1. Trang chủ
  2. » Giáo án - Bài giảng

Sáng kiến kinh nghiệm điều kiện cần và đủ để hẹ phương trình có nghiệm duy nhât

20 6,1K 26
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 169 KB

Nội dung

SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất A - Phần I: Phần mở đầu I- Lý do chọn đề tài: - Toán học là một ngành khoa học tự nhiên. Ngoài công việc thực hiện tính toán ra toán học còn bổ trợ cho một số ngành khoa học khác đặc biệt là trong các ch- ơng trình học của phổ thông. - Nhằm đáp ứng đợc các kỹ năng tính toán giải các bài toán trong chơng trình phổ thông. Học sinh cần phải rèn luyện các kỹ năng, t duy logic vận dụng các công thức để giải các bài toán. - Căn cứ vào tình hình thức tế giảng dạy môn đại số của trờng THPT, tôi thấy việc số bài toán H ớng ẫn học sinh tìm điều kiện cần đủ của tham số để hệ ph- ơng trình nghiệm duy nhất là một loại bài toán hay phù hợp với tất cả các học sinh từ trung bình trở lên. - Phơng pháp điều kiện cần đủ chỉ là một trong những phơng pháp để giải bài toán của lớp 10 một số bài toán tìm tham số của lớp 12. Cho nên tôi đa ra dạng bài toán này với mục đích cung cấp cho học sinh một hệ thống bài tập rèn luyên t duy, kỹ năng giải toán. - Trờng THPT Mù Cang Chải nằm trên địa bàn miền núi là một vùng đặc biệt khó khăn, học sinh chủ yếu là ngời dân tộc thiểu số. Vì vậy, nhận thức còn nhiều hạn chế, đặc biệt là khả năng t duy về môn toán nói chung các bài toán về điều kiện cần đủ nói riêng. Với những lý do trên, tôi chọn đề tài sáng kiến kinh nghiệm là H ớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất. Chỉ bao gồm các phơng pháp bản nhất ở chơng trình Đại số lớp 10. Để giải quyết một số lớp bài toán bản, giúp cho một số lớn học sinh thể tham khảo tự rèn luyện cho mình. GV: Bùi Đăng Khoa - Tổ tự nhiên 1 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất II- Nhiệm vụ của đề tài: Việc đa sáng kiến kinh nghiệm này với nhiệm vụ cụ thể là: - Giúp cho học sinh một kỹ năng t duy logic về toán học. Biết vận dụng các kiến thức đã học để giải bài toán tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất. - Muốn vậy, giáo viên phải giúp học sinh nhận biết đợc các dạng bài toán đó để vận dụng đúng phơng pháp khi giải. - Phơng pháp điều kiện cần đủ trong bài toán tìm điều kiện của tham số m sao cho hệ nghiệm duy nhất thể coi là một việc chứng minh mệnh đề Hệ nghiệm duy nhất khi chỉ khi m = k (k là hằng số) - Việc tìm giá trị tham số m ở đây ta thực hiện theo giai đoạn chứng minh: + Khi nghiệm duy nhất thì m = k (đây là điệu kiện cần) + Khi m = k thì hệ đã cho chỉ một nghiệm duy nhất (đậy là điều kiện đủ) III- Phơng pháp nghiên cứu: - Thông qua việc giảng dạy trực tiếp đại số lớp 10 tại trờng THPT Mù Cang Chải - Yên Bái trong các năm học trớc. - Phơng pháp quan sát, phơng pháp thực nghiệm s phạm, khảo sát, điều tra, phân tích tổng hợp đánh giá kết quả. - Vấn đáp tìm hiểu những giáo viên bộ môn, giáo viên chủ nhiệm phụ huynh học sinh. - Kết hợp với tình hình thực tế đối tợng học sinh. Để từ đó đúc rút ra những phơng pháp giảng dạy phù hợp, khắc phục thiếu xót nhằm giảm bớt học sinh yếu - kém. GV: Bùi Đăng Khoa - Tổ tự nhiên 2 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất IV- sở nghiên