1. Trang chủ
  2. » Giáo án - Bài giảng

6 đề ôn cuối kì có giải chi tiết

12 200 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 550,8 KB

Nội dung

Bài tập ơn cuối học kỳ hai Các phần tập trung ơn bài: em phải nắm vững kỹ thuật xử lý dạng tốn sau: Đạo hàm vi phân hàm thường Cực trị tự Đổi biến tọa độ cực kép Tính đường tham sơ hóa Cơng thức Green,tp khơng phụ thuộc đường Cơng thức Gauss cho mặt 2(tức phải có bội 3) Tổng chuỗi Miền hội tụ Bỏ đường loại Các phần khác có chiếm tỷ lệ thấp(hàm hợp, hàm ẩn, cực trị có điều kiện, mặt 1, stokes ) ĐỀ 1 Cho hàm hai biến f ( x , y )  x  xy  x , tính d 2f (1, 5) Tìm cực trị hàm số f ( x , y )  x  x  2y  Khảo sát hội tụ chuỗi  n 1   n 1    2n   Tìm bán kính hội tụ chuỗi lũy thừa  n 1 Tính tích phân đường: I = Tính tích phân I   2n 3n  (1)n ( x  2)2n n 1   sin xdx  ydy C : y  cos x , từ n (0,1) ,  ,0  đế C   | x  y | dxdy , D miền phẳng: x  y  4, y  x D Cho S phía ngồi mặt biên miền giới hạn nón z  x  y trụ z   y , tính tích phân: I   yzdydz  xdzdx  z dxdy S ĐỀ Cho hàm ẩn z  z( x, y ) xác định từ phương trình x  y  z  4x  2y  4z    zx  0, Tìm tất (x,y,z) thỏa hệ phương trình:   zy  Tìm cực trị hàm số f ( x, y )  xy  3x thỏa x  y    Tìm miền hội tụ chuỗi lũy thừa    n  n 1  n 1  ( x  4) 2  n 1  Tính tổng chuỗi số S   n3 n 0 n  Tính tích phân đường loại hai I  xydx  x dy , C biên định hướng dương C  1  x  miền phẳng D:   2  x  y  x  x hai cách: a Tính trực tiếp tham số hóa đường cong b Dùng cơng thức Green Tính tích phân I    4zds S phần mặt paraboloid z   x  y bị chắn S mặt phẳng z  ĐỀ Cho hàm số f ( x , y , z)  x  3xy  e xyz , M  (1,1,0) Tính giá trị A f (M ) f (M ) f (M ) 2 3 x y z Tìm cực trị tự hàm số f ( x , y )  x  3xy  15x  12y  Khảo sát hội tụ chuỗi số (1) n 1  Tìm miền hội tụ chuỗi lũy thừa  n 1 Tính I  y  x dx  ( x n 2.5.8 (3n  4) 23n 1.3n.n !  n en cos   n!    xn  ln x )dy , C đường tròn ( x  2)2  ( y  1)2  1, C lấ y theo chiề u KĐH từ(2,2)  (3,1) Tính tích phân sau cách dùng tọa dộ cầu: I   z x  y dxdydz ,   miền giới hạn nón z  3( x  y ) , mặt phẳng z  mặt cầu x  y  z  Dùng cơng thức Stokes tính I   ydx  zdy  xdz , C giao tuyến mặt trụ C x y  z  mặt phẳng y  x lấy ngược chiều KĐH nhìn từ phía dương trục 2 Ox ĐỀ x y x  y cos   Chứng minh đẳng thức: x.fx  y fy  f y Tìm cực trị hàm số f ( x , y )  x  3xy  3y thỏa x  y  Cho f ( x , y )  x.e    Tìm tất giá trị  để chuỗi sau hội tụ: arctan   n n 1  Cho chuỗi lũy thừa S ( x )   n3  n  e n 0 n   n  3n     ln    n   ( x  e)n Tìm miền hội tụ S ( x ) Tính thể tích vật thể giới hạn mặt trụ x  y  1, z  y mặt phẳng z   I  (e  (a  2n ) y  x x n 1 sin y )dx  (e y  (2a  5) x  ax n cos y )dy C Tìm số thực a số tự nhiên n cho khơng phụ thuộc đường Tính đường tròn đơn vị, lấy theo chiều kim đồng hồ với tham số vừa tìm Tính tích phân I   (2y  x )dydz  (x  y )dzdx  2zdxdy , S mặt biên S miền giới hạn z  0, x  2y  z  1, x  2, y  , lấy phía ngồi ĐỀ Cho hàm ẩn z  z( x, y ) xác định từ phương trình zx  ln(1  x  yz) , tính dz(1,0) Tìm cực trị hàm số f ( x , y )  1 x  y 1 x2  y  Tính tổng chuỗi số S   1 n n 0  2n  (2n  1)!  Tìm bán kính hội tụ chuỗi lũ thừa  n 1 Tính I  y  x dx  ( x nn x n ln(n  2)(2n)!!  ln x )dy , C C làđtrò n ( x  2)2  ( y  1)2  1, lấ y theo chiề u KĐH từ(2,2)  (3,1) Tính  (x  2y )dxdy D miền giới hạn x  y  4x, x  y  4x  , D 0 y  2x Tính  (x S 2  2y )dydz  (z  x )dzdx  2y 2dxdy , S phần mặt trụ x  y  2y bị chắn mp z  0, z  ĐỀ   y 2fyy  Cho f ( x , y )  sin( xy )  xy , tính giá trị biểu thức A  x 2fxx Tìm cực trị hàm số f ( x , y )  ( x  y )e  xy Tìm chuỗi Taylor f ( x )  ln( x  x ) lân cận x  Hãy rõ miền hội tụ chuỗi  Tính tổng chuỗi số sau: S   (1)n  n3n    (n  1)!    n 0   x  y , x  y Cho f ( x , y )   2  x  y , x  y Tính I   C xdx  ydy x2  y Tính  f (x, y )dxdy , D hình tròn đơn vị D x2 y , C ¼ ellipse   nằm góc phần tư thứ lấy theo a b chiều kim đồng hồ Tính  z S  z  x  y dxdy , S phía phần mặt cầu x  y  z  6z, với GIẢI BÀI TẬP ƠN Các em kiểm tra lại đáp số, có sai báo lại cho qua diễn đàn Đề Câu 1: d f (1, 5)  8dx  4dxdy Câu 2: f đạt cực đại x  2, y  0, fcd  2   Câu 3: Cn  n 1    2n  2 n n    HT e  Câu 4: Đặt X  ( x  2) , chuỗi  n 1 3n  (1)n  x  2n ( 1) trở thành n 1   n 1 3n  (1)n n X (2) n 1 1 , BKHT chuổi (1) R  3 1 2  1 Vì (2) có khoảng HT   ,  , nên chuỗi (1) HT   x    PK  x    3  3 1  1    , 2  , 2  Như chuỗi (1) HT  2   PK ngồi  2   3 3   BKHT chuỗi (2) RX  Theo định nghĩa, R BKHT chuỗi (1)  1 Câu 5: I   sin x  cos x.(  sin x) dx   2 Câu 6: D1 D2 I   y   x dxdy  D1  7   d   x  y  dxdy Miền D miền màu xanh D2   sin   cos  r dr  5 7  d  cos   sin  r dr   88    Câu 7: Áp dung cơng thức G-O I  2zdxdydz , V vật thể giới hạn nón z  x  y trụ z   y V   4  y  2  y  Hình chiếu V lên Oxy: D :   2 2  2 x  y   y x  y   I  2 d  dr  r sin   r  r cos  z.rdz   2 d  (4  2r )rdr  4 -Đề 2: Câu 1:  x, y, z    2,1, 2 ,  x, y, z    2,1,6 Câu 2: fCT  f (2,1)  4 Câu 3: an  3n 1  2n 1 6n 1  R  lim n  n an 6n  lim n  2 3n    3 n   KHT :  6, 2     n Tại x  6 hay x  2 , chuỗi trở thành  n 1  n 1  (2)   2 n 1  (1)n  n           n 1   Khi chuỗi tổng chuỗi pkỳ chuỗi htụ nên pkỳ  Câu 4: Xét chuỗi lũy thừa S ( x)   (n  1) x n , MHT : D   1,1 n0     x  n  S ( x)   x    , x  D   1,1      x   x  12  n0    S n0 Câu 5:  3  n 1 n n 15 1 1      S   3   1 n0  a I     x(2  x)  x (1)  dx       2(1  cos t ).sin t.