Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
367 KB
Nội dung
I. ®¹o hµm 1) Dùng đònh nghóa tính đạo hàm của cáchàm số: a) y = f(x) = cosx b) y = f(x) = 1x |x| + tại x 0 = 0. 2) Cho hàmsố y = f(x) = x 3 −3x 2 +1, có đồ thò (C). a) Tìm f’(x). Giải bất phương trình f’(x) ≤ 0. b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 3. 3) Cho (C) : y = f(x) = x 4 − 2x 2 . a) Tìm f’(x). Giải bất phương trình f’(x) > 0. b) Viết phương trình tiếp tuyến của (C) : 1. Tại điểm có hoành độ bằng 2 . 2. Tại điểm có tung độ bằng 3. 3. Biết tiếp tuyến song song với d 1 : y = 24x+2007 4. Biết tiếp tuyến vuông góc với d 2 : y = 10x 24 1 − . 4) Viết phương trình tiếp tuyến với (P): y = f(x) = x 2 − 2x − 3 đi qua M 1 (5;3). 5) Viết phương trình tiếp tuyến của (C):y=f(x)=x 3 –3x+1 kẻ từ M(3; − 1). 6) Viết phương trình tiếp tuyến của (C) : y = f(x) = x − 2+ 1x 4 − đi qua A(0;3). 7) Viết phương trình tiếp tuyến của (C): y = f(x)= 1x 1x + − đi qua H(1;1). 8) Tìm đạo hàmcáchàmsố a) y = ( x 3 – 3x + 2 ) ( x 4 + x 2 – 1 ) b) y = 1xx x2x 2 3 ++ − c) y = qpx cbxax 2 + ++ 9) Tìm đạo hàmcáchàmsố : a) y = ( 5x 3 + x 2 – 4 ) 5 b) y = sin 2 (cos 3x) c) y = ln 3 x d) y = e sinx e) y = e 4x + 5 f) y = 1x2 2 x a ++ (0< a ≠ 1) 10) Tìm đạo hàmcáchàmsố : a) y= ln ( x + 2 x1 + ) b) y = log 3 ( x 2 – sin x ) c) y = e x – ln ( sin x) d) y = tg ( 2x+3) e) y = tg 2 x . sinx f) y = 2 x tg g) y = cotg ( 5x 2 + x – 2 ) h) y = cotg 2 x + cotg2x 11) Tính đạo hàm của hàmsố f(x) = ≥ < 0x nếu x 0x nếu x 2 3 tại điểm x 0 = 0 12) Tìm đạo hàm cấp n ( n nguyên dương) của cáchàmsố sau : a) y = lnx b) y = e Kx c) y = sin x d) y = cos x e) y = ln (x 2 + x – 2 ) 13) Chứng minh rằng : a) Với y= 3 + x 5 ( x ≠ 0), ta có xy’ + y = 3 b) Với y = x sin x, ta có : xy – 2 ( y’ – sin x ) +xy” = 0 c) Với y = ( x +1 ) e x ta có : y’ – y = e x d) Với y= e sin x ta có : y’ cos x – ysin x – y” = 0 e) Với y = ln x1 1 + ta có xy’ + 1 = e y 14) Chứng minh các đẳng thức đạo hàm: a) Cho hàmsố y = xcos.xsin1 xcosxsin 33 − + . Chứng minh rằng: y’' = −y b) Cho y = ln(sinx) . Chứng minh rằng : y’+y’’sinx+tg 2 x = 0 c) Cho y = e 4x +2e − x . Chứng minh rằng : y’’’−13y’−12y = 0 d) Cho y = 4x 3x + − . Chứng minh rằng : 2(y’) 2 = (y−1)y’’ e) Cho y = 73xgxcotxgcot 3 1 3 ++++− . Chứng minh rằng: y’ = cotg 4 x 15) Cho f(x) = xsin1 xcos 2 2 + . Chứng minh rằng : 3) 4 ('f3) 4 (f = π − π 16) Cho f(x) = 2 2 x e.x − . Chứng minh rằng : ) 2 1 (f3) 2 1 (f2 ' = 17) Giải phương trình : f’(x) = 0 biết rằng: a) f(x) = cos x +sin x + x. b) f(x) = (x 2 +2x−3)e x c) f(x) = sinx.e x d) f(x) = xxcosxsin3 +− 18) Giải bất phương trình f / (x) < 0 với f(x) = 3 1 x 3 −2x 2 + π . 