Bàiôn tập tổnghợpsố4 Cho hàm số: y = x 4 + 4ax 3 + bx 2 + a(a - 1)x + 1 - 2a Phần I: Cho a = 0, ta đợc hàm: y = x 4 + bx 2 + 1 ( ) b C Khảo sát sự biến thiên và vẽ đồthị (C) của hàm số khi b = -4 y = x 4 - 4x 2 + 1 a) TXĐ: D = R b) Chiều biến thiên: Giới hạn: x lim y = + Bảng biến thiên: y = 4x 3 - 8x y = 0 x 0 y 1 x 2 y 3 = = = = x - 2 0 2 - y - 0 + 0 - 0 + y + -3 1 -3 + Khoảng đồng biến: ( ) 2;0 ; ( ) 2;+ Khoảng nghịch biến: ( ) ; 2 ; ( ) 0; 2 Điểm cực đại: A ( ) 0;1 Điểm cực tiểu: B ( ) 2; 3 C ( ) 2; 3 Điểm uốn: y = 12x 2 - 8 y = 0 x = 2 3 y = - 11 9 Điểm uốn: 2 11 2 11 D ; E ; 3 9 3 9 ữ ữ ữ ữ Gọi (d m ) là tiếp tuyến của (C) tại M có hoành độ x M = m. chứng minh rằng hoành độ điểm chung của (C) và (d m ) phơng trình: (x - m) 2 (x 2 + 2mx + 3m 2 - 4) = 0. Tìm tất cả các giá trị m để tiếp tuyến (d m ) cắt (C) tại 2 điểm phân biệt P, Q khác M. Tìm quỹ tích trung điểm I của đoạn thẳng PQ khi m thay đổi. LG: y(m) = 4m 3 - 8m d(m): y = (4m 3 - 8m)(x - m) + m 4 - 4m 2 + 1 Xét phơng trình hoành độ giao điểm: x 4 - 4x 2 + 1 = (4m 3 - 8m)(x - m) + m 4 - 4m 2 + 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 44 2 2 3 2 2 3 x m 4 x m 4m 8m x m 0 x m x m x m 4 x m 4m 8m 0 = + + + + = ( ) ( ) ( ) ( ) 3 2 2 3 2 2 2 x m x mx m 4 x 3m 4m 0 x m x 2mx 3m 4 0 + + + = + + = c) Vẽ: x-22y11 O x y 1 2 2 2 3 2 3 2 -2 11 9 -3 Nhận xét: Đồthị nhận trục tung làm trục đối xứng (d m ) cắt (C) tại 2 điểm P, Q phân biệt M f(x) = ( ) 2 2 x 2mx 3m 4 0 1+ + = có 2 nghiệm phân biệt x m ( ) f m 0 0 > 2 2 2 m 6m 4 0 3 2m 4 0 2 m 2 + > < < (*) x P ; x Q là 2 nghiệm của phơng trình (1) Theo viét: P Q 2 P Q x x 2m x .x 3m 4 + = = I là trung điểm của phép quay tâm ( ) ( ) Q P I 3 4 2 I I x x x m 2 y 4m 8m x m m 4m 1 + = = = + + Do (*) ( ) ( ) I I 3 4 2 4 2 I I I I I I I I I 2 x 3 2 x 2 y 4x 8x x x x 4x 1 7x 12x 1 < < = + + + + = + + Vậy quỹ tích trung điểm I của đoạn thẳng PQ khi m thay đổi là đờng cong có phơng trình: y = -7x 4 + 12x 2 + 1 với hoành độ các điểm thoả mãn 2 x 3 2 x 2 < < Xác định k để đờng thẳng y = k cắt (C) tại 4 điểm phân biệt có hoành độ lập thành 1 cấp số cộng. Đờng thẳng y = k cắt (C) tại 4 điểm phân biệt lập thành cấp số cộng