( sin t )  (1  cos t ) cos t  dt   11  7          3 b Dùng cơng thức Green: I   2 x  x  dxdy    dx D x  x2 2 x 4 xdy   Câu 6: S : z   x2  y , hc S  D : x  y  Oxy ds   x  y I      x2  y  d D 2   x  y dxdy   1  4x   y dxdy D  (1  4r )rdr 3 Đề 3: Câu 1: A  Câu 2: Điểm dừng: 1,2 ,  2,1 ,  1, 2  ,  2, 1 f đạt cực tiểu  2,1 , cực đại  2, 1 , khơng đạt cực trị điểm lại Câu 3: dùng tc D’A chuỗi trị tuyệt đối chuỗi hội tụ, D = 1/8  n en cos   Câu 4: an  n!    x n , lưu ý , a có n! mẫu số lại dãy mũ dãy bị chận nên chuỗi htụ với n x Cách viết bài: an  en x n! n  bn Áp dụng tiêu chuẩn D’A cho chuỗi vế phải: Dn  đảm bảo Dn có nghĩa) ex n 1 n    D (có thể xét riêng x = để  Do  b n htụ nên theo tc so sánh n0 a n ht tuyệt đối n0 Câu 5: áp dụng cơng thức Green sau thêm vào đoạn thẳng L1 : y  1, x :  2; L2 : x  2, y :1  , miền D góc phần tư màu xanh I   D 3x dxdy      3  2 d  (8  ln 2)dy dx  x   r cos  2 rdr  ln 51   ln      ln  16 Câu 6:  0 z x  y 2    tan    cos        x2  y  z     I  2    d   d  sin  cos  d   56 15 Câu 7: chọn S phần mp y = x giới hạn bên trụ, lấy phía trước nhìn từ phía dương Ox Áp dụng cơng thức Stokes I  dydz  dzdx  dxdy S   nS   , ,0  2   I ds , S : y  x, ds  2dzdx, hc S  D : x  z  Ozx  S I   2dzdx  4 D Đề 4: x x  x x x2 y x x x Câu 1: f x  1   e y  sin , f y   e  cos  sin y y y y y y2  x y xf x  yf y  xe  y cos x  f y Câu 2: x   y g ( y)  f (1  y, y)  y3  18 y  y  3  1  x  1  3    1  3   f đạt cực đại  , ,  đạt cực tiểu   4      n2  3n   Câu 3: ln  ~ , n    n2   n     n   , an ~ , n   : chuỗi phân kỳ   0,arctan  n n    arctan1  , an ~ , n   : chuỗi phân kỳ   0,arctan  n n 1 ~   an ~  1 , n   :    1,   nên chuỗi hội tụ   0,arctan  n n n Tóm lai : chuỗi htụ   g ( y)  24 y  36 y    y  y    y  Câu 4: Bán kính hội tụ (BKHT) S(x) R = e nên BKHT S’(x)  S '( x)   n3  n  n 1 n.e n  x  e n 1 , khoảng hội tụ  2e,0  Tại x  2e, x  : chuỗi trở thành  n3  n  n 1 n.en  e  n 1    (1)n 1 n 1 n3  n  : pkỳ theo điều n.e kiện cần Vậy miền hội tụ là:  2e,0  Câu 5: V   x  y 1 y dxdy    d  r sin  dr   Câu 6: Py  Qx  a  2n  x n 1 cos y  2a   nax n 1 cos y  a  2n  2a    n  2, a   na  Do R2 miền đơn liên, P, Q đạo hàm liên tục R2 nên kết cho đường cong kín Vậy đường tròn đơn vị Câu 7: Áp dụng cơng thức G-O I    2dxdy    2 dx 1 x dy  1 x  y 2dz  - Đề 5: Câu 1:  x, y   1,0  z 1,0  ln 1  x  yz z x    z x (1,0)   ln y 1  x  yz z  1  x  yz z y    z x (1,0)  ln y 1  x  yz Câu 2: điểm dừng 1, 1 , A  C   , B   3 z     1, 1 điểm cực đại, f 1, 1   Câu 3: S    1 n 0  Câu 4:  n 1 n  2n   (2n  1)!    