19) Cho cáchàmsố f(x) = sin 4 x + cos 4 x; g(x) = x4cos 4 1 Chứng minh rằng : f ’(x) = g’(x), ∀x∈R 20) Tìm vi phân của mỗi hàmsố sau tại điểm đã chỉ ra: a) f(x) = ln (sinx) tại x 0 = 4 π . b) f(x) = x. cosx tại x 0 = 3 π 21) Tìm vi phân của mỗi hàm số: a) f(x) = 1x 2 + b) f(x) = x.lnx. c) f(x) = x xsin . 22) Biết rằng ln 781 = 6,6606 , hãy tính gần đúng ln 782. II.Sù ®ång biÕn vµ nghÞch biÕn cđa hµm sè 23) Tìm các điểm tới hạn của hàmsố :y = f(x) = 3x+ 5 x 3 + . 24) Xét tính đơn điệu của hàmsố a) y = f(x) = x 3 −3x 2 +1. b) y = f(x) = 2x 2 −x 4 . c) y = f(x) = 2x 3x + − . d) y = f(x) = x1 4x4x 2 − +− . e) y = f(x) = x+2sinx trên ( −π ; π). f) y = f(x) = xlnx. g) y = f(x) = )5x(x 3 2 − . h) y= f(x) = x 3 −3x 2 . i) 1x 3x3x f(x) y 2 − +− == . j) y= f(x) = x 4 −2x 2 . k) y = f(x) = sinx trên đoạn [0; 2π]. 25) Cho hàmsố y = f(x) = x 3 −3(m+1)x 2 +3(m+1)x+1. Đònh m để hàmsố : a) Luôn đồng biến trên khoảng xác đònh của nó. Kq:1 ≤ m ≤ 0 b) Nghòch biến trên khoảng ( −1;0). Kq: m ≤ 3 4 − c) Đồng biến trên khoảng (2;+∞ ). Kq: m ≤ 3 1 26) Đònh m∈Z để hàmsố y = f(x) = mx 1mx − − đồng biến trên các khoảng xác đònh của nó. Kq: m = 0 27) Đònh m để hàmsố y = f(x) = 2x 2x6mx 2 + −+ nghòch biến trên nửa khoảng [1;+∞). Kq: m ≤ 5 14 − 28) Chứng minh rằng : x1e x +> , ∀x > 0. 29) Chứng minh rằng : hàmsố luôn luôn tăng trên khoảng xác đònh (trên từng khoảng xác đònh) của nó : a) y = x 3 −3x 2 +3x+2. b) 1x 1xx y 2 − −− = . c) 1x2 1x y + − = . 30) Tìm m để hàmsố ( ) ( ) x7mx1m 3 x y 2 3 −−−−= : a) Luôn luôn đồng biến trên khoảng xác đònh của nó. b) Luôn luôn đồng biến trên khoảng (2;+∞) 31) Tìm m để hàmsố : mx 2mmx2x y 2 − ++− = luôn đồng biến trên từng khoảng xác đònh của nó. 32) Tìm m để hàmsố : mx 1mx)m1(x2 y 2 − ++−+ = luôn đồng biến trên khoảng (1;+∞). Kq: 223m −≤ 33) Tìm m để hàmsố y = x 2 .(m −x) −m đồng biến trên khoảng (1;2). Kq: m≥3 34) Chứng minh rằng : a) ln(x+1) < x , ∀ x > 0. b) cosx >1 − 2 x 2 , với x > 0 . III Cùc ®¹i vµ cùc tiĨu 35) Tìm các điểm cực trò của hàmsố bằng đạo hàm cấp 1: a) y = x 3 . b) y = 3x + x 3 + 5. c) y = x.e − x . d) y = x xln . 36) Tìm các điểm cực trò của hàmsố bằng đạo hàm cấp 2: a) y = sin 2 x với x∈[0; π ] b) y = x 2 lnx. c) y = x e x . 