Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
140,5 KB
Nội dung
Phần I ĐặT VấN Đề I- cơ sở lý luận: Mục tiêu của giáo dục là tạo ra những sản phẩm con ngời thông minh, sáng tạo, năng động, suy nghĩ linh hoạt. Vậy để có những học sinh sáng tạo thì bản thân mỗi ngời thầy phải là ngời sáng tạo. Trong học Toán nói riêng sáng tạo nghĩa là không tự hài lòng vơí một cách nghĩ, cách làm duy nhất mà phải tìm tòi khám phá ra những cách giải mới hay hơn, ngắn gọn hơn và đôi khi là những cách giải dài hơn, phức tạp hơn để từ đó thấy đợc cách giải nào hay nhất, hợp lí nhất II- Cơ sở thực tiễn: Trong thực tế, việc dạy - học môn Toán còn nhiều vấn đề hạn chế . Chất lợng môn Toán của học sinh cha cao, bài làm của học sinh cha thể hiện sự sáng tạo, còn dập khuôn máy móc, cha có nhiều bài giải hay, nhiều cách giải thể hiện sự thông minh Vậy làm thế nào để học sinh có thể giải toán theo nhiều hớng, nhiều cách khác nhau? Đây cũng chính là vấn đề mà tôi trăn trở trong nhiều năm qua.Và trong quá trình giảng dạy học sinh lớp 4A, tôi đã đi sâu nghiên cứu những biện pháp về: ''Hớng dẫn học sinh lớp4 Tính giátrịbiểuthức theo nhiều cách khác nhau ''. Phần II GIảI QUYếT VấN Đề I- ĐIềU TRA THựC TRạNG: Việc đi sâu vào tìm nhiều cách giải khác nhau cho một bài toán có vai trò quan trọng trong việc rèn luyện kĩ năng, rèn luyện trí thông minh, óc sáng tạo cho học sinh. Nhng sau khi tìm hiểu thực trạng việc dạy- học Toán của giáo viên và học sinh, tôi thấy còn có những điểm hạn chế ảnh hởng không nhỏ tới chất lợng Toán đồng thời làm giảm khả năng suy nghĩ linh hoạt cho học sinh, làm cho các em thấy môn Toán là môn học đơn điệu và khô khan. Nó đợc thể hiện ở một số khía cạnh sau: *Về phía giáo viên: Khi dạy học sinh giải toán hay làm các bài tập, giáo viên thờng e ngại và lúng túng khi hớng dẫn học sinh làm theo các cách khác nhau, hoặc sợ mất nhiều thời gian, hay sợ học sinh không hiểu hết các cách. Chính vì lẽ đó mà bản thân giáo viên ít tìm tòi 1 suy nghĩ, sáng tạo để tích luỹ kiến thức kinh nghiệm cho mình, để phục vụ trong công tác giảng dạy. Một hạn chế nữa của giáo viên là thờng bỏ qua những ý tởng mới lạ của học sinh mà đáng lẽ ra giáo viên chỉ cần hớng dẫn học sinh giải quyết theo ý tởng của các em thì có thể đó lại là một cách giải mới, hay (ngoài suy nghĩ dự định ban đầu của giáo viên). *Về phía học sinh: + Nhiều em học tập một cách thụ động, chủ yếu giải toán theo mẫu vừa đợc cô giáo cung cấp hay làm tính theo đúng trình tự của đề bài (chứ không tìm cách tính nhanh mà đáng nhẽ ra các em có thể tính nhanh đợc) + Học sinh mới biết vận