏ hàm số y  đoạn [-4; -1] x Câu (1,0 điểm) a) Tìm số phức z biết z  z   i số thực;   b) Giải phương trình log 3    x x   Câu (1,0 điểm) Tính tích phân I    x  1 e  dx x Câu (1,0 điểm) Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A 1;1;1 , B  3;  1;1 , C  2;0;  Viết phương trình mặt phẳng  P  qua C vuông góc với đường thẳng AB Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng  P  Câu (1,0 điểm) a) Cho góc  thỏa mãn     tan   cot   Tính A  cos 2 ; b) Trong đợt kiểm tra độ an toàn nguồn nước ven biển Tỉnh miền trung Bộ y tế lấy 15 mẫu nước ven biển có mẫu Hà Tĩnh, mẫu Quảng Bình mẫu Thừa Thiên Huế Mỗi mẫu nước tích để hộp kín có kích thước giống hệt Đoàn kiểm tra lấy ngẫu nhiên bốn hộp để phân tích, kiểm tra xem nước có bị nhiễm độc hay không Tính xác suất để bốn hộp lấy có đủ ba loại nước ba Tỉnh Câu (1,0 điểm) Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a , hình chiếu vuông góc S mặt phẳng  ABCD  điểm H thuộc cạnh AD cho HD  2HA Gọi M , N trung điểm SB, BC , biết góc SB mặt phẳng  ABCD  300 Tính theo a thể tích khối chóp S ABCD khoảng cách hai đường thẳng MN , SD Câu (1,0 điểm) Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình thang cân ABCD có AD / / BC Phương trình đường thẳng chứa cạnh AB, AC x  y   0; y   Gọi I giao điểm AC, BD Tìm tọa độ đỉnh hình thang ABCD biết IB  2IA , hoành độ I lớn 3 điểm M  1;3 thuộc đường thẳng BD Câu (1,0 điểm) Giải bất phương trình sau tập : 5x  13  57  10x  3x x   19  3x  x  2x  Câu 10 (1,0 điểm).Cho x; y số thực thỏa mãn điều kiện x  y  x   y  2014  2012 Tìm giá trị nhỏ giá trị lớn biểu thức: S   x  1   y  1  2 2016  xy x  y  x  y 1 HẾT Câu Ý (1.0) ĐÁP ÁN CHI TIẾT Nội dung Điểm Khảo sát biến thiên vẽ đồ thị  C  Tập xác định: D  1,00 \ 2 Sự biến thiên: Giới hạn tiệm cận: lim y  1, lim y  , tiệm cận ngang: y  , x  0,25 x  lim y  , lim y   ; tiệm cận đứng: x  x  2 Chiều biến thiên: y '  x  2 4  x  2  0, x  D 0,25 Hàm số nghịch biến khoảng  ;   2;   Bảng biến thiên:  x y'     0,25 y'  Đồ thị : y x+2 fx = x-2 hx = ry = s x = ty = I x O -15 -10 -5 10 15 0,25 -2 -4 -6 -8 Đồ thị (C) nhận giao điểm hai tiệm cận I 1;  làm tâm đối xứng (1.0) Tìm giá trị lớn giá trị nhỏ hàm số y  Xét D =  4; 1 hàm số xác định liên tục x2  đoạn  4; 1 x x2  9 Ta có y   x   y '    y '   x  3 x x x Kết hợp điều kiện ta lấy nghiệm x  3 1,00 0,50 Khi 25 ; y  3  6; y  1  10  max y  6  x  3; y  10  x  1 y  4     4;1  4;1 0,50 a Tìm số phức z biết z  z   i số thực (1.0) Gọi z  a  bi  a, b   Suy z   i   a  1   b  1 i 0,50 0,25 Từ giả thiết z   i số thực ta có b  Khi z   a  i   a2    a   0,25 Vậy số phức cần tìm z   i, z    i   b Giải phương trình log 3x    x PT  3x   33 x  3x   0,50 27  32 x  6.3x  27  x 0,25 3 x   x  3x   x  3  3 (1.0)  0,25  Tính tích phân I    x  1 