TRẦN SĨ TÙNG ›š & ›š BÀI TẬP ÔN THI TỐT NGHIỆP THPT & ĐẠI HỌC Năm 2010 Trần Sĩ Tùng Khảo sát hàm số CHƯƠNG I ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ I TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Đinh nghĩa: Hàm số f đồng biến K Û ("x1, x2 Ỵ K, x1 < x2 Þ f(x1) < f(x2) Hàm số f nghịch biến K Û ("x1, x2 Ỵ K, x1 < x2 Þ f(x1) > f(x2) Điều kiện cần: Giả sử f có đạo hàm khoảng I a) Nếu f đồng biến khoảng I f¢(x) ³ 0, "x Ỵ I b) Nếu f nghịch biến khoảng I f¢(x) £ 0, "x Ỵ I Điều kiện đủ: Giả sử f có đạo hàm khoảng I a) Nếu f¢ (x) ³ 0, "x Ỵ I (f¢(x) = số hữu hạn điểm) f đồng biến I b) Nếu f¢ (x) £ 0, "x Ỵ I (f¢(x) = số hữu hạn điểm) f nghịch biến I c) Nếu f¢(x) = 0, "x Ỵ I f khơng đổi I Chú ý: Nếu khoảng I thay đoạn nửa khoảng f phải liên tục VẤN ĐỀ 1: Xét chiều biến thiên hàm số Để xét chiều biến thiên hàm số y = f(x), ta thực bước sau: – Tìm tập xác định hàm số – Tính y¢ Tìm điểm mà y¢ = y¢ khơng tồn (gọi điểm tới hạn) – Lập bảng xét dấu y¢ (bảng biến thiên) Từ kết luận khoảng đồng biến, nghịch biến hàm số Bài Xét chiều biến thiên hàm số sau: x2 +x4 a) y = - x + x + b) y = d) y = x - x + x - e) y = (4 - x )( x - 1)2 f) y = x - x + x - i) y = g) y = x - 2x2 - h) y = - x - x + k) y = 2x -1 x+5 l) y = n) y = x + x + 26 x +2 o) y = - x + - x -1 2- x Trang c) y = x - x + x + x -2 10 10 m) y = 1 1- x p) y = 1- x x - 15 x + 3x Khảo sát hàm số Trần Sĩ Tùng Bài Xét chiều biến thiên hàm số sau: a) y = -6 x + x - x - d) y = 2x -1 x b) y = e) y = x2 -1 x2 - x x - 3x + h) y = x - x g) y = x - - - x ỉ p pư g(x) có hai nghiệm x1, x2 khoảng hai nghiệm g(x) khác dấu với a, ngồi khoảng hai nghiệm g(x) dấu với a · Nếu D = g(x) ln dấu với a (trừ x = - 4) So sánh nghiệm x1, x2 tam thức bậc hai g( x ) = ax + bx + c với số 0: ìD > ï · x1 < x2 < Û í P > ïỵS < ìD > ï · < x1 < x2 Û í P > ïỵS > · x1 < < x2 Û P < 5) Để hàm số y = ax + bx + cx + d có độ dài khoảng đồng biến (nghịch biến) (x1; x2) d ta thực bước sau: · Tính y¢ · Tìm điều kiện để hàm số có khoảng đồng biến nghịch biến: ìa ¹ íD > ỵ (1) · Biến đổi x1 - x2 = d thành ( x1 + x2 )2 - x1 x2 = d Trang (2) Trần Sĩ Tùng Khảo sát hàm số · Sử dụng định lí Viet đưa (2) thành phương trình theo m · Giải phương trình, so với điều kiện (1) để chọn nghiệm Bài Chứng minh hàm số sau ln đồng biến khoảng xác định (hoặc tập xác định) nó: a) y = x + x + 13 b) y = x3 - 3x + x + c) y = 2x -1 x+2 x2 + x - x - 2mx - e) y = x - sin(3 x + 1) f) y = d) y = x +1 x-m Bài Chứng minh hàm số sau ln nghịch biến khoảng xác định (hoặc tập xác định) nó: a) y = -5 x + cot( x - 1) b) y = cos x - x c) y = sin x - cos x - 2 x Bài Tìm m để hàm số sau ln đồng biến tập xác định (hoặc khoảng xác định) nó: a) y = x - 3mx + (m + 2) x - m b) y = mx + d) y = x+m Bài Tìm m để hàm số: x mx - 2x +1 x - 2mx - e) y = x-m c) y = x+m x -m x - 2mx + 3m f) y = x - 2m a) y = x + x + mx + m nghịch biến khoảng có độ dài b) y = x - mx + mx - 3m + nghịch biến khoảng có độ dài 3 c) y = - x + (m - 1) x + (m + 3) x - đồng biến khoảng có độ dài Bài Tìm m để hàm số: a) y = x3 + (m + 1) x - (m + 1) x + đồng biến khoảng (1; +¥) b) y = x - 3(2m + 1) x + (12 m + 5) x + đồng biến khoảng (2; +¥) c) y = mx + x + m2 (m ¹ ±2) đồng biến khoảng (1; +¥) d) y = x+m đồng biến khoảng (–1; +¥) x -m e) y = x - 2mx + 3m đồng biến khoảng (1; +¥) x - 2m f) y = -2 x - x + m nghịch biến khoảng 2x +1 ỉ ç - ; +¥ ÷ è ø Trang Khảo sát hàm số Trần Sĩ Tùng VẤN ĐỀ 3: Ứng dụng tính đơn điệu để chứng minh bất đẳng thức Để chứng minh bất đẳng thức ta thực bước sau: · Chuyển bất đẳng thức dạng f(x) > (hoặc b) p sin x + tan x > x , với < x < 3 p p d) sin x + tan x > x , với < x < 2 Bài Chứng minh bất đẳng thức sau: c) x < tan x, với < x < a) tan a a p < , với < a < b < tan b b b) a - sin a < b - sin b, với < a < b < p p Bài Chứng minh bất đẳng thức sau: c) a - tan a < b - tan b, với < a < b < a) sin x > 2x p , với < x < p b) x - x3 x3 x5 < sin x < x - + , với x > 6 120 p Bài Chứng minh bất đẳng thức sau: c) x sin x + cos x > 1, với < x < a) e x > + x , với x > b) ln(1 + x ) < x , với x > ( ) d) + x ln x + + x ³ + x , với x > 1+ x Bài Chứng minh bất đẳng thức sau: c) ln(1 + x ) - ln x > a) tan 550 > 1, b) < sin 20 < 20 HD: a) tan 550 = tan(450 + 10 ) Xét hàm số f ( x ) = c) log > log3 1+ x 1- x b) Xét hàm số f ( x ) = x - x ỉ 1ư f(x) đồng biến khoảng ç - ; ÷ ,sin 200 , Ỵ è 2ø 20 c) Xét hàm số f ( x ) = log x ( x + 1) với x > Trang ỉ 1ư ç- ; ÷ è 2ø Trần Sĩ Tùng Khảo sát hàm số VẤN ĐỀ 4: Chứng minh phương trình có nghiệm Để chứng minh phương trình f(x) = g(x) (*) có nghiệm nhất, ta thực bước sau: · Chọn nghiệm x0 phương trình · Xét hàm số y = f(x) (C1) y = g(x) (C2) Ta cần chứng minh hàm số đồng biến hàm số nghịch biến Khi (C1) (C2) giao điểm có hồnh độ x0 Đó nghiệm phương trình (*) Chú ý: Nếu hai hàm