dụng những quy tắc, công thức vào giải toán mang tính dập khuôn. + Đứng trớc một bài toán học sinh thờng chỉ tập trung vào tìm duy nhất một cách giải sao cho ra đúng kết quả là thấy hài lòng, thoả mãn. + Việc nắm vững quy tắc, công thức cha đợc các em quan tâm, hay cha biết tìm ra những công thức mới từ ''công thức gốc'' ban đầu. + Khi thấy các bạn cha ủng hộ với cách giải khác hay ý tởng mới (có thể sai) thì thờng nản lòng mà lần sau không chịu khó tìm tòi khám phá nữa. Để kiểm tra nhận định của mình tôi đã tiến hành khảo sát học sinh lớp 4A là lớp dạy thực nghiệm và lớp 4B là lớp đối chứng với trình độ tơng đơng nhau ngay từ đầu năm học. Đề toán nh sau: Câu1(4 điểm): Tính theo các cách khác nhau; a)1854 - 876 - 124 b)2793 - 526 + 126 c)1800 : 5 : 2 d)356 :4 x 2 Câu 2 (2 điểm):Tính bằng cách thích hợp nhất : a)178 + 426 + 822 + 574 b)2006 x 4 + 2006 x 6 Câu3 (2 điểm) : Không thực hiện phép tính, hãy tìm X.Giải thích lí do: a) X x 5 = 20 x 5 b)( X + 6 ) x 6 = 36 Câu 4: (2 điểm) Một bác thợ may lấy ra một tấm vải để cắt 2 áo, mỗi áo hết 200cm và cắt 2 quần, mỗi quần hết 300cm vải. Hỏi bác đã dùng hết bao nhiêu m vải? ( giải bằng 2 cách ) 2 Với đề toán trên, qua chấm bài và xem cách giải của học sinh tôi thấy rằng: ở câu 1 các em chỉ làm đợc một cách theo đúng trình tự của đề đã cho. Có một vài em làm thêm đợc một cách nữa song kết quả lại sai. ở câu 2 thực ra là bài tính nhanh, song các em lại chỉ biết tính theo thứ tự thông thờng của biểuthức mà không vận dụng đợc những quy tắc và tính chất của phép tínhđểtính nhanh. Còn ở câu 3 thì đa số các em đều ''bó tay". Và câu 4, các em có thể tìm ra đáp số nhng lại chỉ giải đợc bằng một cách. . Cụ thể chất l ợng nh sau :Lớp Số HS Điểm HS giải bằng các cách khác nhau Giỏi Khá TB Yếu SL % SL % SL % SL % SL % 4A 25 5 20 12 38 7 28 1 4 2 8 4B 20 4 20 10 40 II- PHƯƠNG PHáP NGHIÊN CứU Đứng trớc tình hình về chất lợng môn toán nh trên :tỉ lệ học sinh khá-giỏi rất ít, còn học sinh trung bình- yếu lại nhiều và có rất ít học sinh giải bằng các cách khác nhau. Tôi đã nghiên cứu để tìm ra những biện pháp tích cực dể khắc phục tình trạng đó và nâng cao chất lợng môn toán cho học sinh . Qua quá trình nghiên cứu,tôi đã sử dụng phối kết hợp nhiều phơng pháp khác nhau nh: 1-Phơng pháp điều tra khảo sát. 2-Phơng pháp phỏng vấn ,đàm thoại. 3-Phơng pháp luyện tập thực hành. 4-Phơng pháp giải toán theo nhiều cách khác nhau . 5-Phơng pháp thống kê,so sánh,đối chứng. 