Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 137 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
137
Dung lượng
7,46 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI VŨ THỊ ÁNH TUYẾT NGHIÊNCỨUTỔNGHỢPVÀKHẢOSÁTHOẠTTÍNHSINHHỌCMỘTSỐDẪNXUẤTCHỨADỊVÒNG BENZO[d]THIAZOLE Chuyên ngành: Hóa hữu Mã số: 60.44.01.14 LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC Người hướng dẫn khoa học: TS Dương Quốc Hoàn HÀ NỘI – 2017 LỜI CẢM ƠN Lời em xin bày tỏ kính trọng biết ơn sâu sắc tới TS Dương Quốc Hoàn, người thầy dành nhiều tâm huyết, tận tình hướng dẫn giúp đỡ em suốt trình nghiêncứu hoàn thiện đề tài Em xin chân thành cảm ơn Phòng sau đại học, thầy cô giáo Khoa Hóa học, môn Hóa hữu cơ, trường Đại học sư phạm Hà Nội tạo điều kiện, giúp đỡ em thực đề tài Trong suốt trình học tập thực đề tài, em nhận giúp đỡ, động viên, khích lệ từ gia đình, bạn bè Đó động lực vô quý báu giúp em vượt qua khó khăn trình thực đề tài Em vô cảm ơn tình cảm giúp đỡ người dành cho em Xin chân thành cảm ơn! Hà Nội, ngày tháng năm 2017 Học viên Vũ Thị Ánh Tuyết i LỜI CAM ĐOAN Tôi xin cam đoan luận văn kết nghiêncứu cá nhân Các số liệu tài liệu trích dẫn luận văn trung thực Kết nghiêncứu không trùng với công trình công bố trước Tôi chịu trách nhiệm với lời cam đoan Hà Nội, tháng năm 2017 Tác giả Vũ Thị Ánh Tuyết ii MỤC LỤC MỞ ĐẦU 1 Lí chọn đề tài Mục đích nghiêncứu Đối tượng nghiêncứu Phương pháp tiến hành nghiêncứu CHƯƠNG I TỔNG QUAN 1.1 Cấu tạo tính chất dịvòng benzo[d]thiazole benzo[d]oxazole 1.1.1 Cấu tạo 1.1.2 Tính chất 1.2 Phương pháp tổnghợp 1.3 Hoạttínhsinhhọcdịvòng benzo[d]thiazole benzo[d]oxazole 1.3.1 Hoạttínhsinhhọcdịvòng benzo[d]thiazole 1.3.2 Hoạttínhsinhhọcdịvòng benzo[d]oxazole CHƯƠNG II THỰC NGHIỆM 16 2.1 Hóa chất, thiết bị sơ đồ tổnghợp 16 2.1.1 Hóa chất thiết bị sử dụng để tổnghợp 16 2.1.2 đ tổnghợp chất 16 2.2 Tổnghợp 17 2.2.1 Tổnghợp chất chìa khóa T1d 17 2.2.2 Tổnghợpdẫnxuất từ nhóm hiđroxi T1d 18 2.2.3 Tổnghợphợp chất vòng từ hai nhóm hiđroxi amin T1d 20 2.3 Nghiêncứu cấu trúc 24 2.3.1 Phổ h ng ngoại 24 2.3.2 Phổ cộng hưởng từ hạt nhân 24 2.3.3 Phổ khối lượng 24 2.4 Hoạttínhsinhhọc 25 CHƯƠNG III KẾT QUẢ VÀ THẢO LUẬN 27 3.1 Tổnghợp 27 iii 3.2 Cấu trúc 33 3.2.1 Xác định cấu trúc phổ IR 33 3.2.2 Xác định cấu trúc phổ cộng hưởng từ proton 33 3.2.3 Xác định cấu trúc phổ khối lượng M 78 3.3 Thử hoạttính kháng khuẩn 80 3.4 Xử lý số liệu công bố tạp chí chuyên ngành 80 KẾT LUẬN 81 TÀI LIỆU THAM KHẢO 82 PHỤ LỤC 89 iv DANH MỤC CHỮ VIẾT TẮT Viết tắt Viết đầy đủ 13 Phổ cộng hưởng từ cacbon 13 C NMR H NMR HMBC Phổ cộng hưởng từ proton Heteronuclear Multiple Bond Coherence (phổ chiều tương tác gián tiếp C-H) HSQC Heteronuclear Single Quantum Correlation (phổ chiều tương tác trực tiếp C-H) IR Phổ hồng ngoại MS Phổ khối lượng NMR Phổ cộng hưởng từ hạt nhân q Quartet s Singlet t Triplet m Multiplet d Doublet DMF N,N-dimetylformamide NEt3 Trimethylamine v DANH MỤC CÁC BẢNG Bảng 3.1 Trạng thái, màu sắc, dung môi kết tinh hiệu suất phản ứng 31 Bảng 3.2 T1d (cm-1) 33 Bảng 3.3 Số liệu phổ cộng hưởng proton, cacbon chất T5a 35 Bảng 3.4 Số liệu phân tích phổ proton, cacbon, HMBC T4b 39 Bảng 3.5 Số liệu phổ cộng hưởng từ proton cacbon chất T4c 41 