số hàm y = C kết luận Bài Giải phương trình sau: a) x + x-5 = b) x + x - - x + = c) x + x - + x + + x + 16 = 14 d) x + 15 = x - + x + Bài Giải phương trình sau: a) x +1 + x + + x + = b) ln( x - 4) = - x c) x + x = x Bài Giải bất phương trình sau: a) d) x + x + x = 38 x + + x - + x - + 13 x - < b) x + x + x + + x + x < 35 Bài Giải hệ phương trình sau: ì2 x + = y + y + y ï a) í2 y + = z3 + z2 + z ï2 z + = x + x + x ỵ ì x = y3 + y2 + y - ï b) í y = z3 + z2 + z - ïz = x + x + x - ỵ ì y = x - 12 x + ï c) íz = y - 12 y + ï x = z2 - 12 z + ỵ ìtan x - tan y = y - x ï 5p d) ï2 x + 3y = í ï p p ï- < x , y < ỵ 2 ìsin x - sin y = x - 3y ïï p e) í x + y = ï ïỵ x, y > ìsin x - y = sin y - x f) ïï2 x + 3y = p í ï0 < x, y < p ïỵ ìcot x - cot y = x - y ï g) í5 x + y = 2p ïỵ0 < x , y < p h) HD: a, b) Xét hàm số f (t ) = t + t + t c) Xét hàm số f (t ) = 6t - 12t + d) Xét hàm số f(t) = tant + t Trang Khảo sát hàm số Trần Sĩ Tùng II CỰC TRỊ CỦA HÀM SỐ I Khái niệm cực trị hàm số Giả sử hàm số f xác định tập D (D Ì R) x0 Ỵ D a) x0 – điểm cực đại f tồn khoảng (a; b) Ì D x0 Ỵ (a; b) cho f(x) < f(x0), với "x Ỵ (a; b) \ {x0} Khi f(x0) đgl giá trị cực đại (cực đại) f b) x0 – điểm cực tiểu f tồn khoảng (a; b) Ì D x0 Ỵ (a; b) cho f(x) > f(x0), với "x Ỵ (a; b) \ {x0} Khi f(x0) đgl giá trị cực tiểu (cực tiểu) f c) Nếu x0 điểm cực trị f điểm (x0; f(x0)) đgl điểm cực trị đồ thị hàm số f II Điều kiện cần để hàm số có cực trị Nếu hàm số f có đạo hàm x0 đạt cực trị điểm f¢ (x0) = Chú ý: Hàm số f đạt cực trị điểm mà đạo hàm khơng có đạo hàm III Điểu kiện đủ để hàm số có cực trị Định lí 1: Giả sử hàm số f liên tục khoảng (a; b) chứa điểm x0 có đạo hàm (a; b)\{x0} a) Nếu f¢ (x) đổi dấu từ âm sang dương x qua x0 f đạt cực tiểu x0 b) Nếu f¢ (x) đổi dấu từ dương sang âm x qua x0 f đạt cực đại x0 Định lí 2: Giả sử hàm số f có đạo hàm khoảng (a; b) chứa điểm x0, f¢ (x0) = có đạo hàm cấp hai khác điểm x0 a) Nếu f¢¢ (x0) < f đạt cực đại x0 b) Nếu f¢¢ (x0) > f đạt cực tiểu x0 VẤN ĐỀ 1: Tìm cực trị hàm số Qui tắc 1: Dùng định lí · Tìm f¢ (x) · Tìm điểm xi (i = 1, 2, …) mà đạo hàm khơng có đạo hàm · Xét dấu f¢ (x) Nếu f¢ (x) đổi dấu x qua xi hàm số đạt cực trị xi Qui tắc 2: Dùng định lí · Tính f¢ (x) · Giải phương trình f¢ (x) = tìm nghiệm xi (i = 1, 2, …) · Tính f¢¢ (x) f¢¢ (xi) (i = 1, 2, …) Nếu f¢¢ (xi) < hàm số đạt cực đại xi Nếu f¢¢ (xi) > hàm số đạt cực tiểu xi Trang