6-Tổng kết kinh nghiệm. Trong các phơng pháp trên phơng pháp đàm thoại,giải toán theo nhiều cách khác nhau và luyện tập thực hành đợc sử dụng nhiều nhất. Bởi qua các phơng pháp đó, tôi nắm bắt đợc những mặt mạnh, mặt còn hạn chế cần phát huy và khắc phục, từ đó đề ra đợc những công việc cụ thể phải làm trong quá trình giảng dạy, góp phần nâng cao chất lợng dạy và học của thầy và trò trong môn toán . III- Các biện pháp thực hiện: Từ mục đích, yêu cầu : HS biết giải toán theo nhiều cách khác nhau để từ đó nâng cao chất lợng học sinh khá - giỏi và đặc biệt là chất lợng học sinh giỏi ( mục tiêu hàng đầu của các nhà trờng ) tôi đã miệt mài nghiên cứu và tiến hành một số công việc sau : 3 1- Cung cấp và h ớng dẫn học sinh nắm chắc một cách đầy đủ và có hệ thống các quy tắc, công thức toán học. Ngoài việc yêu cầu học sinh phải thuần thục4 kĩ năng cộng, trừ, nhân, chia , tôi còn đặc biệt yêu cầu học sinh của mình phải hiểu và ghi nhớ các tính chất của số tự nhiên ( trong chơng số tự nhiên ) , . và các tính chất, quy tắc của các phép tính thông qua các tiết dạy bài mới . 1.1 Phép cộng: a- Nắm chắc tính chất cơ bản của phép cộng : - Tính chất giao hoán: a+ b = b + a . Khi dạy tiết 33.Tính chất giao hoán của phép cộng, học sinh đã nắm vững: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi. Giáo viên cần nhấn mạnh : không chỉ đổi chỗ hai số hạng trong một tổng thì tổng không thay đổi mà tổng đó có 3 , 4 . số hạng thì đổi chỗ 3 , 4 . số hạng đó thì tổng cũng không thay đổi : a+b+c = a+c+b = b+c+a = c+a+b . a+c+b+d = a+c+d+b = a+b+d+ c = a+d+b+c = . Ví dụ : 2+5+8 = 2+8+5 = 5+2+8 = . Tôi cho học sinh áp dụng vào làm bài 2 ( tr.43 ) : Viết số thích hợp vào chỗ chấm: 48 +12 = 12 + . 65 + 297 = . + 65 . +89 = 89 + 177 -Tính chất kết hợp : ( a+b) + c = a + (b + c ). Ngoài tính chất đợc phát biểu nh SGK Toán 4 ( trang 45):"Khi cộng một tổng hai số với số thứ ba, ta có thể cộng số thứ nhất với tổng của số thứ hai và số thứ ba".Tôi giúp học sinh mở rộng thêm:Trong phép cộng có nhiều số hạng, ta có thể thay hai hay nhiều số hạng bằng tổng số của chúng mà kết quả phép tính vẫn không thay đổi. Ví dụ: 96 +( 3+ 1 +6) = ( 96+3+1 ) +6 = 100 + 6 = 106. HS áp dụng để làm bài 1 (tr.45 ) :Tính bằng cách thuận tiện : 3254 + 146 +1698 = (3254 + 146 ) +1698 = 3400 + 1698 = 5098 -Tính chất cộng với 0: Bất kì số nào cộng với 0 đều bằng chính số đó: a + 0 = 0 +a = a Khi HS đã nắm vững tính chất này, tôi cho HS vận dụng vào giải bài 2 (tr.43 ): 4 84 + 0 = + 84 Hay ở bài 3 ( tr.45 ) : Viết số hoặc chữ thích hợp vào chỗ chấm : a) a + 0 = 0 + . b) 5 +a = . + 5 b- Cung cấp thêm cho học sinh một số cách tính cộng nhẩm. - Tổng số không thay đổi nếu ta thêm vào số hạng này bao nhiêu đơn vị và