Bảng 3.6 Số liệu cộng hưởng từ proton, cacbon HMBC T5c 45 Bảng 3.7 Số liệu cộng hưởng từ proton, cacbon, HSQC HMBC T6a 49 Bảng 3.8 Độ chuyển dịch proton dãy T6a –T6o 51 Bảng 3.9 Độ chuyển dịch cacbon dãy T6a – T6o 52 Bảng 3.10 Số liệu cộng hưởng từ proton, cacbon, HSQC HMBC T6b 56 Bảng 3.11 Số liệu cộng hưởng từ proton, cacbon, HSQC HMBC T6c 60 Bảng 3.12 Số liệu cộng hưởng từ proton, cacbon HMBC T6e 63 Bảng 3.13 Số liệu cộng hưởng từ proton, cacbon HMBC T6f 66 Bảng 3.14 Số liệu cộng hưởng từ proton, cacbon HMBC T6l 70 Bảng 3.15 Số liệu cộng hưởng từ proton, cacbon HMBC T6m 73 Bảng 3.16 Số liệu cộng hưởng từ proton, cacbon HMBC 6o 77 Bảng 3.17 Dữ liệu phổ MS T5a, T4b, T6b 79 vi DANH MỤC SƠ ĐỒ Sơ đồ 2.1 Tổnghợp chất chìa khóa T1d 16 Sơ đồ 2.2 Tổnghợpdẫnxuất từ nhóm hiđroxi T1d 16 Sơ đồ 2.3 Tổnghợp chất vòng từ hai nhóm hiđroxi amin T1d 17 Sơ đồ 3.1 Cơ chế đóng vòng benzo[d]thiazole 27 Sơ đồ 3.2 Cơ chế phản ứng axetyl hóa 28 Sơ đồ 3.3 Cơ chế phản ứng nguyên tử H nhóm OH 29 Sơ đồ 3.4 Cơ chế đóng vòng oxazin 29 vii DANH MỤC HÌNH Hình 3.1 Phổ IR chất 1d 33 Hình 3.2 Phổ cộng hưởng từ proton chất T5a 34 Hình 3.3 Phổ cộng hưởng từ cacbon chất T5a 35 Hình 3.4 Phổ cộng hưởng từ proton chất T4b 36 Hình 3.5 Phổ cộng hưởng từ cacbon T4b 37 Hình 3.6 Một phần phổ HMBC T4b 38 Hình 3.7 Phổ cộng hưởng từ proton chất T4c 40 Hình 3.8 Phổ cộng hưởng từ cacbon 4c 41 Hình 3.9 Phổ cộng hưởng từ proton chất T5c 42 Hình 3.10 Phổ cộng hưởng từ cacbon chất T5c 43 Hình 3.11 Một phần phổ HMBC T5c 44 Hình 3.12 Phổ cộng hưởng từ proton chất T6a 46 Hình 3.13 Phổ cộng hưởng từ cacbon T6a 47 Hình 3.14 Một phần phổ HSQC T6a 48 Hình 3.15 Một phần phổ HMBC chất T6a .48 Hình 3.16 Phổ cộng hưởng từ proton chất T6b 53 Hình 3.17 Phổ cộng hưởng từ cacbon T6b 53 Hình 3.18 Một phần phổ HSQC T6b 54 Hình 3.19 Một phần phổ HMBC chất T6b .55 Hình 3.20 Phổ cộng hưởng từ proton chất 6c 57 Hình 3.21 Phổ cộng hưởng từ cacbon 6c 58 Hình 3.22 Một phần phổ hai chiều HSQC T6c 59 Hình 3.23 Một phần phổ HMBC chất T6c .59 Hình 3.24 Phổ cộng hưởng từ proton chất T6e 61 Hình 3.25 Phổ cộng hưởng từ cacbon T6e 62 Hình 3.26 Một phần phổ HMBC T6e 63 Hình 3.27 Phổ cộng hưởng từ proton chất T6f 65 Hình 3.28 Phổ cộng hưởng từ cacbon chất T6f 65 viii Hình 3.29 Một phần phổ hai chiều HMBC T6f .66 Hình 3.30 Phổ cộng hưởng từ proton chất T6l 68 Hình 3.31 Phổ cộng hưởng từ cacbon chất T6l 69 Hình 3.32 Một phần phổ HMBC T6l 69 Hình 3.33 Phổ cộng hưởng từ proton chất T6m 71 Hình 3.34 Phổ cộng hưởng từ cacbon chất T6m .72 Hình 3.35 Một phần phổ HMBC T6m 73 Hình 3.36 Phổ cộng hưởng từ proton chất T6o 75 Hình 3.37 Phổ cộng hưởng từ cacbon chất T6o 76 Hình 3.38 Một phần phổ hai chiều HMBC T6o 77 Hình 3.39 Phổ +MS –MS T5a, T4b, T6b .80 ix Hình PL 42: Phổ HMBC chất T6o Hình PL 43 Thử hoạttínhsinhhọc T1d, T4b, T6l PREPARATION OF SOME NEW BENZO[d]THIAZOLE DERIVATIVES TỔNGHỢPMỘTSỐDẪNXUẤT MỚI CỦA DỊVÒNG BENZO[d]THIAZOLE Duong Quoc Hoan1, Vu Thi Anh Tuyet2, Le Thanh Duong1, Nguyen Hien1 Department of chemistry, Hanoi National University of Education 136 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam Department of science, Lang Son College of Education, 09 Deo Giang, Chi Lang Ward, Lang Son City, Viet Nam Received