37) Xác đònh tham số m để hàmsố y=x 3 −3mx 2 +(m 2 −1)x+2 đạt cực đại tại x=2. ( Đề thi TNTHPT 2004 − 2005) Kết quả : m=11 38) Đònh m để hàmsố y = f(x) = x 3 −3x 2 +3mx+3m+4 a.Không có cực trò. Kết quả : m ≥1 b.Có cực đại và cực tiểu. Kết quả : m <1 c. Có đồ thò (C m ) nhận A(0; 4) làm một điểm cực trò (đạt cực trò 4 khi x = 0). Hd: M(a;b) là điểm cực trò của (C): y =f(x) khi và chỉ khi: = ≠ = b)a(f 0)a(''f 0)a('f Kết quả : m=0 d.Có cực đại và cực tiểu và đường thẳng d qua cực đại và cực tiểu đi qua O. Kq : d:y = 2(m−1)x+4m+4 và m= −1 39) Đònh m để hàmsố y = f(x) = x1 mx4x 2 − +− a. Có cực đại và cực tiểu. Kết quả : m>3 b.Đạt cực trò tại x = 2. Kết quả : m = 4 c.Đạt cực tiểu khi x = −1 Kết quả : m = 7 40) Chứng tỏ rằng với mọi m hàmsố y = mx 1mx)1m(mx 422 − +−−+ luôn có cực trò. 41) Cho hàmsố y = f(x) = 3 1 x 3 −mx 2 +(m 2 −m+1)x+1. Có giá trò nào của m để hàmsố đạt cực tiểu tại x = 1 không? Hd và kq : Sử dụng đkc,đkđ. Không 42) Cho hàmsố y = f(x) = 3 1 x 3 −mx 2 +(m+2)x−1. Xác đònh m để hàm số: a) Có cực trò. Kết quả: m <−1 V m > 2 b) Có hai cực trò trong khoảng (0;+∞). Kết quả: m > 2 c) Có cực trò trong khoảng (0;+∞). Kết quả: m <−2 V m > 2 43) Biện luận theo m số cực trò của hàmsố y = f(x) = −x 4 +2mx 2 −2m+1. Hd và kq : y’=−4x(x 2 −m) m ≤ 0: 1 cực đại x = 0 m > 0: 2 cực đại x= m ± và 1 cực tiểu x = 0 44) Đònh m để đồ thò (C) của hàmsố y = f(x) = 1x mxx 2 + +− có hai điểm cực trò nằm khác phía so với Ox. Kết quả : m > 4 1 45) Đònh m để hàmsố y = f(x) = x 3 −6x 2 +3(m+2)x−m−6 có 2 cực trò và hai giá trò cực trò cùng dấu. Kết quả : 4 17 − < m < 2 46) Chứùng minh rằng với mọi m hàmsố y = f(x) =2x 3 −3(2m+1)x 2 +6m(m+1)x+1 luôn đạt cực trò tại hai điểm x 1 và x 2 với x 2 −x 1 là một hằng số. 47) Tìm cực trò của cáchàmsố : a) x 1 xy += . b) 6x2 4 x y 2 4 ++−= . c) y = 21x 3 +− 48) Đònh m để hàmsố có cực trò : a) 2mxx3xy 23 −+−= . Kết quả: m<3 b) 1x 2mmxx y 22 − −++− = . Kết quả: m<−2 V m>1 49) Đònh m để hàmsố sau đạt cực đại tại x=1: y = f(x) = 3 x 3 −mx 2 +(m+3)x−5m+1. Kết quả: m = 4 50) Cho hàmsố : f(x)= 3 1 − x 3 −mx 2 +(m−2) x−1. Đònh m để hàmsố đạt cực đại tại x 2 , cực tiểu tại x 1 mà x 1 < −1 < x 2 < 1. Kết quả: m>−1 51) Chứng minh rằng : e x ≥ x+1 với ∀x∈|R. III. Gi¸ trÞ lín nh¸t vµ gi¸ trÞ nhá nhÊt cđa hµm sè 52) Tìm giá trò nhỏ nhất của hàmsố y=f(x)=x 2 −2x+3. Kq: R Min f(x) = f(1) = 2 53) Tìm giá trò lớùn nhất và nhỏ nhất của hàmsố y = f(x) = x 2 −2x+3 trên [0;3]. Kq: ]3;0[ Min f(x)=f(1)=2 và ]3;0[ Max f(x)=f(3)=6. 