bớt ở số hạng kia bấy nhiêu đơn vị: a+b = ( a+c) +( b - c). = ( a - c) + ( b+ c). Ví dụ: 2767 + 36 = 2767 +3 + (36 - 3 ) = 2770 + 33 = 2803. - Nếu ta thêm( hay bớt) bao nhiêu đơn vị vào một số hạng thì tổng của chúng cũng tăng thêm( hay bớt đi ) bấy nhiêu đơn vị. (a-c )+ b = a+( b- c) = a+ b -c. ( a+ c) +b = a(b + c) = a +b +c. Ví dụ: 1758 +126 = 1758 + ( 126 + 4 ) - 4 = 1758 + 130 - 4 = 1888 - 4 = 1884. - Nếu ta thêm ( hay bớt) m đơn vị vào số hạng thứ nhất và n đơn vị vào số hạng thứ hai của tổng thì tổng sẽ tăng thêm( hay giảm đi ) m+ n đơn vị. ( a + m ) + ( b + n ) = a + b + ( m + n ) ( a - m ) + ( b - n ) = a + b - ( m + n ) Ví dụ : 274+18 = ( 274 + 6 ) + ( 18 + 2 ) - ( 6 + 2 ) = 280 + 20 - 8 = 300 - 8 = 292. Vận dụng điều này trong các tiết học Toán sẽ giúp học sinh tính toán đợc nhanh hơn, linh hoạt và sáng tạo hơn. c- Vận dụng cả hai tính chất giao hoán, kết hợp của phép cộng đểtính nhanh: 5 Khi học sinh đã nắm vững hai tính chất này, tôi cho học sinh áp dụng đểtính nhanh ở một số bài tập. Ví dụ: Bài 2 (trang 46): Tính bằng cách thuận tiện nhất: 96 + 78 + 4 Học sinh áp dụng và làm đợc 96 + 78 + 4 = (96 + 4) + 78 = 100 + 78 = 178 Hay ở bài tập 3 (trang 48) học sinh sẽ áp dụng và làm đợc: 98 + 3 + 97 + 2 = (98 + 2) + (97 + 3) = 100 + 100 = 200 1.2- Phép trừ : a- Tính chất của phép trừ : - Trừ đi Số 0: Một số trừ đi 0 , bằng chính nó : a - 0 = a . - Một số trừ đi chính nó thì bằng 0 : a - a = 0 - Một số trừ đi một tổng :Muốn trừ một số cho một tổng ( có thể nhiều số hạng ) ta có thể lấy số đó trừ lần lợt từng số hạng của tổng : a - ( b+ c ) = a - b - c = ( a - b ) - c = ( a - c ) - b. áp dụng các tính chất này của phép trừ, học sinh vận dụng sáng tạo vào làm bài tập 2 (trang 48) nh sau: 570 - 225 - 167 + 67 = 570 + 67 - 167 - 225 = 470 + 100 + 67 - 167 - 225 = 470 + 167 - 167 - 225 = 470 - 225 = 255 b- Một số cách trừ nhẩm ( khi muốn trừ nhẩm, ta thờng làm tròn chục số trừ ) - Khi cùng thêm (hoặc cùng bớt ) ở cả số bị trừ và số trừ một số đơn vị nh nhau thì hiệu không đổi . ( a - m ) - ( b - m ) = a - b ( a + m ) - ( b + m ) = a - b. Ví dụ: 1) 74 - 29 =(74 + 1) - (29 + 1) = 75 - 30 6 = 45 2) 74 - 22 = (74 - 2) - (22 - 2) = 72 - 20 = 52 - Trừ một số cho một hiệu: a-(b- c) = (a+c)-b Ví dụ : Bài 2 (trang 40): 7521 - 98 Tôi giúp các em biến đổi: 7521 - 98 = 7521 - (100 - 2) = 7521 + 2 - 100 = 7523 - 100 = 7423 Trong thực tế việc cộng trừ nhẩm không có thành tiết dạy, thành bài dạy cụ thể nào cả nhng trong khi hớng dẫn học sinh giải bài tôi đã lồng ghép vào trong bài dạy, hớng dẫn các em thao tác cộng trừ nhẩm để giúp