Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 59 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
59
Dung lượng
0,94 MB
Nội dung
Đề 1 Bài 1 : Cho hàm số: y = x( 3 – x ) 2 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số 2. Tính diện tích hình phẳng giới hạn bởi ( C ) và trục hoành. 3. Một đường thẳng ( D ) đi qua gốc toạ độ O(0,0) có hệ số góc m. Với giá trị nào của m thì ( D ) cắt ( C ) tại 3 điểm phân biệt tại O, A, B. Tìm quỹ tích trung điểm của đoạn AB khi m thay đổi. Bài 2 : Tính các tích phân : 1. ∫ + = 4 0 cossin cos π dx xx x I 2. dx x x J ∫ = 4 1 2 ln Bài 3 : Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng d và mặt phẳng )( α lần lượt có phương trình : =− =−+ 032 03 : zy zx d và ( ) 03: =−++ zyx α 1. Viết phương trình mặt phẳng )( β chứa đường thẳng d và đi qua điểm A(1,0,-2). 2. Viết phương trình hình chiếu vuông góc của đường thẳng d trên mặt phẳng )( α . Bài 4 : Trên hệ trục toạ độ Oxy, cho Parabol (P) có phương trình : y 2 = 4x. 1. Viết phương trình tiếp tuyến )( ∆ của (P)tại điểm M(1,-2) 2. Tính thể tích vật thể tròn xoay sinh bởi (P), )( ∆ và Ox khi nó quay quanh trục Ox. Bài 5: 1. Tìm hệ số của x 9 y 3 trong khai triển (2x+3y) 12 2. Nhân ngày sinh nhật, bạn Lan được tặng 11 bông hoa khác nhau, trong đó có 2 bông hoa hồng: Một màu đỏ, một màu hồng nhung. Bạn Lan muốn chọn 5 bông hoa để cắm vào bình, trong đó bạn Lan chỉ muốn cắm vào bình nhiều nhất là 1 bông hoa Hồng ( có thể không có bông hoa hồng nào). Hỏi bạn Lan có bao nhiêu các chọn để cắm hoa. Đề 2 Bài 1: 1. Khảo sát và vẽ đồ thị của hàm số 1 1 1 2 1 − +−= x xy (C ) 2. Dựa vào đồ thị ( C ), hãy biện luận số nghiệm của phương trình m x x = − +− 1 1 1 2 1 , tuỳ theo tham số m. 3. Tinh diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và 2 đường thẳng x=2 và x=4. Bài 2: 1. Cho hàm số x x xf 2 cos 2 1 )( − = . Hãy tính đạo hàm f’(x) và giải phương trình f(x) - ( x – 1 ) f’(x) = 0. 2. Có 5 tem thư khác nhau và 6 bì thư cũng khác nhau. Người ta muốn chọn từ đó ra 3 tem thư, 3 bì thư và dán 3 tem thư ấy lên 3 bì thư đã chọn, mỗi bì thư chỉ dán một tem thư. Hỏi có bao nhiêu cách làm như vậy. Bài 3: Trong mặt phẳng với hệ toạ độ Oxy, Cho Hyperbol (H) có phương trình 4x 2 – 9y 2 = 36 1. Xác định toạ độ các đỉnh, toạ độ các tiêu điểm và tâm sai của Hyperbol (H). 2. Viết phương trình chính tắc của Elip (E) đi qua điểm )3, 2 37 (M và có chung các tiêu điểm với (H) đã cho. Bài 4 : Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) và mặt cầu (S) có phương trình tương ứng (P): 2x-3y+4z-5=0, (S): x 2 +y 2 +z 2 +3x+4y-5z+6=0. 1. Xác định toạ độ tâm I và bán kính R của mặt cầu (S). 2. Tính khoảng cách từ tâm I đến mặt phẳng (P). Từ đó suy ra rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn (C). Xác định bán kính r và toạ độ tâm H của đường tròn (C). Đề 3 Bài 1: Cho hàm số y= x 3 -3x 2 +m (1) ( m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m=2. 