Gia sư Thành Được www.daythem.edu.vn Vấn đề 1: HỆ TỌAĐỘTRONGKHÔNGGIANTỌAĐỘ CỦAVÉCTƠ, TỌAĐỘ CỦA ĐIỂM Bài 1: Trong hệ tọađộ Oxy cho a (1; 2;1) , b (2;1;1) , c 3i j k Tìm tọađộ véctơ sau: a) u 3a 2b b) v c 3b c) w a b 2c d) x a b 2c Bài 2: Trong hệ tọađộ Oxy cho a (1; 1;0) , b (1;1;2) , c i j k , d i a) xác định k để véctơ u (2;2k 1;0) phương với a b) xác định số thực m, n, p để d ma nb pc c) Tính a , b , a 2b Bài 3: Cho A 2; 5; 3 , B 3;7; , C x; y; a) Tìm x, y để ba điểm A, B, C thẳng hàng b) Tìm giao điểm đường thẳng AB với mặt phẳng yOz Tính độ dài đoạn AB c) Xác định tọađộ điểm M mp Oxy cho MA MB nhỏ a) Tính tích vô hướng a.b , c.b Trong ba véctơ có cặp véctơ Bài 4: Trong hệ tọađộ Oxy cho a (1; 2; ) , b (2;1;1) , c 3i j 4k vuông góc b) Tính Cos(a,b) , Cos(a,i) Bài 5: Trong hệ tọađộ Oxy cho: A 1; 1;1 , B 2; 3;2 , C 4; 2;2 , D 3;0;1 , E 1;2;3 a) Chứng tỏ ABCD hình chữ nhật Tính diện tích b) Tính cos góc tam giác ABC c) Tìm đường thẳng Oy điểm cách hai điểm AB d) Tìm tọađộ điểm M thỏa MA MB 2MC Bài 6: Trong hệ tọađộ Oxy cho: A 1; 1;1 , B 2; 3;2 , C 4; 2;2 a) Tìm tọađộ trung điểm đoạn AB b) Tìm tọađộ tâm tam giác ABC Vấn đề 2: TÍCH CÓ HƯỚNG HAI VÉCTƠ VÀ CÁC ỨNG DỤNG Gia sư Thành Được www.daythem.edu.vn Bài 1: Trongkhônggian Oxyz , tính tích có hướng u , v biết rằng: a) u (1; 2;1) , v (2;1;1) b) u (1;3;1) , v (0;1;1) c) u 4i j , v i j k Bài 2: Trongkhônggian Oxyz , tính tích u , v w biết rằng: a) u (1; 2;1) , v (0;1;0) , w (1;2; 1) b) u (1; 1;1) , v (0;0;2) , w (1; 2; 1) c) u 4i j , v i j k , w (5;1; 1) Bài 3: Trongkhônggian Oxyz , Cho A 1; 1;1 , B 2; 3;2 , C 4; 2;2 , D 1;2;3 a) Chứng tỏ A,B,C không thẳng hàng b) Chứng tỏ bốn điểm A,B,C,D không đồng phẳng c) Tính diện tích tam giác ABC d) Tính thể tích tứ diện ABCD.Biết Bài 4: Trongkhônggian Oxyz , cho hình chóp S.ABCD có: A 2; 1;1 , B 2; 3;2 , C 4; 2;2 , D 1;2; 1 , S 0;0;7 a) Tính diện tích tam giác SAB b) Tính diện tích tứ giác ABCD c) Tính thể tích hình chóp S.ABCD Từ suy khoảng cách từ S đến mp(ABCD) d) Tính khoảng cách từ A đến mp(SCD) Bài 5: Trongkhônggian Oxyz , cho hình hộp ABCD.A’B’C’D’ Biết rằng: A 1;2; 1 , B 1;1;3 , C 1; 1;2 D’ 2; 2; 3 a) Tìm tọađộ đỉnh lại b) Tính thể tích hình hộp c) Tính thể tích tứ diện A.A’BC Tính tỉ số VABCD A ' B 'C ' D ' VA A ' B 'C ' d) Tính thể tích khối đa diện ABCDD’ Vấn đề 3: PHƯƠNG TRÌNH CỦA MẶT CẦU Bài 1: Trongkhônggian Oxyz , tìm tâm bán kính mặt cầu a) ( x 2)2 ( y 1)2 ( z 2)2 b) x y z x y 3z Bài 2: Trongkhônggian Oxyz , cho A 1;3; 7 , B 5; 1;1 25 0 Gia sư Thành Được www.daythem.edu.vn a) Lập phương trình mặt cầu tâm A bán kính AB b) Lập phương trình mặt cầu đường kính AB c) Lập phương trình mặt cầu tâm B tiếp xúc với mặt