cho việc tính toán nhanh, hơn thuận lợi hơn. 1.3 - Phép nhân : a- Các tính chất cơ bản: - Tính chất giao hoán : axb = bxa - Tính kết hợp : ( axb) x c = ax (bxc) - Nhân với số 0: a x 0 = 0 x a = 0 - Nhân với số một : a x 1 = 1 x a = a - Nhân với một tổng : a x ( b + c ) = a x b + a x c - Nhân với một hiệu : a x ( b - c ) = a x b - a x c - Nhân với một thơng : a x ( b : c ) = ( a x b ) : c Vận dụng các tính chất của phép nhân học sinh làm bài tập 2 trang 61 với yêu cầu: Tính bằng cách thuận tiện nhất nh sau: 13 x 5 x 2 = 13 x (5 x 2) = 13 x 10 = 130 Hay: 2 x 26 x 5 = (2 x 5) x 26 = 10 x 26 = 260 b- Các quy tắc nhân nhẩm với 11; 9 7 Việc áp dụng linh hoạt cách nhân nhẩm với 9, 11 sẽ giúp cho học sinh nhẩm ngay đợc kết quả đỡ mất thời gian tính toán. Sau khi học xong học sinh khắc sâu bằng cách nêu ngay kết quả bài tập ở bài 1 (trang 71): 34 x 11 = 374; 11 x 95 = 1045 1.4- Phép chia: - Chia cho số 1: a : 1 = a - Một số chia cho chính nó: a : a = 1 (a khác 0) - Số không chia cho bất cứ số nào ( khác 0 ) cũng bằng 0 : 0: a = a - Chia cho một tích : a: ( b x c ) = ( a : b ) : c = ( a : c ) : b - Chia một tích cho một số: (a x b) : c = a x (b : c) = (a : c) x b - Chia cho một thơng : a : ( b : c ) = ( a x c ) : b Học sinh áp dụng vào giải bài 3 (trang 79): Tính bằng hai cách 2205 : (35 x 7) Học sinh đã làm theo 2 cách nh sau: + Cách 1: 2205 : (35 x 7) = 2205 : 245 = 9 + Cách 2: 2205 : (35 x 7) = 2205 : 35 : 7 = 63 : 7 = 9 Tất cả các công thức, quy tắc trên học sinh đều đợc cung cấp qua các bài cụ thể và ở mỗi bài, tôi đều cho học sinh áp dụng thực hành ngay trên các bài toán có trong tiết dạy đó để giúp các em khắc sâu, nhớ lâu. 2- H ớng dẫn HS vận dụng linh hoạt các quy tắc, công thứcđể giải toán, làm tính theo nhiều cách khác nhau nhằm phát triển t duy toán học của học sinh khá giỏi: Sau khi học sinh đã đợc trang bị các công thức, quy tắc cơ bản trên và hiểu sâu sắc về chúng, tôi cho học sinh vận dụng vào làm tính, giải toán ở các tiết luyện tập, luyện tập chung một cách triệt để: Dạng 1: Dạng toán thực hiện phép tính: Trong SGK Toán 4, ở các tiết luyện tập, luyện tập chung có rất nhiều bài tập đòi hỏi các em tìm những cách giải khác nhau. Để làm đợc điều này, các em cần nắm vững các quy tắc công thức và vận dụng linh hoạt, sáng tạo. Bài 1 (trang 61): Tính bằng hai cách: 4 x 5 x 3 8 Các em đã biết áp dụng tính chất giao hoán, kết hợp của phép nhân đểtính đợc nh sau: Cách 1: Thực hiện theo thứ tự: 4 x 5 x 3 = 20 x 3 = 60 Cách 2: 4 x 5 x 3 = 4 x (5 x 3) = 4 x 15 = 60 Bài 1 (trang 79): Tính bằng hai cách: (8 x 23) :4 Đa phần học