54) Tìm giá trò lớùn nhất của hàmsố y = f(x) = 1x 4x4x 2 − +− với x<1. Kết quả : )1;( Max −∞ f(x) = f(0) = −4 55) Muốn xây hồ nước có thể tích V = 36 m 3 , có dạng hình hộp chữ nhật (không nắp) mà các kích thước của đáy tỉ lệ 1:2. Hỏi: Các kích thước của hồ như thế nào để khi xây ít tốn vật liệu nhất? Kết quả : Các kích thước cần tìm của hồ nước là: a=3 m; b=6 m và c=2 m 56) Tìm giá trò lớn nhất của hàmsố y = 1xx x 24 2 ++ . Kết quả : R Max y = f(±1) = 3 1 57) Đònh m để hàmsố y = f(x) = x 3 −3(m+1)x 2 +3(m+1)x+1 nghòch biến trên khoảng( −1;0). Kết quả : m ≤ 3 4 − 58) Tìm trên (C): y = 2x 3x 2 − − điểm M sao cho tổng các khoảng cách từ M đến hai trục tọa độ là nhỏ nhất. Kết quả :M(0; 2 3 ) 59) Tìm giá trò nhỏ nhất và lớn nhất của hàmsố y = 3 sinx – 4 cosx. 60) Tìm GTLN: y=−x 2 +2x+3. Kết quả: R Max y=f(1)= 4 61) Tìm GTNN y = x – 5 + x 1 với x > 0. Kết quả: );0( Min ±∞ y=f(1)= −3 62) Tìm GTLN, GTNN y = x – 5 + 2 x4 − . Kết quả: 522)2(fyMax ]2;2[ −== − ; 7)2(fyMin ]2;2[ −=−= − 63) Tìm GTLN, GTNN của hàmsố y=2x 3 +3x 2 −1 trên đoạn − 1; 2 1 Kết quả: 4)1(fyMax ]1; 2 1 [ == − ; 1)0(fyMin ]1; 2 1 [ −== − 64) Tìm GTLN, GTNN của: a) y = x 4 -2x 2 +3. Kết quả: R Min y=f(±1)=2; Không có R Max y b) y = x 4 +4x 2 +5. Kết quả: R Min y=f(0)=5; Không có R Max y c) 2xcos 1xsin22 y + − = . Kết quả: R Min y= 3 7 − ; R Max y=1 d) 1xx 3x3x y 2 2 ++ ++ = . Kết quả: R Min y= 3 1 ; R Max y=3 65) Cho hàmsố 2xx 1x3 y 2 ++ + = . Chứng minh rằng : 1y 7 9 ≤≤− 66) Cho hàmsố ( ) π∈α +α− α+−α = ;0 1cosx2x cosx2cosx y 2 2 . Chứng minh rằng : −1≤ y ≤ 1 Hướng dẫn:y’=0 ⇔ 2sin 2 α . x 2 −2sin 2 α =0 ⇔ x=−1 V x=1. Tiệm cận ngang: y=1 Dựa vào bảng biến thiên kết luận −1≤ y ≤ 1. 67) Đònh x để hàmsố sau đạt giá trò nhỏ nhất và tính giá trò nhỏ nhất : y =f(x)= lg 2 x + 2xlg 1 2 + Hướng dẫn và kết quả : Txđ: (0; +∞ ) . Đặt t= lg 2 x, t≥0, ⇒ hàmsố y=g(t)=t+ 2t 1 + xác đònh trên [0; +∞), dùng đạo hàm đưa đến y’=0 ⇔ t=−3 ∉[0; +∞ ) V t=−1 ∉[0; +∞ ) ⇒ hàmsố y=g(t) đồng biến trên [0;+∞ ) ⇒ );0[ Min +∞ g(t) = g(0) = 2 1 ⇒ );0( Min +∞ f(x) = f(1) = 2 1 68) Tìm giá trò LN và giá trò NN của hàmsố y=2sinx− xsin 3 4 3 trên đoạn [0;π] (Đề thi TNTH PT 2003 − 2004) Kết quả: ];0[ Max π f(x)=f(π /4)= f(3π /4)= 3 22 ; ];0[ Min π f(x)=f(0)=f(π )=0 IV. tÝnh låi lâm vµ ®iĨm n cđa ®å thÞ hµm sè 69) Tìm các khoảng lồi, lõm và điểm uốn của đồ thò cáchàmsố : a) y = f(x) = x 4 −6x 2 +1 b) y = f(x) = x 4xx 2 +− 70) Đònh m để đồ thò (C m ):y = f(x) = x 3 −3(m−1)x 2 +m 2 x−3 nhận I(1;−1) làm điểm uốn. Kết quả: m = 2 . 