February 2017; Accepted for Publication……… 2017 Abstract In this work, four new benzo[d]thiazole derivatives were synthesized successfully from vanillin Nitration of vanillin gave nitrovanillin followed by cyclization reaction with o-aminothiophenol under microwave irradiation in minutes to obtain nitroaromatic compound The reduction to convert the nitro group to amino group was optimized It was found that Fe/ HCl in ethanol was the best condition for this case about both yield (95%) and simple procedure to give compound as a salt Acetylation occurring at both phenolic hydroxyl group and amino group of the salt formed N,O-acetyl compound Under mild hydrolysis produce N-acetyl compound The structures of these compounds were established by IR, 1H and 13C NMR and mass spectral analyzes Keyword: benzo[d]thiazole, vanillin, reduction, microwave INTRODUCTION metal containing benzo[d]thiazole with Benzo[d]thiazole was first synthesized various substituent Rs exhibited the in 1880 by Hofmann A W from formic lipophilicities in range logPC18 = 1-4, acid [1]: their binding affinities (Ki = 30 – 617 of nM) to A1-40 fibrils Nitroaromatic benzo[d]thiazole derivatives has been compounds play an essential role not studied recently and in the past two only in organic synthesis but also in decades they have been extensively human life For instance, they are studied for their anticancer activity pesticides, bacterial degradation…[8] [2,3,4] For example, 2-(4-aminophenyl) Therefore, benzothiazoles (A), an amino aromatic benzo[d]thiazole derivatives E were compound, and their corresponding N- designed by retaining structure of acetylated derivatives (B) have showed vanillin surprisingly anticancer benzo[d]thiazole ring synthesized from activity against certain cancer cell lines vanillin, Figure To take advantages of particularly against breast, colon and amino, ovarian cell lines in vitro anticancer compounds, R1 is either a NO2 group, screening [5,6] Surprisingly, compound an amino group or an acetamido groups C R2 is an acetyl group or a hydrogen and however, o-aminothiphenol the exhibited application remarkable remarkably potent anticancer activity [7] In 2013, J Pan et in and this connecting amide and work, with a nitroaromatic atom as vanillin moiety al showed that complexes D of Re OMe OMe S S NH2 N NHCOCH3 N B A OMe F S OMe N C R OMe S Re complex S OR2 N E R1 Benzo[d]thiazole- Aromatic ring making the core structure N D Figure Examples of benzo[d]thiazole derivatives and Design target compounds E acetic acid (50 mL) over a period of 30 EXPERIMENTAL The gold colored precipitate that formed was filtered, washed with water, and allowed to dry (5.21 g, 80%): mp 2.1 General 171 °C Solvents and other chemicals were purchased from Sigma-Aldrich, Merck 2.2.2 Synthesis of 4-(benzo[d]thiazol-2- were used as received, unless indicated yl)-2-methoxy-6-nitrophenol (3) The 1H NMR and 4-Hydroxy-3-methoxy-5- 13 C NMR spectra were recorded on the Bruker Avance nitrobenzaldehyde (2, 0.55 g, 3.3 mmol) 500 NMR spectrometer in deuterated and 2-aminothiophenol (0.35 mL, 3.3 solvents such as, CDCl3, DMSO or D2O mmol) were mixed well in an 100 mL Chemical-shift