cứu : - Trong năm học 2007 - 2008 tôi đơc Tổ chuyên môn phân công giảng dạy môn toán lớp 10 lớp 11, phần lớn các em là ngời dân tộc thiểu số nh: Mông, Thái . Vì vậy, trong quá trình giảng dạy bộ môn toán còn gắp rất nhiều khó khăn về khả năng t duy, lôgic tính toán của các em còn chậm, nhiều em còn cha hiểu đợc logic trong toán học. - Căn c vào việc đổi mới phơng pháp giảng dạy Thầy chủ đạo trò chủ động. - Căn cứ vào trình độ chuyên môn, vào chức năng nhiệm vụ của trờng học. - Căn cứ vào tình hình thực tế của học sinh khi học môn toán nói chung môn đại số nói riêng của lớp 10. Tôi mạnh dạn đa ra sáng kiến kinh nghiệm: H ớng dẫn học sinh tìm kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất trong chơng trình Đại số 10. V- Đối tợng nghiên cứu - phạm vi nghiên cứu: 1. Đối tợng nghiên cứu: - Học sinh khối 10, tại Trờng THPT huyện Mù Cang Chải những năm học trớc hiện tại. 2. Phạm vi nghiên cứu: - Đây là một sáng kiến nhỏ của bản thân tôi qua thời gian giảng dạy môn đại số 10 với mong muôn ngày một nâng cao chất lợng dạy học. - Chính vì vậy, phạm vi sáng kiến kinh nghiệm của tôi chỉ đa ra trong chơng trình đại số 10. VI- Thời gian nghiên cứu: GV: Bùi Đăng Khoa - Tổ tự nhiên 3 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất - Thời gian nghiên cứu từ năm học 2002- 2003 đến nay, ngoài ra còn tìm hiểu học tập một số phơng pháp dạy thực tế của các giáo viên trong tổ ở các lớp 10, 11 12 thông qua các tiết dự giờ đánh giá rút kinh nghiệm. B - Phần II: Nội dung GV: Bùi Đăng Khoa - Tổ tự nhiên 4 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất I- sở lý luận của đề tài: - Nhiệm vụ trung tâm trong trờng học THPT là hoạt động dạy của thầy hoạt động học của trò, xuất phát từ mục tiêu đào tạo Nâng cao dân trí, đào tạo nhân lực, bồi dỡng nhân tài . Đợc xây dựng trên sở ban đầu hình thành nhân cách cho học sinh, để từ đó học sinh thể kết hợp giữa lý luận với thực tiễn lao động hoặc học lên những bậc học cao hơn. Bên cạnh đó còn giúp học sinh củng cố những kiến thức phổ thông đặc biệt là bộ môn toán học rất cần thiết không thể thiếu trong đời sống của con ngời. - Vậy vấn đề đặt ra là cần làm cho học sinh nắm vững những tri thức khoa học ở các bộ môn toán học một cách hệ thống, bản kỹ năng cần thiết trong học tập rèn luyện trí tuệ của học sinh, thể hiện ở việc học đi đôi với hành. - Đặc trng của bộ môn Toán học là một môn tự nhiên rất khó, đòi hỏi học sinh phải t duy Logic tính toán cản thận. Do vậy chú trọng định hớng cho học sinh học nghiên cứu môn toán học một cách nghiêm túc hơn trong chơng trình học phổ thông. - Do vậy, tôi mạnh dạn đa ra sáng kiến kinh nghiệm này với mục đính giúp cho học sinh THPT năm học 2007 - 2008 vận dụng tìm ra nhng giải pháp tối u nhất khi gặp các bài toàn tìm điều kiện của tham số để hệ phơng trình nghiệm duy nhất. Cụ thể là các tiêu chuẩn sau: Tiêu chuẩn 1: Học sinh biết đâu là điều kiện cần của bài toán tìm điều kiện của tham số để phơng trình nghiệm duy nhất: Giả sử hệ nghiệm duy nhất là cặp số (x 0 ; y 0 ), bằng cách dựa vào đặc điểm, tính chất của hệ cách suy luận đúng ta tìm đợc m = k (k là hằng số) Tiêu chuẩn 2: điều kiện cần trong giá trị của m dã tìm đợc trong điều kiện cần của hệ, giải hệ kiểm tra tính