sinh đã thực hiện đợc Cách 1: (8 x 23) :4 = 184 :4 = 46 Cách 2: Tôi gợi ý các em áp dụng tính chất chia một tích cho một số để biến đổi và các em đã làm đợc nh sau: (8 x 23) :4 = 8 x 23 :4 = 8 :4 x 23 = 2 x 23 = 46 Đặc biệt với tính chất nhân một số với một tổng và một số nhân với một hiệu đợc áp dụng rất rộng rãi ở nhiều tiết học nh: Bài 2 (trang 66): Tính bằng hai cách: 36 x (7 + 3) Các em đã làm rất tốt ở hai cách: Cách 1: 36 x (7 + 3) = 36 x 10 = 360 Cách 2: 36 x (7 + 3) = 36 x 7 + 36 x 3 = 252 + 108 = 360 Bên cạnh những bài tập đòi hỏi tính bằng nhiều cách, có những bài tập yêu cầu tính bằng cách thuận tiện nhất. Song song với việc làm yêu cầu học sinh biết nhiều cách tính khác nhau, tôi đã hớng dẫn các em biết lựa chọn cách làm nhanh nhất, ngắn gọn nhất, tức là tìm ra con đờng ngắn nhất để đến đích. Bài 2 (trang 46): Tính bằng cách thuận tiện: 677 + 969 + 123 Để hớng dẫn học sinh làm bài này, tôi đã gợi mở cho các em: em có những cách tính nào ở phép toán trên? Học sinh sẽ tính bằng nhiều cách khác nhau nh sau: Cách 1: 677+ 969 + 123 = (677 + 969) + 123 = 1646 + 123 = 1769 Cách 2: 677 + 969 + 123 = 677 + (969 + 123) = 677 + 1092 = 1769 Cách 3: 677 + 969 + 123 = (677 + 123) + 969 = 800 + 969 = 1769 Sau khi học sinh làm xong 3 cách đó tôi cho học sinh nhận xét tìm ra cách giải mà các em thấy thuận tiện nhất và giải thích vì sao. Học sinh đều nhận thấy cách 3 là thuận tiện hơn cả vì khi cộng hai số hạng đợc kết quả là số tròn trăm nên việc tính toán đỡ mất thời gian hơn. Tơng tự nh vậy với bài 3 (trang 48): Tính bằng cách thận tiện nhất: 9 364 + 136 + 219 + 181 Học sinh đều nhanh chóng biết cách áp dụng các tính chất giao hoán, kết hợp của phép cộng đểtính đợc một cách nhanh nhất: 364 + 136 + 219 + 181 = (364 + 136) + (219 + 181) = 500 + 400 = 900 Hay áp dụng vào bài 2 (trang 68) với yêu cầu: Tính: a/ 137 x 3 + 137 x 97 b/ 428 x 12 - 428 x 2 Học sinh đã linh hoạt vận dụng tính chất nhân một số với một tổng, một số nhân với một hiệu để giúp cho việc tính toán nhanh hơn. a/ 137 x 3 + 137 x 97 = 137 x (3 + 97) = 137 x 100 = 13700 b/ 428 x 12 - 428 x 2 = 428 x (12 - 2) = 428 x 10 = 4280 Nh vậy với cách gợi mở để học sinh không ngừng suy nghĩ, tìm tòi ra nhiều con đờng đến đích, tôi thấy các em đã rất sáng tạo trong mọi bài tập. Bài 3 (trang 68): Tính: 1234 x 31 ; 875 x 29 Đã có rất nhiều em không đi vào đặt tính mà biết biến đổi đa về một số nhân với một tổng hay một số nhân với một hiệu rồi mới tính nh: 1234 x 31 = 1234 x (30 + 1) 875 x 29 = 875 x (30 - 1) = 1234 x 30 + 1234 x 1 = 875 x 30 - 875 x 1 = 37020 + 1234 = 