x 4 - 4x 2 + 1 = k có 4 nghiệm phân biệt lập thành cấp số cộng x 4 - 4x 2 + 1 - k = 0 (1) có 4 nghiệm phân biệt lập thành cấp số cộng Đặt x 2 = t: (1) t 2 - 4t + 1 - k = 0 (2) Giả sử (2) có 2 nghiệm 0 < t 1 < t 2 (1) có 4 nghiệm phân biệt: 1 t ; 2 t 4 nghiệm trên lập thành cấp số cộng t 1 = 9t 2 Vậy (1) có 4 nghiệm phân biệt lập thành cấp số cộng (2) có 2 nghiệm t 1 , t 2 thoả mãn: ( ) ( ) 1 2 1 2 t 9t 3 0 t t 4 = < < Theo viét: ( ) ( ) 1 2 1 2 t t 4 5 t .t 1 k 6 + = = Giải hệ (3) (5) (6)ta đợc 2 1 2 t 5 18 t 5 11 k 5 = = = thoả mãn (2) Kết luận: Vậy với 11 k 5 = thì đờng thẳng y = k cắt (C) tại 4 điểm phân biệt có hoành độ lập thành 1 cấp số cộng. Tìm điểm A Oy sao cho qua A có thể kẻ đợc 3 tiếp tuyến với (C). Viết phơng trình 3 tiếp tuyến đó. A Oy A(0; a). Gọi d là đờng thẳng đi qua A có hệ số góc k d: y = kx + a d là tiếp tuyến của (C) ( ) ( ) 4 2 3 x 4x 1 kx a 1 4x 8x k 2 + = + = Thay (2) và o(1) ta đợc: x 4 - 4x 2 + 1 = 4x 4 - 8x 2 + a f(x) = 3x 4 - 4x 2 + a = 0 (3 Qua A kẻ đợc 3 tiếp tuyến đến (C) hệ (1), (2) có 3 nghiệm phân biệt (3) có 3 nghiệm phân biệt (3) có nghiệm x = 0 a = 0 thay vào (3) ta đợc: 3x 4 - 4x 2 = 0 x 0 k 0 2 8 x k 3 3 = = = = m d 1 : y = 0 d 2,3 : y = 8 x 3 m phần II: Cho a = 1, ta đợc hàm: y = x 4 + 4x 3 + bx 2 - 1 ( ' b C ) Khảo sát sự biến thiên và vẽ đồthị ( ) ' 4 C của hàm số khi b = 4 ( ) ' 4 C : y = x 4 + 4x 3 + 4x 2 - 1 a) TXĐ: D = R b) Chiều biến thiên: Giới hạn: x lim y = + Bảng biến thiên: y = 4x 3 + 12x 2 + 8x = (x 2 + 3x + 2) y = 0 x 0 y 1 x 1 y 0 x 2 y 1 = = = = = = Khoảng đồng biến: (-2; -1) và (0; +) Khoảng nghịch biến: (-; -2) và (-1; 0) Điểm cực đại: A(-1; 0) Điểm cực tiểu: B(-2; -1) C(0; -1) Điểm uốn: y = 12x 2 + 24x + 8 y = 0 3 3 5 x y 3 9 3 3 5 x y 3 9 + = = = = x - -2 -1 0 + y - 0 + 0 - 0 + y + -1 0 -1 + c) Vẽ: xy x O y - -2 -1 -1 1 2 9 16 Nhận xét: Đồthị nhận đường thẳng x = -1 làm trục đối xứng Điểm uốn: 3 3 5 3 3 5 D ; E ; 3 9 3 9 + ữ ữ ữ ữ Chứng minh ( ) ' 4 C có một trục đối xứng. Suy ra giao điểm của ( ) ' 4 C và Ox. Gọi I(-1; 0) Đổi hệ trục toạ độ Oxy sang hệ trục IxY (IY // Oy) Công thức đổi trục: x X 1 y Y = = thay vào ( ) ' 4 C ta đợc: Y = (X - 1) 4 + 4(X - 