e  dx 1,0 u  x  du  dx    x x x dv   e  3 dx v    e  3 dx   e  3x  0,5 x  I   x  1  e  3x     e x  3x  dx x 0,25     x  1  e  3x    e x  x   e  0  x 0,25 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A 1;1;1 , B  3;  1;1 , C  2;0;  (1.0) Viết phương trình mặt phẳng  P  qua C vuông góc với đường thẳng AB Viết 1.0 phương trình mặt cầu tâm O tiếp xúc với mặt phẳng  P  +) Mặt phẳng (P) qua điểm C(-2;0;2) với vtpt AB   2; 2;0  có phương trình:  x  2   y  0   z  2   x  y   +) Mặt cầu cần tìm có tâm O, bán kính R  d  O,  P    002  nên có phương 0,50 0,50 trình x  y  z  2 a (1.0) 2 Cho góc  thỏa mãn     tan   cot   Tính A  cos 2 sin   cos 2 15 tan   cot      sin 2   cos 2   sin  cos 4 Vì        2    cos 2   cos 2   15 b Trong đợt kiểm tra độ an toàn nguồn nước ven biển Tỉnh miền trung Bộ y tế lấy 15 mẫu nước ven biển có mẫu Hà Tĩnh, mẫu Quảng Bình mẫu Thừa Thiên Huế Mỗi mẫu nước tích để hộp kín có kích thước giống hệt Đoàn kiểm tra lấy ngẫu nhiên bốn hộp để phân tích, 0,50 0,25 0,25 0,5 kiểm tra xem nước có bị nhiễm độc hay không Tính xác suất để bốn hộp lấy có đủ ba loại nước ba Tỉnh Số phần tử không gian mẫu:   C154  1365 0,25 Gọi A biến cố:” bốn hộp lấy có đủ ba loại nước ba Tỉnh ” +) TH1: Lấy hộp Hà Tĩnh, hộp Quảng Bình hộp Huế: C42 C51.C61 +) TH 2: Lấy hộp Hà Tĩnh, hộp Quảng Bình hộp Huế: C41 C52 C61 +) TH 3: Lấy hộp Hà Tĩnh, hộp Quảng Bình hộp Huế: C41 C51.C62 0,25 Khi  A  C42 C51.C61 + C41 C52 C61 + C41 C51.C62 =720 Vậy xác suất P  A  (1.0)  A 48   91 Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a , hình chiếu vuông góc S mặt phẳng  ABCD  điểm H thuộc cạnh AD cho HD  2HA Gọi M , N trung điểm SB, BC , biết góc SB mặt phẳng  ABCD  1.0 300 Tính theo a thể tích khối chóp S ABCD khoảng cách hai đường thẳng MN , SD S M A I B H D a Ta có AH  , DH  N C 2a , SH  ( ABCD)  SH chiều cao khối chóp 0,50 S.ABCD góc SB với mặt phẳng (ABCD) góc SBH  300 Vì tan SHB  tan 300  a2  Khi SH  SH  HB.tan 300  AB  AH tan 300  HB a2 a 30 9 VS ABCD  SH S ABCD , với SH  a 30 , a 30 a3 30 S ABCD  a  VS ABCD  a  (đvtt) 27 Do M, N trung điểm SB BC nên MN//SC  MN / /( SDC )  d ( MN ; SD)  d ( MN ;( SCD))  d ( N ;( SCD))  d ( B;( SCD)) Mà AB//CD  AB / /( SC )  d(B;(SCD))  d(A;(SCD))  d ( H ;( SCD)) Do d ( MN ; SD)  d ( H ;( SCD)) Gọi I hình chiếu vuông góc H 0,50 SD  d ( H ;(SCD))  HI Ta có 1 81 99 20 2a       HI  a  2 2 HI HS HD 30a 4a 20a 99 11 2a a 11 11 Vậy d ( MN ; SD)  (1.0) Cho hình thang cân ABCD có AD / / BC ; Phương trình đường thẳng chứa cạnh AB, AC x  y   0; y   Gọi I giao điểm AC, BD Tìm tọa độ đỉnh hình thang ABCD biết IB  2IA , hoành độ I lớn 3 điểm M  1;3 thuộc đường thẳng BD 1.0 + Do A=AB  AC  A(1;2) Lấy E(0;2)  AC , gọi F(2a-3; a)  AB cho EF// BD EF AE EF BI       EF  AE  (2a  3)  (a  2)  BI AI AE AI 11 a hoac a  11  EF ( ; ) vtcp đường thẳng BD  BD : x  y  22  + Khi a= 5 Do I = BD  AC  I (8;2) (loại) 0,50 + Khi a =  EF (1;1) vtcp đường thẳng BD  BD : x  y   Do I = BD  AC  I (2;2) (t/m)  AB  BD  B(5;1) + Lại có: IB   IA  IB IB 3 2 3 2 ID   ID   ID  D( , ) ID IA 2  IA IA 1 IC   IC  IC  C (3  2;2) IC IB 0,50 32 3 2 , ) 2 Cách khác: Gọi B(2m-3; m) I(n;2) Suy PT BM: (m-3)x-2(m-1)y+7m-9=0 Vì I thuộc BM nên n(m-3)+3m-5 = (1) Vậy : A(1;2) ; B(-5; -1) ; C(-3 -2; 2) ; D( Từ IB  2IA , kết (1) hợp ta PT: 5m  34m3  57m  20m  76    m  1 m    5m  19   Từ cho KQ (1.0) Giải bất phương trình sau tập : 5x  13  57  10x  3x  19 3  x  Điều kiện  x   Bất phương trình tương đương  x   19  3x 2 x   x   19  3x 19  3x x   19  3x  x  2x   x   19  3x  x  2x   x  5  13  x   2 x      19  3x    x x 2 3      x  2x  1.0 0,50  x  x      x  5 9 x      x  x   x2  x   13  x   19  3x         2  0  x x 2     x  5 13  x   9  x     19  3x          Vì   x  5 9 x      *  19   với x   3;  \ 3  13  x    19  3x       0,50  Do *  x  x    2  x  (thoả mãn) Vậy tập nghiệm bất phương trình S   2;1 10 (1.0) Cho x; y số thực thỏa mãn điều kiện x  y  x   y  2014  2012 Tìm giá trị nhỏ giá trị lớn biểu thức: S   x  12   y  12  2016  xy 1.0 x  y 1 x  y 1 Ta có S  x  x   y  y   2016  xy x  y 1 2016 2016  ( x  y  1)2  4( x  y  1)   x  y 1 x  y 1  ( x  y )2  2( x  y )   0,50 Đặt t  x  y  S  t  4t   2016 t Ta tìm đk cho t Từ gt, a  x   0, đặt b y  2014  suy x  a  2, y  b2  2014 ta a   b  2014  2a  3b  2012  a  b  2a  3b  13(a  b ) Suy  t  x  y 1  x  y   a  b2  2013  2013;2026  a2  b2  13 ,  2013 ; 2026  J  x  2 t  2013  a  b   a  b     y  2014 a  b  13 a  x   t  2026   a b   b   y  2023   2 Xét hàm số f (t )  t  4t   2016 t 0,50 liên tục J 2015 4t  8t  2016 4t (t  2)  2016 f '(t )  4t  8t     0t  J t t2 t2  f (t ) đồng biến J  f (t )  f ( 2013)  4044122  tJ Vậy S  4044122  2016 , 2016 max f (t )  f ( 2026)  4096577  2013 tJ 2026 2016 2016 ; max S  4096577  2013 2026 có 1) Nếu học sinh làm không theo cách nêu đáp án cho đủ số điểm phần hướng dẫn quy định 2) Việc chi tiết hóa (nếu có) thang điểm hướng dẫn chấm phải bảo đảm không làm sai lệch hướng dẫn chấm phải thống thực tổ chấm 3) Điểm thi tổng điểm không làm tròn ...  i, z    i   b Giải phương trình log 3x    x PT  3x   33  x  3x   0,50 27  32 x  6.3x  27  x 0,25 3 x   x  3x   x  3  3 (1.0)  0,25  Tính tích phân I    x ... mặt phẳng (ABCD) góc SBH  30 0 Vì tan SHB  tan 30 0  a2  Khi SH  SH  HB.tan 30 0  AB  AH tan 30 0  HB a2 a 30  9 VS ABCD  SH S ABCD , với SH  a 30 , a 30 a3 30 S ABCD  a  VS ABCD... tập : 5x  13  57  10x  3x  19  3  x  Điều kiện  x   Bất phương trình tương đương  x   19  3x 2 x   x   19  3x 19  3x x   19  3x  x  2x   x   19  3x  x  2x

Ngày đăng: 19/09/2017, 14:33

w