71) Đònh m để đồ thò (C m ):y = f(x) = x 4 −6mx 2 + 3 a) Có hai điểm uốn. Kết quả: m > 0 b) Không có điểm uốn. Kết quả: m ≤ 0 72) Chứng minh rằng đồ thò (C): 1xx 1x2 y 2 ++ + = có 3 điểm uốn thẳng hàng. Viết phương trình đường thẳng đi qua 3 điểm uốn này. Hướng dẫn và kết quả: (C) có 3 điểm uốn A(−2;−1), B(− 2 1 ;0), C(1;1). →−→− = AC 2 1 AB ⇒ A, B, C thẳng hàng. Đường thẳng d qua A, B, C qua C(1;1) có hệ số góc 3 2 xx yy k AC AC = − − = nên có phương trình : y = k(x-x C )+y C = 3 2 (x-1)+1⇔ y= 3 2 x + 3 1 . 73) Tìm điểm uốn và xét tính lồi, lõm của (C):y = f(x) = x 2 −3x+2 Kết quả: Lõm trên các khoảng (−∞;1) và (2; +∞). Lồi trên khoảng (1;2). Điểm uốn : I 1 (1;0) và I 2 (2;0) 74) a) Chứng minh rằng nếu (C): y = f(x) = ax 3 +bx 2 +cx+d (a≠0) cắt Ox tại 3 điểm cách đều nhau thì điểm uốn của (C) nằm trên Ox. b) Tìm m để (C m ):y = x 3 −3mx 2 +2m(m−4)x+9m 2 −m cắt trục hoành tại 3 điểm cách đều nhau (có hoành độ lập thành một cấp số cộng). Hướng dẫn và kết quả: a) Cho y = 0⇔ ax 3 +bx 2 +cx+d = 0 có 3 nghiệm x 1 , x 2 , x 3 , lập thành cấp số cộng ⇒ 2x 2 = x 1 +x 3 ⇒ 3x 2 = x 1 +x 2 +x 3 = a b − ⇒ x 2 = a3 b − . Vậy điểm uốn I(x 2 ;0)∈Ox. b) Tìm I(m;m 2 −m). Điều kiện cần : I∈Ox ⇒ m 2 −m = 0 ⇒ m = 0 V m = 1. Điều kiện đủ : Chọn m = 1. 75) Tìm khoảng lồi, lõm và điểm uốn của (C) : a) y=x 3 −3x 2 +2. b) 2x 4xx y 2 + +− = . 76) Chứng minh rằng đồ thò của cáchàmsố sau có phần lồi, lõm nhưng không có điểm uốn: a) 2x 1x y − + = . b) y = x + x 1 . 77) Tìm tham số để: a) (C m ) : y=x 3 −3x 2 +3mx+3m+4 nhận I(1;2) làm điểm uốn. b) (C a,b ) : y=ax 3 +bx 2 +x+1 nhận I(1;−2) làm điểm uốn. c) Biện luận theo m số điểm uốn của (C m ) :y=x 4 +mx 2 +m−2 . 78) Tìm m để đồ thò (C m ):y = f(x) = x 3 −3x 2 −9x+m cắt Ox tại 3 điểm theo thứ tự có hoành độ lập thành cấp số cộng. Kết quả : m = 11. 79) Tìm điều kiện của a và b để đường thẳng (d): y = ax+b cắt đồ thò (C) : y=x 3 −3x 2 −9x+1 tại ba điểm phân biệt A, B, C và AB = BC. Hướng dẫn và kết quả : • Lập phương trình hoành độ giao điểm : ax+b = x 3 −3x 2 −9x+1⇔ f(x) = x 3 −3x 2 −(a+9)x+1−b = 0.(1) • Điều kiện cần: Điểm uốn của đồ thò hàmsố (1) là I(1;−a−b−10)∈Ox ⇒ −a−b−10 = 0 ⇒ a+b = −10. • Điều kiện đủ : a+b = −10 ⇒ f(x) = (x−1).g(x) = 0 với g(x) = x 2 −2x+b−1. YCBT ⇔ ≠−= >−=∆ 02b)1(g 0b2 g ⇔ b<2 Kết luận : < −=+ 2b 10ba 80) Viết phương trình đường thẳng đi qua 3 điểm uốn của đồ thò (C):y= 1x 1x 2 + + . Kq:y = 4 3 x 4 1 + 81) Tìm m để (C m ):y = x 3 −3mx 2 +2m(m−4)x+9m 