2. Tìm m để đồ thị hàm số (1) có 2 điểm phân biệt đối xứng với nhau qua gốc toạ độ. Bài 2: 1. Tìm giá trị lớn nhất và nhỏ nhất của hàm số : xxxf sin4cos2)( += trên đoạn 2 ,0 π 2. Tính các tích phân : a. ∫ = 2 6 32 cossin π π xdxxI b. ( ) ∫ += 1 0 22 1 dxexJ x c. ( ) dxxxxK ∫ += 1 0 2 1ln Bài 3: 1. Viết khai triển của 5 1 + x x 2. Tìm số nguyên dương n, thoả điều kiện: 4 2 5 .18 − = nn AA (là số chỉnh hợp chập k của n phần tử) Bài 4 : Trong không gian toạ độ Oxyz, cho 2 đường thẳng d và d’ lần lượt có các phương trình sau: =−++ =+− 03 02 : zyx zyx d , 11 1 2 1 :' − = + = − zyx d và mặt cầu (S) có phương trình : x 2 +y 2 +z 2 -2x-4y+2z-6=0. 1. Chứng minh d và d’ chéo nhau. 2. Viết phương trình mặt phẳng qua điểm M(1,2,3) và vuông góc với đường thẳng d. 3. Tính khoảng cách từ điểm M(1,2,3) đến đường thẳng d’. 4. Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm N(-1,0,1). Đề 4 Bài 1: Cho hàm số y=x 4 -4x 3 +4x 2 1. Khảo sát hàm số và vẽ đồ thị (C ) của hàm số đó. 2. Xác định tham số m, sao cho phương trình (ẩn x) sau có 4 nghiệm phân biệt x 4 - 4x 3 +4x 2 =m 2 -2m. 3. Tính thể tích của vật thể tròn xoay do hình phẳng giới hạn bởi ( C) y=0,x=0, x=1 quay một vòng quanh trục Ox Bài 2: 1. Tìm giá trị lớn nhất và nhỏ nhất của hàm số : 2 4 xxy −+= 2. Tính các tích phân : ∫ + − = 4 0 2 2sin1 sin21 π dx x x I Bài 3: 1. Lập phương trình mặt cầu có tâm I(2,3,-1) cắt đường thẳng =−+− =++− 0843 020345 :)( zyx zyx d tại 2 điểm A, B sao cho AB=16. 2. Hãy tìm góc tạo bởi đường thẳng =−+ =+−+ 0273 0724 : zyx zyx D với mặt phẳng (P): 3x+y-z+1=0 Bài 4 : Cho Parabol (P): Y 2 =2x và đường thẳng d: 2x-y-2=0. 1. Tìm toạ độ giao điểm của (P) và d. 2. Lập phương trình các tiếp tuyến của (P) tại các giao điểm đó. Đề 5 Bài 1: Cho hàm số mx mxmx y + ++−+ = 1)1(2 2 1. Khảo sát và vẽ đồ thi khi m = 1. 2. Tìm m để hàm số đồng biến trong ),2( +∞ 3. Tìm m để đồ thị hàm số trên không tồn tại tiệm cận đứng. Bài 2 : 1. Tính các tích phân: a. ∫ = 2 0 4 2cos π xdxI b. ∫ + = 1 0 3 )12( dx x x J 2. Trong hệ trục toạ độ Oxyz, cho 2 đường thẳng 1 9 2 3 1 7 : 1 − − = − = − zyx d , 3 1 2 1 7 3 : 2 − − = − = − − zyx d . Hãy lập phương trình đường thẳng vuông góc chung của d 1 và d 2 . Bài 3 : 1. Hội đồng quản trị của một xí nghiệp có 11 người, gồm 7 nam và 4 nữ. Hỏi có bao nhiêu cách lập ban thường trực (gồm 3 người), biết rằng trong đó phải có ít nhất một người là nam. 2. Tính diện tích hình phẳng giới hạn bởi các đường y 2 = 2x + 1 và y = x – 1. Bài 4 : Trong mặt phẳng với hệ toạ độ Oxy, cho Hypebol (H) đi qua điểm ) 4 9 ,5(M và nhận điểm F 1 (5,0) làm tiêu điểm của nó. 1. Viết phương trình chính tắc của Hypebol (H). 2. Viết phương trình tiếp tuyến của (H) biết rằng tiếp tuyến đó song song với đường thẳng (d): 5x + 4y – 1 =0. Đề 6 Bài 1: Cho hàm số 1 2 − = x x y ( C) 1. Khảo sát sự biến thiên và vẽ đồ thị ( C) của hàm số 2. Biện luận theo m số giao điểm của ( C) với đường thẳng (D) có phương trình 3x+y-m=0. 3. Trong trường hợp (D) cắt (C ) tại 2 diểm M và N. Tìm quỹ tich trung điểm I của đoạn MN. Bài 2: Cho Parabol (P) có tiêu điểm ) 4 3 ,2( − F và đường chuẩn D có phương trình : 4 5 − = y 1. Lập phương trình của Parabol (P). 