duy nhất của nghiệm kết luận. GV: Bùi Đăng Khoa - Tổ tự nhiên 5 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất II- Thực trạng hiện nay: Việc giảng dạy Toán học nói chung Đại số 10 nói riêng hiện nay gặp rất nhiều khó khăn đặc biệt là đối tợng học sinh trờng THPT huyện Mù Cang Chải vì những lý do sau: - Đối tợng học sinh đa số là dân tộc, nhận thức chậm, khả năng t duy lôgíc còn hạn chế. Phần lớn học sinh rỗng kiến thức từ lớp dới cha biết vận dụng các định lý, tính chất các công thức vào việc giải các bài toán nói chung các bài toán tìm điều kiện của tham số để hệ phơng trình nghiệm duy nhất nói riêng . Ví dụ nh giải bài toán hệ phơng trình dạng thuần nhất hai ẩn nghiệm duy nhất sau: Cho hệ phơng trình: mx + (m 1)y = m + 1 2x + my = 2 Học sinh gần nh không biết vận dụng công thức Crame vào tìm điều kiện để hệ phơng trình nghiệm duy nhất. Hoặc là, khi giáo viên ra dạng bài toán về hệ phơng trình chứa dấu giái trị tuyệt đối sau: 012 1 =+ = yx ax Yêu cầu học sinh tìm điều kiện của tham số để hệ nghiệm duy nhất thì học sinh giải biện luận hệ phơng trình. - Trong khi đó sách giáo khoa chỉ đa ra các công thức, ví dụ các bài toán dạng bản chứ không giải cặn kẽ nên học sinh gặp rất nhiều khó khăn. - Tài liệu tham khảo cho giáo viên học sinh còn hạn chế, cha nhiều thể loại. Việc vận dụng sách giáo khoa, sách giáo viên với tinh thần nghiêm túc là đều hết sức quan trọng cần thiết. Chính vì vậy, tôi đã nghiên cứu đa ra một số giải pháp thực hiện cụ thể một số dạng bài toán về tìm điều kiện để hệ phơng trình nghiệm duy nhất sau: GV: Bùi Đăng Khoa - Tổ tự nhiên 6 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất III- Giải pháp: 1. Kiến thức cần nhớ: a. Khái niệm điều kiện cần điều kiện đủ: Cho mệnh đề đúng A B . Ta nói: A là điều kiện dủa của B B là điều kiện cần của A. b. Khái về điều kiện cần đủ: Cho mệnh đề đúng A B. Ta nói: A là điều kiện cần đủ của B ngợc lại B là điều kiện cần đủ của A. c. Phơng pháp: Điều kiện cần đủ trong bài toán tìm điều kiện của tham số m sao cho hệ nghiệm duy nhất thể coi là việc chứng minh mệnh đề Hệ nghiệm duy nhất khi chỉ khi m = k (k là hằng số). Việc tìm giá trị của tham số m ở đây ta thực hiện theo các giai đoạn chứng minh sau: + Khi nghiệm duy nhất thì m = k (đây là điều kiện cần). + Khi m = k thì hệ đã cho chỉ một nghiệm duy nhất (đây là điều kiện đủ). d. Cách giải: * Điều kiện cần: - Giả sử hệ nghiệm duy nhất là căp số (x 0 ; y 0 ) - bằng cách dựa vào đặc điểm, tính chất của hệ các suy luận đúng ta tìm đ- ợc m =k. * Điều kiện đủ: - Thay các giá trị của m đã tìm đợc trong điều kiện cần vào hệ. - Giải hệ để kiểm tra tính duy nhất của nghiệm. - Kết luận. GV: Bùi Đăng Khoa - Tổ tự nhiên 7 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất 2. Bài tập cụ thể: Ta thờng gặp bài toán này trong một số dạng sau: a. Giải pháp 1: Hớng dẫn học sinh tìm điều kiện để hệ thuần nhất bậc nhất hai ẩn nghiệm duy nhất: a 1 x + b 1 x = c 1 a 2 x + b 2 x = c 2 Chú ý: a 1 2 + b 1 2 + a 2 2 + b 2 2 0 Hệ nghiệm duy nhất khi chỉ khi D 0 D = a 1 b 1 = a 1 b 1 a 2 b 2 0 a 2 b 2 Ví dụ: Tìm a để hệ : nghiệm duy nhất. Bài giải Ta thấy các hệ số của các ẩn không đồng thời bằng 0 nên hệ nghiệm duy nhất khi: Vậy nghiệm duy nhất : )25)(1( 4 + + = aa a x )25)(1( 39 + + = aa a y Ví dụ 2: (Bài tập trắc nghiệm khách quan) Cho hệ phơng trình: mx + 2y = m +1 GV: Bùi Đăng Khoa - Tổ tự nhiên 8 6ax + (2-a)y = 3 (a-1)x ay = 2 6a 2 - a a -1 -a a -1 x = D D x a 5 2 y = D D y Với D x = 3 2 a D y = 6a 3 2 - a a 1 2 = 9a + 3 = - a 4; = -(a + 1)(5a 2) 0 D = Nghiệm duy nhất của hệ là SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất 2x + my = 2m + 5 Tìm tham số m để hệ nghiệm duy nhất? A) m 2 m -2 B) m = 2 C) m = - 2 D) m = 2 Đáp án: A b. Giải pháp 2: Hớng dẫn học sinh tìm điều kiện để hệ đối xứng hai ẩn nghiệm duy nhất: * Tính chất của nghiệm: Nếu hệ nghiệm duy nhất là cặp số (x; y) thì cũng nghiệm duy nhất là (y; x). Ví dụ 1: Cho hệ phơng trình sau: x + y = 2a -2 x 2 + y 2 = a 2 + 2a -3 (a là tham số) Tìm điều kiện của a để hệ phơng trình nghiệm duy nhất? Bài giải: - Điều kiện cần: Giải sử hệ nghiệm duy nhất (x; y) thì (y; x) cũng là nghiệm. Do đó hệ nghiệm duy nhất là (x; x) với x = y Ta có: 2x = 2a 2 2x 2 = a 2 + a 3 a = 1 hoặc a = 5 - Điều kiện đủ: + Với a = 1, ta hệ x + y = 0 x 2 + y 2 = 0 Nghiệm duy nhất là (0; 0) + Với a = 5, ta hệ x + y = 8 x 2 + y 2 = 32 Nghiệm duy nhất là (4; 4) Vậy điều kiện cần đủ để hệ nghiệm duy nhất là a = 1 hoặc a = 5. GV: Bùi Đăng Khoa - Tổ tự nhiên 9 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất - Nhận xét: Bài toán trên cũng thể sử dụng điều kiện nghiệm kép của ph- ơng trình bậc hai để suy ra a. Ví dụ 2: Cho hệ phơng trình: x + y + xy = m + 1 x 2 y + xy 2 = m (m là tham số) Tìm m để hệ phơng trình đã cho nghiệm duy nhất? Bài giải: - Điều kiện cần: Giả sử hệ nghiệm duy nhất (x; y) thì hệ cũng nghiệm duy nhất là (y; x). Do đó để hệ nghiệm duy nhất thì x = y Ta : 2x + x 2 = m + 1 (1) 2x 3 = m (2) Thế (2) vào (1) ta đợc: x = 1 hoặc x = 2 1 Tơng ứng ta sẽ m = 2, m = -2 hoặc m = 4 1 - Điều kiện đủ: + Với m = 2: Giải hệ ta thấy nghiệm duy nhất là (1; 1) + Với m = -2: giải hệ ta thấy 3 nghiệm là: (-1 ;-1), (-1; 1) (2; -1) + Với m = 4 1 : Giải hệ ta thấy 1 nghiệm duy nhất ( 2 1 ; 2 1 ) Vậy hệ nghiệm duy nhất khi chỉ khi m = 2 hoặc m = 4 1 . Ví dụ 3: Cho hệ phơng trình sau: xy + x 2 = m(y 1) xy + y 2 = m(x -1) (m là tham số) Tìm giá trị của m để hệ phơng trình nghiệm duy nhất? GV: Bùi Đăng Khoa - Tổ tự nhiên 10 [...]... 6 - Điều kiện đủ: + Với m = 6 ta có: x2 + y2 = 1 y + cosx = 2 Do vậy x 1; y 1, suy ra hệ nghiệm duy nhất x = 0; y = 1 Vậy để hệ nghiệm duy nhất điều kiện cần đủ là m = 6 Ví dụ 2: Cho hệ phơng trình sau: 2 x + x = y + x2 x 2 + y 2 =1 Tìm a để hệ nghiệm duy nhất? Bài giải: - Điều kiện cần: Dễ thấy nếu hệ nghiệm duy nhất (x0; y0) thì cũng nghiệm duy nhất là (-x0;y0) Do đó để nghiệm. .. tuyệt đối nghiệm duy nhất: Ví dụ 1: Tìm a để hệ phơng trình nghiệm duy nhất ax2 + a = y + 1 x + y2 = 1 - Điều kiện cần: Nhận thấy nếu hệ nghiệm duy nhất là (x 0; y0),thì cũng nghiệm duy nhất là (-x0;y0) Để hệ nghiêm duy nhất thì x0 = 0 a = 0 hoặc a=2 - Điều kiện đủ: + Với a = 0: Hệ nghiệm duy nhất là (0; -1) + Với a = 2: Hệ nghiệm duy nhất (0; 1) Vậy hệ nghiệm duy nhất khi chỉ... học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất Bài giải: - Điều kiện cần: Nhận thấy nếu hệ nghiệm duy nhất là (x 0; y0) thì hệ cũng nghiệm duy nhất là (y0; x0) Từ hệ ta : 2x02 mx0 + m = 0 (*) Vì x0 duy nhất nên (*) phải nghiệm duy nhất Suy ra = 0 m = 0 hoặc m=8 - Điều kiện đủ: + Với m = 0: Hệ dạng xy + x2 = 0 xy + y2 = 0 Hệ vô số nghiệm + Với... phơng trình : y m =1 x 2 y =5 Tìm m để hệ nghiệm duy nhất? Bài giải: - Điều kiện cần: Nhận thấy nếu hệ nghiệm duy nhất là (x0; y0),thì cũng nghiệm duy nhất là (x0;- y0) Khi đó - Điều kiện đủ: Với m = -1 thì y =m + 1 y =0 y = 0 Hệ 1 nghiệm (5; 0) Vậy hệ nghiệm duy nhất khi chỉ khi m = -1 GV: Bùi Đăng Khoa - Tổ tự nhiên 15 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để. .. với hai ẩn nghiệm duy nhất: * Tính chất: Nếu hệ nghiệm duy nhất là (x0; y0) thì hệ cũng nghiệm duy nhất là (-x0; -y0) Ví dụ : Cho hệ phơng trình : x2 + y2 = m x4 + y4 = 2m + 1 Tìm m để hệ nghiệm duy nhất? Bài giải: - Điều kiện cần: Giả sử hệ nghiệm duy nhất (x0; y0) thì hệ cũng nghiệm duy nhất là (-x0; -y0) Do đó hệ nghiệm duy nhất khi chỉ khi x0 = y0 = 0 Từ đó ta ngay không... để hệ phơng trình nghiệm duy nhất * Nhận xét: Nếu hệ nghiệm duy nhất (x0; y0), thì hệ cũng nghiệm duy nhấtlà (-x0; y0) nếu hệ là chẵn đối với ẩn x, còn nghiệm duy nhất là (x0; -y0) nếu hệ là chẵn đối với ẩn y Ví dụ 1: Tìm m để hệ phơng trình sau nghiệm duy nhất x2 + y2 = m 5 y + cosx = 2 Bài giải: - Điều kiện cần: Nhận thấy nếu hệ nghiệm duy nhất là (x 0; y0) thì cũng nghiệm duy. .. để nghiệm duy nhất thì x0 = 0, suy ra a = 0 hoặc a = 2 - Điều kiện đủ: + Với a = 0: Dễ thấy hệ nghiệm là (-1; 0) (1; 0) + Với a = 2: Hệ nghiệm (-1; 0) (1; 0) GV: Bùi Đăng Khoa - Tổ tự nhiên 12 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất Do đó không để hệ nghiệm duy nhất d Giải pháp 4: Hớng dẫn học sinh tìm điều kiện để hệ bậc chẵn... Điều kiện cần: Nhận thấy nếu hệ nghiệm duy nhất là (x 0; y0) thì hệ cũng nghiệm duy nhất là (y0 - 2; x0 + 2), suy ra x0 = y0 = 0 GV: Bùi Đăng Khoa - Tổ tự nhiên 13 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất Khi đó hệ 2 y 0 1 =a a=2+ 2y0 = 2a + 3 6 - Điều kiện đủ: + Với a = 2 + 6 ta thấy hệ nghiệm duy nhất là Vậy hệ đã cho chó nghiệm duy. .. nghiệm duy nhấtHệ nghiệm duy nhất là 9 + 3 5 11 + 3 5 ; 2 2 9 3 5 11 3 5 ; 2 2 hệ nghiệm duy nhất - Nhận xét : Đối với hệ chứa căn thức thì phơng pháp điều kiện cần đủ tỏ ra khá hiệu quả GV: Bùi Đăng Khoa - Tổ tự nhiên 14 SKKN: Hớng dẫn học sinh tìm điều kiện cần đủ của tham số để hệ phơng trình nghiệm duy nhất f Giải pháp 6: Hớng dẫn học sinh tìm điều kiện để. .. tồn tại m để hệ nghiệm duy nhất e Giải pháp 5: Hớng dẫn học sinh tìm điều kiện để hệ chứa căn thức nghiệm duy nhất: * Đối với hện chứa căn thức ta sử dụng phơng pháp điều kiện cần đủ thì điều mấu chốt là phải tìm ra điều kiện cần bằng cách nhận xét về các ẩn của hệ, loại hệ này tìm ra giá trị của tham số Ví dụ 1: Cho hệ phơng trình x +1 + y 1 =a x + y = 2a + 1 Tìm a để hệ nghiệm duy nhất? . tìm điều kiện cần và đủ của tham số để hệ phơng trình có nghiệm duy nhất III- Giải pháp: 1. Kiến thức cần nhớ: a. Khái niệm điều kiện cần và điều kiện đủ: . là điều kiện dủa của B và B là điều kiện cần của A. b. Khái về điều kiện cần và đủ: Cho mệnh đề đúng A B. Ta nói: A là điều kiện cần và đủ của B và ngợc

Ngày đăng: 08/07/2013, 01:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w