26250 - 875 = 38254 = 25375 3- Tổ chức các hình thức dạy học khác nhau: Để việc vận dụng giải toán của học sinh đợc áp dụng rộng rãi tôi đã tiến hành tổ chức các hình thức dạy học khác nhau. ở trên lớp học, để không khí lớp học trong giờ toán sinh động hơn, tôi kết hợp tổ chức trò chơi: " Thi tính nhanh". Cụ thể: Với bài dạy "Một số chia hết cho một tích" ( SGK Toán 4- Trang 78), khi cho tiến hành làm bài 1: Tính giátrịbiểu thức, tôi chuẩn bị 3 bảng con, mỗi bảng ghi lần lợt một biểu thức: Bảng 1: 50 : ( 2 x5) Bảng 2: 72 : ( 9x8) Bảng 3: 28 : ( 7x2) Tôi chia lớp thành 3 dãy là 3 nhóm chơi. Mỗi nhóm lần lợt cử nhóm trởng lên nhận bảng (Giáo viên úp phần ghi xuống). Sau đó yêu cầu các nhóm làm theo cách 10 [...]... Câu 4: (2 điểm) Tính diện tích hình sau : 5cm 6cm 5cm 3cm Sau khi chấm bài, tôi thu đợc kết quả nh sau : Tổng số bài chấm : 32 bài Câu 1: Số học sinh tính đúng và thử lại bằng hai cách trở lên: 15 em = 47 % Số HS tính đúng và thử lại bằng một cách : 17 em = 53% 12 Câu 2: Số HS biết cách tính nhanh nhất và đúng : 20 em = 62,5% Số HS tính đúng ( cha phải là cách tính nhanh nhất ):1 2 em = 37,5% Câu 3: Số... 4A và lớp đối chứng 4B (Ngày12/2/2007) Với đề toán nh sau: Câu 1: (3 điểm) Tính rồi thử lại (bằng các cách) a) 53785 + 42 697 b) 540 04- 1936 c) 2701x3 24 d) 65232 : 216 Câu 2 : (3 điểm) Tính nhanh a) 120000+ 25125 + 37666 + 148 75 + 23 34 b) 54+ 2x 54 +3x 54 +54x4 c) 1800 : (4x90) Câu 3 : (2 điểm) Hai thửa ruộng thu hoạch đợc 3tấn 2tạ thóc Nếu chuyển 3 tạ thóc của thửa ruộng thứ nhất sang thửa ruộng thứ hai... phút Hết thời gian giáo viên cho các nhóm mang bài lên để các nhóm khác thi tìm cách giải nhanh Nếu nhóm nào tìm đợc cách giải nhanh hơn, hợp lí hơn nhóm ban đầu thì nhóm đó sẽ thắng cuộc Ví d : Nhóm 1 lên nhận đợc bảng 1 l : 50 : ( 2x5) Nhóm đó tính nhanh nh sau: 50 : (2 x5) =50 : 2 :5 = 50 :5 :2 = 10 :2 =5 Nhng nhóm 3 lại phát hiện ra cách tính nhanh hơn l : 50 : ( 2x 5) = 50 : 10 = 5 Vậy nhóm 3... tính nhanh hơn l : 50 : ( 2x 5) = 50 : 10 = 5 Vậy nhóm 3 thắng nhóm 1 Hoặc nhóm 2 nhận đợc bảng 3 l : 28 : (7 x 2) và đã tính: 28 : ( 7x 2) = 28 : 14 = 2 Nhng nhóm 1 lại phát hiện ra cách tính nhanh hơn l : 2 8:( 7x2)=2 8:7 :2 = 4: 2 =2 Vậy nhóm 1 thắng nhóm 2 Tổ chức trò chơi ''thi tính nhanh''không những tạo cho lớp học một không khí sôi nổi, sinh động mà còn kích thích các em thi đua nhau, hợp tác hỗ trợ nhau... bằng 3 cách : 12 em = 37,5% Số HS giải toán bằng 1 cách : 20 em = 62,5% Câu 4: Số HS tính đúng diện tích hình đã cho là bằng cách ngắn gọn nhất: 12 em = 37,5 % Số HS tính đúng nhng cha ngắn gọn: 