Lớp toán 242 Độc Lập, Tân Phú Phone: 0909520755, Face: Hoàng Trọng Tấn CÔNG THỨC GIẢI NHANH BÀI TOÁN ĐƠN ĐIỆU TRÊN KHOẢNG CỦA HÀM SỐ BẬC III Bài Toán: cho hàm số y= ax3 + bx2 + cx + d tìm điều kiện a = 0, b, c, d để hàm số a > a) đồng biến R ∆ ≤ 2 Ví dụ: tìm m đểy = x3 − (m + 1)x + (2m − 3m + 2)x + 2m(2m − 1) đồng biến R a > 1 > 0, ∀m ∈ R Giải: ycbt ⇐⇒ ⇐⇒ ∆ ≤ 4((m + 1)2 − 3(2m2 − 3m + 2)) ≤ √ √ 11 + 21 11 − 21 hay m ≥ ⇐⇒ 4(−5m + 11m − 5) ≤ ⇐⇒ m ≤ 10 10 a < b) nghịch biến R ∆ ≤ Ví dụ: tìm m đểy = −x3 − (m + 1)x + (3m − 2)x + 2m(2m − 1) nghịch biến R a < −1 < 0, ∀m ∈ R Giải: ycbt ⇐⇒ ⇐⇒ ∆ ≤ 4((m + 1)2 + 3(3m − 2)) ≤ √ √ −11 − 141 −11 + 141 ⇐⇒ 4(m2 + 11m − 5) ≤ ⇐⇒ ≤m≤ 2 c) đồng biến [k; +∞) a > TH1: ∆ ≤ a > TH2: ∆>0 √ y (k) ≥ ∆ Ví dụ: tìm m để y = x3 − (m + 1)x2 − (2m2 − 3m + 2)x + 2m(2m − 1) đồng biến [2; +∞) Giải: a > 1 > 0, ∀m ∈ R TH1: ⇐⇒ ⇐⇒ m ∈ ∅ ∆ ≤ 28(m2 − m + 1) ≤ 0, m ∈ ∅ a > 1 > 0, ∀m ∈ R TH2: ⇐⇒ − m ≥ ⇐⇒ 28(m2 − m + 1) > 0, ∀m ∈ R 12 − 2(m + 1) ≥ 28(m2 − m + 1) 5 − m > 7(m2 − m + 1) ⇐⇒ (5 − m)2 ≥ 7(m2 − m + 1) ∆>0 √ y (2) ≥ ∆ Kết hợp hai trường hợp ycbt ⇐⇒ −2 ≤ m ≤ ⇐⇒ −2 ≤ m ≤ 3 d) đồng biến (−∞; k] a > TH1: ∆ ≤ GV Hoàng Trọng Tấn Lớp toán 242 Độc Lập, Tân Phú Phone: 0909520755, Face: Hoàng Trọng Tấn a > TH2: ∆ > √ −y (k) ≥ ∆ Ho àn g Tr ọn g Tấ n Ví dụ: xem đề cương tự làm e) tổng quát ( hôm sau tiếp buồn ngủ rùi, 4h sáng :( GV Hoàng Trọng Tấn ...Lớp toán 242 Độc Lập, Tân Phú Phone: 0909520755, Face: Hoàng Trọng Tấn a > TH2: ∆ > √