data for each signal was beaker The resulting mixture was reported in ppm units IR spectra were irradiated with a domestic microwave recorded 4020 oven for minutes at 400 W level The GALAXY Series FT-IR Mass spectra mixture was stood for cooling down at were obtained from Mass Spectrometry room temperature and solidifying The Facility of The Vietnam Academy of by re-crystallization from hot ethyl Science and Technology on LC-MSD- acetate / n-hexane (1:1) yielded the title Trap-SL spectrometer compound as a pale pink solid (0.98 g, on the Mattson 98%, 302.3 g/mol), mp 163 °C IR (cm-1): 3435 (br), 3100, 2914, 2852, 2.2 Synthetic procedure 1613, 1545, 1430, 1263, 1143, 1021 1H 4-hydroxy-3- NMR (DMSO-d6, 500 MHz) (ppm): methoxy-5-nitrobenzaldehyde (2)[9, 10] 8.14 (d, J = 8.0 Hz, 1H), 8.08 (s, 1H), Concentrated HNO3 (2 mL) was 8.06 (d, J = 8.0, 1H), 7.83 (s, 1H), 7.55 carefully added to a cooled (5 °C) (t, J = 7.5, 1H), 7.46 (t, J = 7.5, 1H), solution of vanillin (5 g, 33 mmol) and 4.02 (s, 3H); 13C NMR (DMSO-d6, 125 2.2.1 Synthesis of MHz) (ppm): 165.44, 153.34, 150.12, δ 145.08, 137.30, 134.50, 126.78, 125.60, 142.87, 137.30, 132.08, 126.78, 125.58, 123.26, 122.76, 122.35, 115.38, 113.01, 121.45, 119.88, 117.45, 114.05, 108.90, 56.87; ESI-MS m/z: 273 [C14H11NO3S]+ 55.86 ESI-MS m/z: 273 [C14H13N2O2S]+ and 271 [C14H9NO3S]- and 271 [C14H11N2O2S]- 2.2.3 Synthesis of 2-amino-4- (ppm): 2.2.4 167.31, Synthesis of 149.09, 147.60, 2-acetamido-4- (benzo[d]thiazol-2-yl)-6-methoxyphenol (benzo[d]thiazol-2-yl)-6-methoxyphenyl hydrochloride (4) acetate (5) Iron powder (8 g, 0.14 mol) was added To portion wise with stirring to a hot (benzo[d]thiazol-2-yl)-6-methoxyphenol mixture of 4-(benzo[d]thiazol-2-yl)-2- hydrochloride (4) (0.3 g, mmol) and methoxy-6-nitrophenol (3) (6.4 g, 20 triethyl amine (0.42 mL, mmol) were mmole) and added acetic anhydride (0.3 mL, 2.5 concentrated hydrochloric acid (30 ml) mmol) in DMF (5 mL) The resulting at reflux temperature After completion solution was stirred at room temperature of the addition, the refluxing was for h The solvent was evaporated in continued for hours Upon cooling a vacuum Water was added to obtain yellow precipitate formed, which was solid Re-crystallization in ethanol 96% filtered off, washed with ethanol, dried gave 2-acetamido-4-(benzo[d]thiazol-2- to yield the title product as a yellow yl)-6-methoxyphenyl acetate (5) as a powder (5.6 g, 95%, 308.8 g/mol) mp: white crystal in 80% (285 mg, 356.4 decomposed at 280 °C IR (cm-1): 3100, g/mol) IR (cm-1): 3347, 3169, 2923, 2954, 2797, 3100-2500 (br), 1540, 1401, 2837, 1735, 1692, 1605, 1543, 1217, in ethanol (20 ml) a solution of 2-amino-4- H NMR (D2O, 500 MHz) δ 1103 1H NMR (DMSO-d6, 500 MHz) δ (ppm): 7.31 (d, J = 8.0 Hz, 1H), 7.15 (s, (ppm): 9.58 (s, H), 8.43 (s, 1H), 8.15 1H), 7.94 (d, J = 5.0 Hz, 1H), 6.80 (d, J (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, = 6.5 Hz, 1H), 6.56 (s, 1H), 6.40 (s, 1H), 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.52 (s, 3.46 (s, 3H); 13C NMR (D2O, 125 MHz) 1H), 7.47 (t, J = 7.5 Hz, 1H), 3.90 (s, 1170 13 3H), 2.33 (s, 3H), 2.14 (s, 2H) C- dissolved completely, then acidified NMR (DMSO-d6, 125 MHz) δ (ppm): with (1:1) HCl up to pH = The 169.11, 167.89, 166.72, 153.45, 151.71, precipitate was collected as a white 134.56, 132.69, 131.5, 130.42, 126.70, crystal (0.3 g, 95%), mp: 172 °C IR 125.58, 122.88, 122.36, 113.89, 105.51, (cm-1): 3325 (br), 3080, 2928, 2817, 56.29, 23.85, 20.79 ESI-MS m/z: 357 2797, 1690, 1542, 1401, 1179; 1H-NMR [C18H17N2O4S]+ and 355 [C18H15N2O4S]- (CDCl3, 500 MHz) δ (ppm): 8.33 (s, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.79 (br, 1H), 7.53 (d, J = 2.2.5 Synthesis of N-(5- 1.5 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), (benzo[d]thiazol-2-yl)-2-hydroxy-3- 7.34 (s, 1H), 3.96 (s, 3H), 2.26 (s, 3H); methoxyphenyl)acetamide (6) 13 To 2-acetamido-4- (ppm):169.18, 168.14, 154.02, 147.62, (benzo[d]thiazol-2-yl)-6-methoxyphenyl 138.06, 135.08, 132.50, 126.21, 125.72, acetate (5) (0.356 g, mmol) in 124.91, 122.78, 121.59, 113.80, 105.60, MeOH/H2O (1:2), (5 mL) was added 56.44, LiOH (60 mg, 2.5 mmol) The mixture [C16H15N2O3S]+, 313 [C16H13N2O3S]- was a solution refluxed of until all solid C-NMR (CDCl3, 24.50; 125 ESI-MS δ MHz) m/z: 315 was RESULTS AND DISCUSSION 3.1 Synthesis The series of benzo[d]thiazole benzo[d]thiazole cyclization was derivatives was driven as shown in the furnished in minutes when the Scheme First, nitration of vanillin nitrobenzaldehyde was treated with o- was carried out in 80% yield to obtain aminothiophenol to yield nitroaromatic nitrobenzaldehyde compound in 98% yield Then, the HS H3CO CHO HNO3 HOAc H3CO NO2 2, 80% Fe/HCl S EtOH 6h N OCH3 S DCM 1h N NH2•HCl OH NO2 3, 95-98% OCH3 OAc H3C 4, 90-100% OCH3 N Microwave 3-4 solvent free Ac2O, Et3N OH S H2N HO 1h HO CHO 5, 80% NH LiOH S H2O MeOH 30 m N OCH3 OH O H3C 6, 95% NH O Scheme Synthesis of the target compounds Reduction of nitro group to amino was and oxidized by oxygen in the air, optimized classic Scheme Nevertheless, there was a methods, Table All entries were question: why was amine 3’ oxidized carried out up to 20 hours and easily? monitored layer contains donating electron groups – chromatography (TLC) In the first OCH3, -O-, -NH2 and benzo[d]thiazole entry, Na2S2O4 / NaOH reagents were ring [12] that raises the electron density used [11] Unfortunately, as soon as the on the benzene ring, consequently, it is reagents added, the reaction solution oxidized quickly called the aniline turned black due to in the basic black by using with some thin Because the benzene ring condition, free aniline 3’ was formed OCH3 S OH N Na2S2O4 S NaOH N OCH3 O2 ONa NO2 (air) 3' black solution NH2 Scheme Aniline black observation This result helps us think about the in ethanol It found that, ethanol was acidic conditions [13] and save the better solvent than water since ethanol amine as a salt form Hence, the entries could dissolve substrates well but could 2-7 either not dissolve salt form In comparison concentrated HCl or NH4Cl in water and of Zn with Fe, both gave good yields, were treated with but it was difficult to separate the [14] did not work in this case because unreacted Zn out of the mixture, but iron the acidity of ammonium chloride is could be attached to the stirring bar so weaker than the salt form and the free the