1) 3 + 4(X - 1) 2 - 1 = X 4 - 8X 2 = g(X) Ta thấy: g(-X) = g(X) hàm số Y = g(X) là hàm số chẵn ( ) ' 4 C nhận đờng thẳng x = -1 làm trục đối xứng Xét phơng trình: X 4 - 8X 2 = 0 X 0 x 1 X 2 2 x 2 2 1 X 2 2 x 2 2 1 = = = = = = giao điểm của ( ) ' 4 C và Ox là: A(-1; 0) B ( ) 2 2; 2 2 1 C ( ) 2 2;2 2 1 Khảo sát sự biến thiên và vẽ đồthị ( ) ' 0 C của hàm số khi b = 0 ( ) ' 0 C : y = x 4 + 4x 3 - 1 a) TXĐ: D = R b) Chiều biến thiên: Giới hạn: x lim y = + Bảng biến thiên: y = 4x 3 + 12x 2 y = 0 x = 0 y 1 x = -3 y = -28 = x - -3 0 + y - 0 + 0 + y + -28 + Khoảng đồng biến: (-3; +) Khoảng nghịch biến: (-; -3) Điểm cực tiểu: A(-3; -28) Điểm uốn: y = 12x 2 + 24x y = 0 x 2 y 17 x 0 y 1 = = = = Chứng minh tồn tại duy nhất 1 tiếp tuyến tiếp xúc ( ) ' 0 C tại 2 điểm phân biệt. Viết phơng trình tiếp tuyến này và cho biết hoành độ tiếp điểm. Bài náy quá khó với trơng trình học phổ thông Dựa vào kết quả câu , hãy biện luận theo m số nghiệm của phơng trình: x 4 + 4x 3 - 8x + m = 0. xác định b để ( ) ' b C có một trục đối xứng. Gọi trục đối xứng của ( ) ' b C là: x = a Đổi hệ trục toạ độ Oxy sang hệ trục IxY: Ix Ox; IY // Oy c) Vẽ: x = -1 y = -1 x y -2 -1 -17 -28 -3 -4 O Công thức đổi trục: x X a y Y = + = Y = (X + a) 4 + 4(X + a) 3 + b(X + a) 2 1 = = X 4 + (a + 1)X 3 + (6a 2 + 12a + b)X 2 + (4a 3 + 12a 2 + 2ab)X + a 4 + 4a 3 + a 2 b - 1 = g(X) Do x = a là trục đối xứng Y = g(X) là hàm chẵn g(-X) = g(X) ( ) 3 2 4 a 1 0 4a 12a 2ab 0 + = + + = a 1 b 4 = = Kết luận: với b = 4thì ( ) ' b C có trục đối xứng Xác định b để hàm số có điểm cực tiểu và không có điểm cực đại. y = 3x 3 + 12x 2 + 2bx = x(3x 2 +12x + 2b) y = 12x 2 + 24x + 2b y = 0 ( ) 2 x 0 3x 12x 2b 0 1 = + + = TH1: (1) có nghiệm x = 0 b = 0 theo câu (2) đồthị có một cực tiểu TH2: (1) có nghiệm x 0 - Nếu (1) có 2 nghiệm phân biệt đồthị có ít nhất 2 cực trị (loại) - Nếu (1) có nghiệm kép hoặc vô nghiệm b 6 (*) y = 0 x = 0 Để x = 0 là hoành độ điểm cực tiểu y(0) > 0 2b > 0 b > 0 (**) Kết hợp (*) và (**) b > 0 thì hàm số có điểm cực tiểu và không có điểm cực đại. Tìm b để hàm số có 3 điểm cực trị. Viết phơng trình Parabol đi qua 3 điểm cực trị của ( ) ' b C trong trờng hợp này. Hàm số