phẳng Oxy Bài 3: Trongkhônggian Oxyz , cho A 1;1;1 , B 1;2;1 , C 1;1;2 , D 2;2;1 a) Viết phương trình mặt cầu qua bốn điểm A, B, C, D b) Tìm hình chiếu tâm mặt cầu câu a) lên mp Oxy, Oyz Bài 4: Trongkhônggian Oxyz , lập phương trình mặt cầu qua điểm: A 1;2; 4 , B 1; 3;1 , C 2;2;3 có tâm nằm mp Oxy Bài 5: Trongkhônggian Oxyz , cho A 2; 1;6 , B 3; 1; 4 , C 5; 1;0 , D 1;2;1 a) Chứng tỏ ABCD tứ diện b) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD c) Viết phương trình mặt cầu cắt mp(ABC) theo thiết diện đường tròn có bán kính lớn Bài 6: Chứng tỏ phương trình: x y z 4mx 2my z m2 4m luôn phương trình mặt cầu Tìm m để bán kính mặt cầu nhỏ Bài 7: Chứng tỏ phương trình: x y z 2cos x 2sin y z 4sin phương trình mặt cầu Tìm m để bán kính mặt cầu lớn Vấn đề 4: PHƯƠNG TRÌNH MẶT PHẲNG Bài 1: Trongkhônggian Oxyz , cho A(-1;2;3), B(2;-4;3), C(4;5;6) a) Viết phương trình mp qua A nhận vectơ n(1; 1;5) làm vectơ pháp tuyến b) Viết phương trình mp qua A biết hai véctơ có giá song song hoặt nằm mp a(1;2; 1), b (2; 1;3) c) Viết phương trình mp qua C vuông góc với đường thẳng AB d) Viết phương trình mp trung trực đoạn AC e) Viết phương trình mp (ABC) Bài 2: Trongkhônggian Oxyz , cho A(-1;2;1), B(1;-4;3), C(-4;-1;-2) a) Viết phương trình mp qua I(2;1;1) song song với mp (ABC) b) Viết phương trình mp qua A song song với mp P : x y 3z c) Viết phương trình mặt phẳng qua hai điểm A, B vuông góc với mặt phẳng Q : 2x y 2z d) Viết phương trình mặt phẳng qua A, song song với trục Oy vuông góc với Gia sư Thành Được www.daythem.edu.vn mặt phẳng R : 3x y 3z e) Viết phương trình mp qua C song song với mp Oyz Bài 3: Trongkhônggian Oxyz , viết phương trình mp qua M(2;1;4) cắt trục Ox, Oy, Oz điểm A, B, C cho: OA = OB = OC Bài 4: Trongkhônggian Oxyz , viết phương trình mp qua M(2;2;2) cắt tia Ox, Oy, Oz điểm A, B, C cho thể tích tứ diện OABC nhỏ Bài 5: Trongkhônggian Oxyz , viết phương trình mp qua M(1;1;1) cắt tia Ox, Oy, Oz lần lược điểm A, B, C cho tam giác ABC cân A, đồng thời M trọng tâm tam giác ABC Bài 6: Trongkhônggian Oxyz , cho tứ diện ABCD, biết rằng: A 2; 1;6 , B 3; 1; 4 , C 5; 1;0 , D 1;2;1 a) Viết phương trình mp chứa A song song với mp (ABC) b) Viết phương trình mp cách bốn đỉnh tứ diện Bài 7: Trongkhônggian Oxyz , cho mp(P): x y z hai điểm A 2; 1;6 , B 3; 1; 4 a) Tính khoảng cách từ A đến mp (P) b) Viết phương trình mp chứa hai điểm A,B tạo với mp (P ) góc có số đo lớn c) Viết phương trình mặt cầu tâm B tiếp xúc với mp (P) Bài 8: Trongkhônggian Oxyz , cho ba mặt phẳng: : x y z 0; : x y z 0; : 2 x y z a) Trong ba mặt phẳng mp song song với mp nào? b) Tìm quỹ tích điểm cách c) Tính khoảng cách hai mp d) Tìm quỹ tích điểm cách