2. Tính diện tích hình phẳng giới hạn bởi (P) và trục Ox. 3. Viết phương trình tiếp tuyến của Parabol (P) song song với trục Ox. Bài 3: 1. Tính các nguyên hàm sau: a. ∫ dxxe x 2 b. xdxtg ∫ 2 c. Cho P(x) = asin2x – bcos2x. Tìm a, b biết rằng 2) 2 (' −= π P và ∫ = b b adx 2 1 2. Khoa ngoại của một bệnh viện có 40 bác sĩ. Hỏi có bao nhiêu cách lập một kíp mổ: a. Nếu mỗi kíp mổ có 1 người mổ và 1 phụ mổ. b. Nếu mỗi kíp mổ có 1 người mổ và 4 phụ mổ. Bài 4: 1. Hãy viết phương trình của đường thẳng đi qua điểm M(0,1,1) vuông góc với đường thẳng 11 2 3 1 zyx = + = − và cắt đường thẳng =+ =+−+ 01 02 x zyx 2. Tìm thể tích của vật thể tròn xoay, sinh ra bởi hình phẳng giới hạn bởi y=-x 2 +5x và y=0 quay quanh trục Ox. Đề 7 Bài 1: Cho hàm số 2)12( 3 1 23 +−−+−= mxmmxxy 1. Tìm các điểm cố định mà họ (C m ) luôn đi qua. 2. Xác định m để hàm số có 2 cực trị có hoành độ dương. 3. Khảo sát vẽ đồ thị hàm số khi m = 2. Viết phương trình tiếp tuyến của (C 2 ) đi qua điểm ) 3 4 ; 9 4 (M . 4. Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi (C 2 ), y = 0, x=0, x=1 quay quanh trục Ox. Bài 2: 1. Tính các tích phân sau: a. dx x x I ∫ − = 1 2 2 2 2 1 b. dx x x J ∫ + = 7 0 3 1 2. Tìm : a. Tìm sao Nn ∈ cho 3 4 nn AP = b. Chứng minh : k p p n kp kn k n CCCC = − − với ≤≤ ∈ npk Nnpk ,, Bài 3: Cho Parabol (P): y=6x 2 . 1. Tìm tiêu điểm F và đường chuẩn của Parabol. 2. Gọi G là điểm đối xứng với F qua gốc toạ độ. Viết phương trình tiếp tuyến của Parabol phát xuất từ G và tìm góc tạo bởi hai tiếp tuyến ấy. Bài 4: Trong không gian Oxyz cho 2 đường thẳng chéo nhau +−= −= += ∆ tz ty tx 1 2 21 1 , =+−+ =−+− ∆ 0223 012 2 zyx zyx 1. Lập phương trình đường vuông góc chung của )( 1 ∆ , )( 2 ∆ 2. Tìm toạ độ đường vuông góc chung ấy. Đề 8 Bài 1: Cho hàm số 4 3 −+ − = mx mx y (H m ) 1. Định m để hàm số nghịch biến trên từng khoảng xác định. 2. Khảo sát và vẽ đồ thị (H) với m nguyên vừa tìm được 3. Tìm những điểm trên (H) mà tại đó tiếp tuyến của (H) lập với Ox một góc dương 135 0 . Viết phương trình tiếp tuyến đó. Bài 2: 1. Lập phương trình mặt phẳng tiếp xúc với mặt cầu : x 2 +y 2 +z 2 -10x+2y+26z-113=0 và song song với 2 đường thẳng 2 13 3 1 2 5 : 1 + = − − = + zyx d , 0 8 2 1 3 7 : 2 − = − + = + zyx d 2. Tính các tích phân: a. ∫ − = 2 0 2 dxexI x b. ∫ −= 1 0 2 1 dxxxJ Bài 3: 1. Giải phương trình: n nn AA 2 2 50.2 =+ , ≥ ∈ 2n Nn 2. Tính thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường y = x.e x , x=0,x=1 quay quanh trục Ox. Bài 4: 1. Cho 2 đường thẳng D 1 và D 2 lần lượt có phương trình tham số −= −= ty tx D 3 2 1 , += += 3'6 1'3 2 ty tx D .Tìm toạ độ giao điểm của D 1 và D 2 . Tính cosin góc nhọn tạo bởi D 1 và D 2 . 