có 3 cực trị (1) có 2 nghiệm phân biệt x 0 ( ) ' 0 b 6 f ' 0 0 b 0 > < y = y 2 x 1 b bx 3 x 1 44 2 2 + + ữ ữ Gọi A(x 0 ; y 0 ) là điểm cực trị y(x 0 ) = 0 y 0 = y(x 0 ) 2 2 0 0 0 0 0 x 1 b bx b bx 3 x 1 3 x 1 44 2 2 2 2 + + = ữ ữ ữ Kết luận: phơng trình Parabol đi qua 3 điểm cực trị của ( ) ' b C là: y = 2 b bx 3 x 1 2 2 ữ Xác định b để ( ) ' b C có 2 điểm uốn. Viết phơng trình đờng thẳng đi qua 2 điểm uốn của ( ) ' b C trong trờng hợp này. y = 12x 2 + 24x + 2b ( ) ' b C có 2 điểm uốn y = 0 có 2 nghiệm phân biệt > 0 144 - 24b > 0 b < 6 y = y ( ) 2 x x 1 5b b 5b 4 8 2b x 1 4 12 6 12 6 6 6 + + + ữ ữ Gọi A(x 0 ; y 0 ) là điểm uốn y(x 0 ) = 0 y 0 = y(x 0 ) ( ) ( ) 2 0 0 0 0 x x 1 5b b 5b b 5b 4 8 2b x 1 4 8 2b x 1 4 12 6 12 6 6 6 6 6 + + + = ữ ữ ữ Vậy phơng trình đờng thẳng đi qua 2 điểm uốn của ( ) ' b C là: y = ( ) b 5b 8 2b x 1 4 6 6 ữ Xác định b để x 4 + 4x 3 + bx 2 - 1 0 với x 1 LG: x 4 + 4x 3 + bx 2 - 1 0 với x 1 bx 2 -x 4 - 4x 3 + 1 với x 1 b 4 3 2 x 4x 1 x + (1) với x 1 Xét hàm số: f(x) = 4 3 2 x 4x 1 x + f(x) = ( ) ( ) ( ) 4 3 3 2 3 3 2 x 2x 1 2 x 1 x x x 1 x x + + + + + = f(x) = 0 ( ) 3 2 x 1 0 x 1 g x x x x 1 0 + = = = + + = g(x) = 2 3x 2x 1+ g(x) = 0 x 1 1 x 3 = = x - -1 1 2 - g + 0 - 0 + g - 2 22 27 + Dựa trện bảng biến thiên đồthị y = g(x) cắt Ox tại 1 điểm g(x) = 0 có 1 nghiệm g(x) là hàm số liên tục trên R g(-2).g(-1) = -2 < 0 x 0 (-2; -1) là nghiệm của phơng trình: g(x) = 0 Với x 1 f(x) -4 (1) nghiệm đúng với x 1 b -4 Kết luận: với b -4 thì x 4 + 4x 3 + bx 2 - 1 0 với x 1 x 1 + f'(x) - f(x) -4 - Xác định b sao cho ( ) ' b C cắt Ox tại điểm có hoành độ lớn hơn 1. ( ) ' b C cắt Ox tại điểm có hoành độ lớn hơn 1 x 4 + 4x 3 + bx 2 - 1 = 0 có nghiệm x > 1 b = 4 3 2 x 4x 1 x + có nghiệm x > 1 Xét hàm số: f(x) = 4 3 2 x 4x 1 x + Dựa trên bảng biến thiên câu 9) b < -4 thì ( ) ' b C cắt Ox tại điểm có hoành độ lớn hơn 1 . y(m) = 4m 3 - 8m d(m): y = (4m 3 - 8m)(x - m) + m 4 - 4m 2 + 1 Xét phơng trình hoành độ giao điểm: x 4 - 4x 2 + 1 = (4m 3 - 8m)(x - m) + m 4 - 4m 2 +. của (C) ( ) ( ) 4 2 3 x 4x 1 kx a 1 4x 8x k 2 + = + = Thay (2) và o(1) ta đợc: x 4 - 4x 2 + 1 = 4x 4 - 8x 2 + a f(x) = 3x 4 - 4x 2 + a = 0 (3 Qua