khoảng e) Viết phương trình mặt cầu có tâm thuộc trục Ox tiếp xúc với mp Bài 9: Trong kh.gian Oxyz , cho mặt phẳng : x y z 0; : x y z a) Tính cosin góc hai mp b) Viết phương trình mặt cầu có tâm thuộc Oy tiếp xúc với hai mp c) Viết phương trình mp qua giao tuyến hai mp song song với trục Ox Bài 10: Trongkhônggian Oxyz , cho mặt phẳng P : x y z mặt cầu (C ): ( x 1)2 ( y 1)2 ( z 2)2 25 a) Chứng tỏ mặt phẳng (P) mặt cầu (C ) cắt Tìm bán kính đường Gia sư Thành Được www.daythem.edu.vn tròn giao tuyến b) Lập phương trình tiếp diện mặt cầu song song với mặt phẳng (P) Bài 11: Trongkhônggian Oxyz , cho hai mặt phẳng : x y z mặt cầu (C) ( x 1)2 ( y 1)2 ( z 2)2 25 a) Lập phương trình tiếp diện mặt cầu song song với Ox vuông góc với mặt phẳng b) Tính góc giưa mp với Ox c) Lập phương trình mp qua hai A(1;0;1) điểm B(1;-2;2) hợp với mặt phẳng góc 600 Bài 13: Trongkhônggian Oxyz , cho bốn điểm A 1;1;2 , B 1;2;1 , C 2;1;1 , D 1;1; 1 a) Viết phương trình mặt phẳng ABC b) Tính góc cosin hai mặt phẳng (ABC) (ABD) Bài 14: Trongkhônggian Oxyz , viết phương trình mặt phẳng qua điểm M(2;1;-1) qua giao tuyến hai mặt phẳng x y z 3x y z Bài 15: Trongkhônggian Oxyz , viết phương trình mặt phẳng qua giao tuyến hai mp x z x y z đồng thời song song với mặt phẳng x y z Bài 16: Trongkhônggian Oxyz , viết phương trình mp qua giao tuyến hai mặt phẳng 3x y z x y đồng thời vuông góc với mp x y Bài 17: Trongkhônggian Oxyz , cho hình lập phương ABCD.A’B’C’D’ có cạnh Gọi I, J, K trung điểm cạnh BB’, C’D’và D’A’ a) Chứng tỏ mặt phẳng (IJK) vuông góc với mặt phẳng (CC’K) b) Tính góc hai mặt phẳng (JAC) (IAC’) c) Tính khoảng cách từ I đến mp(AJK) Bài 18: Trongkhônggian Oxyz , cho hình chóp S.ABCD có đáy ABCD hình chữ nhật AB SA 2a; AD a Đặt hệ trục Oxyz cho tia Ox, Oy, Oz trùng với tia AB, AD, AS a) Từ điểm C vẽ tia CE hướng với tia AS Tìm tọađộ E b) Tính khoảng cách từ C đến mặt phẳng (SBD) c) Chứng tỏ mặt phẳng (SAB) vuông góc với mặt phẳng (SBC) d) Tính cosin góc hai mặt phẳng (SBC) (SDC) e) Tính thể tích hình chóp S.ABCD Bài 19: Trongkhônggian Oxyz , cho tam giác ABC cạnh a; I trung điểm BC D điểm đối xứng với điểm A qua điểm I Dựng đoạn SD = a vuông góc với mp Gia sư Thành Được www.daythem.edu.vn (ABC) Chứng minh rằng: a) mp(SAB) mp(SAC ) b) mp(SBC ) mp(SAD) c) Tính thể tích hình chóp S.ABC Vấn đề 5: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Bài 1: Trongkhônggian Oxyz , viết phương trình tham số đường thẳng: a) Đi qua A(1; 2; -1) có vectơ phương a (1; 2;1) b) Đi qua hai điểm I(-1; 2; 1), J(1; -4; 3) c) Đi qua A song song với đường thẳng x 1 y z 1 1 d) Đi qua M(1; 2; 4) vuông góc với mặt phẳng 3x y z Bài 2: Trongkhônggian Oxyz , tìm phương