n 0  1 ln 1   dz (1,0)    ln  dx  dy 2  n    AC  B  0, A   2n 1 (2n  1)!     1n n 1 12n 1  sin   sin1   sin1  2n  1!  nn x n ln(n  2)(2n)!! ln  n  3 ln  n  3  2n   an nn R  lim  lim  2n    lim  n  n n  an 1 n  ln  n   n  ln  n    n  1  e 1  n  1     n Câu 5: giống đề Câu 6: Đặt x   r cos , y  r sin   D Câu 7: ( x  2y )dxdy    d 3    r cos   2r sin   rdr  3 14   Cách 1: S / / Oz  I3  S đối xứng qua mp x = , P chẵn theo x  I1  Xét I    z  x  dzdx , S  S S2 , S1,2 : y    x S Giả sử S phía ngồi mặt trụ PVT S1 hợp với chiều dương Oy góc nhọn, PVT S2 hợp góc tù ( n  (2 x,2 y  2,0)  2( x, y  1,0) ) 1  x  hc S1,2  Dzx :  Ozx 0  z  I2    z  x  dzdx    z  x  dzdx    z  x  dzdx    z  x  dzdx  S1 S2 Dzx Dzx Cách 2: Giả sử S phía ngồi mặt trụ Gọi S1 phía mp z  S2 phía mp z  Gọi  vật thể giới hạn S1 , S2 ,&S3 Áp dụng cơng thức G-O:  Pdydz  Qdzdx  Rdxdy   S1 S2 S3 I   2xdxdydz  (vật thể dx qua mp x=0,f lẻ theo x)    S1 S2    y dxdy  x2  y  y y2  x2  y  y Vì S1 , S2 / / Oxy nên vế phải lại thành phần thứ Đề 6: Câu 1: A   1  , , 2  e1/ 3e1/ AC  ,B     AC  B  2 Câu 2: điểm dừng  x, y      Hàm số khơng có cực trị    Câu 3: ln x  x  ln x  ln 1  x   ln 1  x  1  ln  ln 1  x 1    n   ln    1 n 1  x  1n n n 1    n 1  x 1    n 1     ln    n Điều kiện khai triển (MHT): x   0,2  Câu 4:     1 n 1   1n 1 (n  1)3n 3n S    n  1! n  1!    n  1! n0 n0 n0      n 1  1n n!    n0  3n  n!   n0 3n 1   e1   e3  e3   n  1!       x  1 1  n  n   n 1  n  5 Câu 5: I   d    cos   sin   r dr    3 d  r dr    Câu 6: Py  Qx Tp khơng phụ thuộc đường (khu vực áp dụng miền đơn liên chứa C khơng chứa x y   0) a b O, chẳng hạn khu vực phía đt Chọn U  x, y   x  y dU  Pdx  Qdy Vậy I  U  0, b   U  a,0  a  b Câu 7: Gọi S1 phía phần mp z  bị giới hạn bên mặt cầu,  nửa khối cầu x2  y  z  z  z Áp dụng ct G-O, x  y dxdy    x  y dxdydz  S1 S Xét khối: Đặt: x   sin  cos , y   sin  sin  , z    cos ,    3,  x  y dxdydz  2  I  2  z x  y dxdy   S    d   d 81    sin   sin  d   z x  y dxdy S1 S1 : z  , hc S1  D : x  y  Oxy I  81   D x  y dxdy   81 27  27  4 81      ,    2 ... lấy theo a b chi u kim đồng hồ Tính  z S  z  x  y dxdy , S phía phần mặt cầu x  y  z  6z, với GIẢI BÀI TẬP ƠN Các em kiểm tra lại đáp số, có sai báo lại cho qua diễn đàn Đề Câu 1: d f... -Đề 2: Câu 1:  x, y, z    2,1, 2 ,  x, y, z    2,1 ,6 Câu 2: fCT  f (2,1)  4 Câu 3: an  3n 1  2n 1 6n 1  R  lim n  n an 6n  lim n  2 3n    3 n   KHT :  6, ... , a có n! mẫu số lại dãy mũ dãy bị chận nên chuỗi htụ với n x Cách viết bài: an  en x n! n  bn Áp dụng tiêu chuẩn D’A cho chuỗi vế phải: Dn  đảm bảo Dn có nghĩa) ex n 1 n    D (có

Ngày đăng: 28/08/2017, 20:41

TỪ KHÓA LIÊN QUAN

w