2. Một cô gái có 8 áo sơ mi và 6 quần tây. a. Hỏi cô có bao nhiêu cách chọn một bộ quần áo để mặc. b. Cô gái có 3 đôi dép. Hỏi cô gái có thể “diện” bằng bao nhiêu cách thông qua cách chọn áo quần để mặc và dép để mang. Đề 9 Bài 1: Cho hàm số xmxxy 32 3 1 23 +−= , (C m ), (m là tham số) 1. Định m để 3 4 ,1A là điểm cực đại của (C m ) 2. Khảo sát và vẽ đồ thị (C ) của hàm số ứng với m vừa tìm được ở câu trên. 3. Từ gốc toạ độ có thể kẻ đến (C) bao nhiêu tiếp tuyến , chỉ ra các phương trình tiếp tuyến và toạ độ tiếp điểm. 4. Tính diện tích hình phẳng giới hạn bởi (C) và một tiếp tuyến nằm ngang của (C) Bài 2: 1. Viết phương trình của đường thẳng qua điểm P(0,1) cắt 2 đường thẳng x-3y+10=0 và 2x+y-8=0 một đoạn thẳng nhận P làm trung điểm. 2. Lập phương trình đường thẳng đi qua điểm I(-2,3) và cách đều 2 điểm A(5,-1) và B(3,7). Bài 3: 1. Giải phương trình : 5 5 3 720 −+ = nnn PAP 2. Ông X có 11 người bạn. Ông ta muốn mời 5 người trong số họ đi chơi xa. Trong 11 người đó có 2 người không muốn gặp nhau. Hỏi ông X có thể có bao nhiêu cách mời. Bài 4: 1. Tính các tích phân sau: a. ∫ ++ = 2 0 cossin1 π xx dx I b. ∫ −+ = 16 0 9 xx dx J 2. Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng )( ∆ , )'( ∆ lần lượt có phương trình = +−= += ∆ 4 21 3 z ty tx , =+−+ =+− ∆ 04 03 ' zyx zyx a. Chứng minh rằng: )( ∆ , )'( ∆ chéo nhau. b. Tính khoảng cách giữa )( ∆ , )'( ∆ c. Viết phương trình đường vuông góc chung giữa )( ∆ , )'( ∆ Đề 10 Bài 1: 1. Khảo sát hàm số 1 1 2 − −+ = x xx y , (C ) 2. Tính diện tích hình phẳng giới hạn bởi (C), đường tiệm cận xiên của (C) và 2 đường thẳng x=2,x=3. 3. Biện luận số nghiệm của phương trình lượng giác: << =−−+ π 20 0cos)1(sin 2 t mtmx 4. Tìm quỹ tích những điểm trên trục tung mà từ đó ta vẽ được ít nhất một tiếp tuyến của (C). 5. Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi (C), y=0,x=2,x=3 quay một vòng quanh trục Ox. Bài 2: 1. Cho Hypebol (H): 1 610 22 =− yx a. Viết phương trình Elip (E) đi qua điểm ) 5 6 ,5( có chung các tiêu điểm với Hypebol (H). b. Viêt phương trình các tiếp tuyến của (E) song song với đường thẳng (d) 1 610 =− yx . Tìm trên (E) tiêu điểm M có khoảng cách ngắn nhất đến (d). 2. Tìm số hạng chứa a 8 trong khai triển nhị thức 12 1 + a a . Bài 3: 1. Tính các tích phân sau: [...]... Tính đạo hàm của F ( x) = ∫ cos 3 x 2 2 0 Bài 3 : Trong mặt phẳng Oxy cho họ đường tròn ( Cm ) có phương trình x2+y2-(m-2)x+2my-1=0 1 Chứng minh rằng họ đường tròn ( Cm ) đi qua hai điểm cố định khi m thay đổi 2 Cho m = -2 và điểm A(0,-1) Viết phương trình các tiếp tuyến của ( C-2 ) kẻ từ A Bài 4 :Trong không gian Oxyz cho mặt phẳng (α) : x-y=0 và đường thẳng x− z = 0 (d ) y + z − 1= 0 1 Tìm toạ... 1: Cho hàm số y = x 2 − m( m 2 − 1) x + 1 − m 4 có đồ thị (Cm), m: là tham số x+m m 1 Chứng tỏ rằng với ∀ hàm số luôn luôn có một cực đại và một cực tiểu Tìm tập hợp các điểm cực tiểu của (Cm) khi m thay đổi 2 Chứng tỏ rằng hai tiệm cận của (Cm) là tâm đối xứng của (Cm) 3 Cho m = 1 a Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số b Lập phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến . tại 3 điểm phân biệt tại O, A, B. Tìm quỹ tích trung điểm của đoạn AB khi m thay đổi. Bài 2 : Tính các tích phân : 1. ∫ + = 4 0 cossin cos π dx xx x I 2.