2 −m có điểm uốn : a) Nằm trên đường thẳng (d) : y = x. Kết quả : m = 0 V m = 2 . b) Đối xứng với M(−3;−6) qua gốc tọa độ O. Kết quả : m= 3 . c) Đối xứng với N(5;−20) qua Ox. Kết quả : m= 5 . d) Đối xứng với P(−7;42) qua Oy. Kết quả : m= 7 . V. TiƯm cËn cđa ®å thÞ hµm sè 82)Tìm các đường tiệm cận của đồ thò cáchàmsố : a) y = 2x3x 1x2 2 2 +− − . Kết quả: x = 1; x = 2 và y = 2 b) y = 2x 1xx 2 + +− . Kết qua û: x = −2 và y = x−3 83) Tìm các đường tiệm cận ngang của đồ thò cáchàmsố : a) y = 1+ x 2 e − . Kết quả: y = 1 [...]... và đường bậc 2,m i có kh i niệm “ 2 đường tiếp xúc nhau ⇔ phương trình hoành độ giao i m ( bậc 2 ) có nghiệm kép” Trong các hàmsố khác và hàm bậc nhất ta ph i dùng hệ i u kiện tiếp xúc L i gi i 2: G i d: y=ax+b là đường thẳng cố đònh d tiếp xúc (Cm) khi và chỉ khi phương trình hoành độ giao i m có nghiệm kép v i m i m: x2+(2m+1)x+m2−1= ax+b⇔ x2+(2m+1−a) x+m2−b−1=0 có nghiệm kép v i ∀ m ⇔ ∆ =(2m+1−a)... c) Khi d cắt (P) t i hai i m phân biệt A và B Tìm tập hợp trung i m M của đoạn AB 96) Cho hàmsố y = x +1 , có đồ thi (H) x −1 a) Khảo sát và vẽ đồ thò (H) b) Cho đường thẳng d: y= −2x+m Giả sử d cắt (H) t i hai i m M và N Tìm tập hợp trung i m I của MN 97) Chứng minh rằng đồ thò (C) của hàmsố y=f(x)=x3−3x2+1 nhận i m uốn của nó làm tâm đ i xứng 98) Cho hàmsố y = x4−4x3−2x2+12x−1 a) Chứng minh... 84) Tìm các đường tiệm cận xiên của đồ thò hàmsố y = x 2 + 1 Kết quả: y = ±x b) y = 85) Tìm các tiệm cận của đồ thò các hàm số: y = 86) Cho (Cm ) : y = 3 x 2 + ( m 2 + 1) x + m 2 + m x +1 3x 2 − x 3 Kết quả : y = −x+1 a) Biện luận m số tiệm cận của đồ thò (Cm) b) Tìm m để tiệm cận xiên của đồ thò (Cm) i qua I( 1;2) 87)Tìm trên đồ thò (C):y = tiệm cận là nhỏ nhất x +2 i m M có tổng các khoảng cách... 1 x +2 VII.c¸c b i to¸n liªn quan ®Õn ®å thÞ hµm sè 90) Biện luận theo m số giao i m của 2 đồ thò: a) (C): y = 2m + 3 x 2 − 6x + 3 ≠ −2 và d: y = x−m Hd: Lý luận x= 8 −m x+2 x +1 và d: y= −2x+m Hd: x=1 không là nghiệm phương trình hoành x −1 độ giao i m 91) A.Vẽ đồ thò (C) hàmsố y = x3+3x2−2 B.Biện luận bằng đồ thò (C) số nghiệm của pt: x3+3x2−(m−2) = 0 b) (H): y = 92) Viết phương trình các đường... (C): y = x −3 có hai trục đ i xứng x +1 Hướng dẫn và kết quả: Tâm đ i xứng là I( −1;1) Suy luận có hai đường phân giác y=−x và y = x+2 của các góc tạo b i 2 tiệm cận là trục đ i xứng của (C) Chứng minh hai đường thẳng này là hai trục đ i xứng của (C) 100) Khảosát sự biến thiên và vẽ đồ thò (C): y = suy ra đồ thò của các hàm số: x −2 a) (C1): y = f1(x) = x +2 c) (C3): y = f3(x) = x −2 x +2 x −2 Từ đồ... vuông góc v i đường thẳng y= 1 x+3 và 4 tiếp xúc v i đồ thò (C) hàmsố y= −x3+3x2−4x+2 93) Viết phương trình tiếp tuyến của đồ thò (C): y=x 3+3x2+1 biết tiếp tuyến i qua gốc toạ độ O 94) Dùng đồ thò (C): y = x3−3x2+1 biện luận theo m số nghiệm của phương trình x3−3x2 − 9x+1−m = 0 95) Cho parabol (P): y=x2−2x+2 và đường thẳng d: y=2x+m a) Khảosát và vẽ đồ thò (P) b) Biện luận theo m sối m chung của... luôn tiếp xúc v i một đường thẳng cố đònh t i một i m cố đònh Hướng dẫn gi i: Tìm được (Cm) i qua hai i m cố đònh A(0;1) và B(3;−23) và tiếp tuyến của (Cm) t i A có phương trình y=x+1 là tiếp tuyến cố đònh 105) Chứng tỏ rằng (dm): y=(m+1)x+m2−m luôn tiếp xúc v i một parabol cố đònh 1 2 3 1 Hướng dẫn gi i: Dùng phương pháp 1, dự đoán (P):y= − x + x − là 4 2 4 parabol cố đònh và chứng tỏ (dm) tiếp xúc... của hàmsố có trục đ i xứng b) Tìm các giao i m của (C) v i trục Ox Hướng dẫn và kết quả: a)Dự đoán trục đ i xứng của đồ thò (C) : Tìm đến y(3) và cho y(3) = 0 , tìm được nghiệm x=1 cũng là nghiệm của y’=0 Từ đó chứng minh x=1 là trục đ i xứng của (C) b) Cho Y= 0, tìm được X= ± 4 ± 10 ⇒ y=0 và x =1 ± 4 ± 10 99) Chứng minh rằng (C): y = x −3 có hai trục đ i xứng x +1 Hướng dẫn và kết quả: Tâm đ i xứng... tổng các khoảng cách từ đó đến hai x +1 88) Lấy một i m bất kỳ M∈(C):y = f(x) = x 2 + 3x − 1 Chứng minh rằng tích các x −2 khoảng cách từ M đến 2 tiệm cận của (C) luôn không đ i Kq: d1.d2= 9 2 VI kh¶o s¸t hµm sè 89) Khảosát sự biến thiên và vẽ đồ thị các hàm số: a) y = x3-3x+1 b) y = 3x2-x3 3 c) y = x +3x−4 d) y = (1-x)3 x4 1 − x2 + 2 2 f) y = x4+x2-2 g) y=2x2−x4-1 i) y = x +1 x −1 h) y=x4-1 j) y... t2−10xt+9x2=0⇔ t=9xV t=x Thay t=y−1,suy ra hai đường thẳng d1:y=9x+1, d2:y=x+1 cố đònh tiếp xúc (Cm) 2 Chứng tỏ (Cm) tiếp xúc v i d1, và tiếp xúc d2: ( Bắt đầu l i gi i) • d1:y=9x+1 tiếp xúc (Cm) khi và chỉ khi hệ sau có nghiệm: (3m + 1)x − m 2 + m = 9x + 1 x+ m m ⇔ (3x+m) =0 ⇔ x= − 2 3 4m = 9 (x + m ) 2 2 m (m ≠ 0) 3 • Tương tự : d2:y=x+1 tiếp xúc (Cm) t ii m có hoành độ x= m (m ≠ 0) 104) Chứng . trình hoành độ giao i m ( bậc 2 ) có nghiệm kép” . Trong các hàm số khác và hàm bậc nhất ta ph i dùng hệ i u kiện tiếp xúc. L i gi i 2: G i d: y=ax+b là đường. y=2x+m. a) Khảo sát và vẽ đồ thò (P) b) Biện luận theo m số i m chung của d và (P). c) Khi d cắt (P) t i hai i m phân biệt A và B. Tìm tập hợp trung i m M