trình tắc đường thẳng: x 2t a) Qua điểm A 3; 1;2 song song với đường thẳng y t z t b) Qua A 3; 1;2 song song với hai mặt phẳng x z 0; x y z c) Qua điểm M(1;1;4) vuông góc với hai đường thẳng: x 2t x 1 y z 1 (d1): y t (d2): 1 z t Bài 3: Cho tứ diện ABCD, biết rằng: A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1) a) Viết phương trình đường thẳng qua A vuông góc với mặt phẳng (BCD) b) Viết phương trình đường thẳng qua điểm I(1;5;-2) vuông góc với hai đường thẳng AB, CD Bài 4: Viết phương trình hình chiếu vuông góc đường thẳng (d): x 1 y z 1 1 lên mặt phẳng tọađộ Bài 5: Trongkhônggian Oxyz , viết phương trình hình chiếu (vuông góc) đường x 2t thẳng (d): y t lên mặt phẳng P : x y z z t Gia sư Thành Được www.daythem.edu.vn Bài 6: Trongkhônggian Oxyz , viết phương trình giao tuyến hai mặt phẳng : x y z 0, : x y z Vấn đề 6: VỊ TRÍ TƯƠNG ĐỐI CỦA CÁC ĐƯỜNG THẲNG VÀ CÁC MẶT PHẲNG GÓC VÀ KHOẢNG CÁCH Bài 7: Xét vị trí tương đối hai đường thẳng: x 1 y z x y 1 z (d’) 2 x 1 y z x y 8 z 4 (d’) b) (d) 2 2 x2 y z 1 x7 y2 z c) (d) (d’) 6 8 12 x 2t d) (d) y t (d’) giao tuyến hai mặt phẳng: z t a) (d) : x y 3z 0, : x y z Bài 8: Xét vị trí tương đối đường thẳng mặt phẳng Tìm tọađộ giao điểm chúng có: x 12 y z : 3x y z x 1 y z : 3x y z b) (d) x y 1 z c) (d) : x y z a) (d) Bài 9: Tính góc cặp đường thẳng: x 1 y z x y 1 z (d’) 2 x 1 y z x y 8 z 4 (d’) b) (d) 2 2 x2 y z 1 x7 y2 z c) (d) (d’) 6 8 12 a) (d) Bài 10: Tính khoảng cách cặp đường thẳng (nếu chúng chéo song song nhau) Bài 11: Tính góc đường thẳng mặt phẳng: Gia sư Thành Được www.daythem.edu.vn x 12 y z : 3x y z x 1 y z : 3x y z b) (d) x y 1 z c) (d) : x y z a) (d) Bài 12: Tính khoảng cách từ điểm M(-1;2;3) đến đường thẳng: x 12 y z x 2t b) (d2): y t z t a) (d1): c) (d3) giao tuyến mặt phẳng : x y 3z 0, : x y z Bài 13: Cho đường thẳng (d) x 1 y 1 z : x y z a) Tìm giao điểm (d) b) Viết phương trình mp chứa (d) hợp với góc có số đo lớn c) Viết phương trình mp chứa (d) hợp với góc có số đo nhỏ Bài 14: Trongkhônggian cho bốn đường thẳng x 1 y z x2 y2 z , (d2): 2 4 x y z 1 x y z 1 (d3): , (d4) : 1 2 1 (d1): a) Chứng tỏ (d1) (d2) nằm mặt phẳng Viết phương trình tổng quát mặt phẳng b) Chứng tỏ tồn đường thẳng (d) cắt bốn đường thẳng cho c) Tính côsin góc (d1) (d3) Bài 15: Cho ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2) mp : x y z a) Tính cosin góc hai đường thẳng AB BC b) Tìm mp điểm cách điểm A, B, C c) Tìm phương trình hình chiếu đường thẳng AB lên mp Bài 16: Cho tứ diện ABCD, biết rằng: A(1;1;2), B(1;2;1), C(2;1;1), D(1;1;-1) a) Tính góc hai đường thẳng AC BD b) Tính khoảng cách hai đường thẳng AB CD c) Tìm tọađộ hình chiếu H A lên mp (BDC) d) Tính khoảng cách