18 em = 56,25 % Số HS tính sai l : 2 em = 6,25 % Cụ thể chất lợng nh sau : Điểm Lớp Số HS Giỏi Khá TB Yếu HS giải bằng các cách khác nhau SL % SL % SL % SL % SL % 4A 32 8 25 12 37,5 12 37,5 0 0 9 28 4B 31 5 16,1... SL % 53 7 22 2 6,25 Đầu năm 4A 32 2 6,25 6 18,75 17 4B 31 2 6 ,45 5 16,12 18 58,06 6 19,37 2 6 ,45 Cuối HKI 4A 32 8 25 12 37,5 12 37,5 0 0 9 28 4B 31 5 16,1 8 25,8 15 48 ,4 3 9,7 3 9,7 Nh vậy : ở lớp 4A, số học sinh khá giỏi tăng 12 em, số học sinh trung bình giảm đáng kể, không còn học sinh yếu Đặc biệt học sinh biết giải toán bằng nhiều cách khác nhau đã tăng 5 em Còn ở lớp 4B, do cha đợc áp dụng cách... để hớng dẫn cho học sinh 14 2 Đối với học sinh: - Trên lớp lắng nghe cô giáo hớng dẫn, giảng bài - Ghi nhớ đầy đủ, có hệ thống các quy tắc, công thức - Có sổ tay toán học để ghi chép các dạng toán với các cách giải khác nhau Tích cực, chủ động học tập, luôn tự giác nghiên cứu, tìm tòi các cách giải mới và mạnh dạn nêu ý kiến của mình trớc cả lớp VII phạm vi áp dụng đề tài: Đềtài có thể áp dụng vào việc... học sinh biết cách làm nhanh nhất l : 50 : (2 x 5) = 50 : 10 = 5 Hay 28 : (7 x 2) = 28 : 7 : 2 = 4: 2 = 2 Còn ở bài 4 (trang 65) học sinh nhận biết đợc cách 3 là cách làm nhanh nhất, ngắn gọn nhất Nh vậy để hớng dẫn học sinh giải toán theo nhiều cách khác nhau, tôi đã tiến hành các công việc l : cung cấp và hớng dẫn học sinh nắm chắc đầy đủ các quy tắc, 11 công thức rồi hớng dẫn các em vận dụng linh... bạn bè đồng nghiệp đểđềtài đợc phong phú, hoàn thiện hơn Tôi xin chân thành cảm ơn! 16 Mục lục Phần I: Đặt vấn đề trang 4 I- Cơ sở lý luận trang 4 II- Cơ sở thực tiễn trang 4 Phần II: Giải quyết vấn đề trang 5 I- Điều tra thực trạng trang 5-6 II- Phơng pháp nghiên cứu trang 6-7 III- Các biện pháp thực hiện trang 7-22 IV- Kết quả đạt đợc trang 22- 24 V- Kết quả đối chứng trang 24- 25 VI- Bài học kinh... khối lớp4 cũng nh các khối lớp khác Tuy kết quả cha đợc nh ý muốn, nhng đó cũng là thành công bớc đầu của tôi trong quá trình nghiên cứu nhằm mục đích nâng cao chất lợng môn toán, giờ học toán thông qua việc hớng dẫn học sinh lớp4 giải toán theo nhiều cách khác nhau VI.BàI HọC KINH NGHIệM : Từ những kết quả đạt đợc trên, bản thân tôi rút ra một số bài học kinh nghiệm sau : 1-Đối với giáo viên: - Ngay . c) 2701x3 24 d) 65232 : 216 Câu 2 : (3 điểm) Tính nhanh. a) 120000+ 25125 + 37666 + 148 75 + 23 34 b) 54+ 2x 54 +3x 54 +54x4 c) 1800 : (4x90) Câu 3 : (2 điểm). (tr .45 ) : Tính bằng cách thuận tiện : 32 54 + 146 +1698 = (32 54 + 146 ) +1698 = 340 0 + 1698 = 5098 -Tính chất cộng với 0: Bất kì số nào cộng với 0 đều