từ A đến đường thẳng DB e)T ính khoảng cách từ gốc tọađộ đến mp (BCD) Gia sư Thành Được www.daythem.edu.vn Bài 17: Tìm điểm M’ đối xứng với điểm M(2;-1;1) qua mp : x y z Bài 18: Tìm điểm A’ đối xứng với điểm A(2;-1;5) quađường thẳng x 1 y z Bài 19: Cho A(3;1;0), B(1;-2;5) mp : x y z Tìm điểm M mp cho MA MB nhỏ Bài 20: Cho hai điểm A(2;1;1), B(1;2;-1) mp : x y z Tìm điểm M mp cho MA MB lớn Bài 21: Cho hai điểm A(2;1;1), B(1;2;-1) mp : x y z Tìm điểm M mp cho MA MB nhỏ Bài 22: Cho hai điểm A(3;1;0) , B(1;-2;5) mp : x y z Tìm điểm M mp cho MA2 MB nhỏ Bài 23: Cho ba điểm A(3;1;0), B(1;-2;5), C(-1;-2;-3) mp : x y z Tìm điểm M mp cho MA2 MB MC nhỏ Bài 24: Cho điểm A(3;1;0),B(1;-2;5), C(-1;-2;-3), D(1;5;1) mp : x y z Tìm điểm M mp cho MA2 MB MC MD nhỏ x 3t x 1 y z Bài 25: Cho ba đường thẳng (d1): , (d2): y t (d3) giao tuyến z t hai mặt phẳng : x y z 0, : x y z Viết phương trình song song với (d1) cắt hai đường thẳng (d2) (d3) x 2t Bài 26: Cho hai đường thẳng (d1): y t (d2) giao tuyến hai mặt phẳng z t : x y z 0, : x z Viết phương trình đường thẳng qua A(1;-1;1) cắt hai đường thẳng (d1), (d2) Bài 27: Viết phương trình đường thẳng nằm mp P : y z cắt hai Gia sư Thành Được www.daythem.edu.vn x 1 t đường thẳng (d1): y t ; (d2): z 4t Bài 28: Cho hai đường thẳng (d): x t y 2t z x 1 y 1 z x2 y2 z (d’): 1 2 a) Chứng tỏ (d) (d’ ) chéo Tính khoảng cách chúng b) Viết phương trình đường vuông góc chung chúng c) Tính góc (d1) (d2) x t x 1 y z Bài 29: Cho hai đường thẳng (d): (d’): y 1 t z t a) Chứng tỏ (d) (d’ ) chéo Tính khoảng cách chúng b) Viết phương trình đường vuông góc chung chúng c) Tính góc (d1) (d2) x 3t Bài 30: Cho hai đường thẳng (d1): y 2 t (d2) giao tuyến hai mặt phẳng z t : x y z 0, : x Viết phương trình đường thẳng qua A(0;1;1) vuông góc với đường thẳng (d1) cắt (d2) Bài 31: Trongkhônggian Oxyz cho đường thẳng (d) giao tuyến hai mặt phẳng : x y 0, : x z Viết phương trình đường thẳng qua điểm M(0;1;-1) vuông góc cắt đường thẳng (d) Bài 32: Cho hai điểm A(1;1;-5), B(0;1;-7) đường thẳng (d) giao tuyến hai mặt phẳng : y 1, : x z 1 Tìm điểm M thuộc đường thẳng (d) cho chu vi tam giác AMB nhỏ 10 ... Bài 1: Trong không gian Oxyz , tính tích có hướng u , v biết rằng: a) u (1; 2;1) , v (2;1;1) b) u (1;3;1) , v (0;1;1) c) u 4i j , v i j k Bài 2: Trong không gian Oxyz... PHƯƠNG TRÌNH CỦA MẶT CẦU Bài 1: Trong không gian Oxyz , tìm tâm bán kính mặt cầu a) ( x 2)2 ( y 1)2 ( z 2)2 b) x y z x y 3z Bài 2: Trong không gian Oxyz , cho A 1;3; 7 ... Vấn đề 4: PHƯƠNG TRÌNH MẶT PHẲNG Bài 1: Trong không gian Oxyz , cho A(-1;2;3), B(2;-4;3), C(4;5;6) a) Viết phương trình mp qua A nhận vectơ n(1; 1;5) làm vectơ pháp tuyến b) Viết phương trình