unreacted iron was removed just by amine washing the stirring bar simply Finally, immediately resulting black solution as the salt was easily filtered and dried observation All entries taken place in for water were slowly or no reaction due to next step purification without Surprisingly, further Fe/NH4Cl was formed then oxidized small solubility of substrates in water Table Reduction optimization results Entry Reagent Na2S2O4 Solvent / H2 O Time (h) Observation Yield (%) 0.5, reflux Black NaOH Zn/ HCl solution H2 O 14, reflux Yellow 75 solution Zn/ HCl C2H5OH 7, reflux Yellow solid 95 (impure) Fe/NH4Cl H2 O 18, 50 °C Black solution Fe/NH4Cl C2H5OH 20, 50 °C Black solution Fe/con HCl H2 O 12, reflux Yellow 70 solution Fe/con HCl C2H5OH 7, reflux Yellow solid 95 (pure) As there was an amine salt in hand, It was hydrolyzed in methanol and LiOH was treated with acetic anhydride to giving N-acetyl amide in 95 % yield form N,O-diacetyl compound in 80 % yield Then N,O-diacetyl compound 3.2 Structure determination Nitrovanillin was checked melting protons of aromatic rings and protons point, it matched with the previous of methoxy group: however, both 1H report [9, 10] Because compounds 3, 4, NMR of the nitroaromatic compound and are new, so they were recorded and the salt did not show a proton of IR, MS and NMR spectra to determine OH group since it appeared in the block their structures Spectroscopic analyses of solvent peaks were analyzed carefully [15] First, IR compound showed 14 peaks for 14 spectrum of nitro compound did not carbon atoms Meanwhile, 1H NMR and show the vibration of carbonyl group of 13 vanillin that indicated cyclization of showed two signals at δ2.33 ppm (s, 3H) benzo[d]thiazole was occurred IR of and 2.14 ppm (s, 3H) and peaks in the compound showed broad band of N-H weak field at 169.11 ppm and 167.98 bond in range 3100-2500 cm-1 that was ppm assigned for two carbonyl groups for N-H vibration in the ammonium-like of acetyl amide and acetyl ester Other form IR spectrum of compound two peaks at δ23.85 ppm and δ20.79 showed two signals of carbonyl groups ppm belonged to two methyl groups of at 1735 and 1692 cm-1, that indicated these acetyl groups After hydrolysis of two acetyl groups must be in the N,O-diacetyl compound to obtain N- structure of N,O-diacetyl compound acetyl compound 6, 1H NMR and IR spectrum of N-acetyl amide NMR of N-acetyl compound showed showed a band at 1690 cm-1 and only a peak at δ2.25 ppm for methyl of vibration of N-H amide at 3325 cm-1 and the acetyl amide associated with the overlapped with vibration of O-H bond peak at δ25.50 ppm on the spectrum H NMR spectrum of nitroaromatic compound and salt showed 13 C NMR spectrum of C NMR of N,O-diacetyl compound 13 13 C C NMR HMBC spectrum distinguished all For example, C7 had HMBC cross-peaks with H9 and H13 but C15 did not In addition, C15 had a HMBC cross-peak with H15, on the other hand, C7 hadn’t got further peaks The most difficult assignment was identification of C13/C19 and H13/H9 Fortunately, it was easily to find H14 that had a HMBC cross-peak with H9 Therefore, H13 and Figure A part of HMBC spectrum In order to assign each carbon and and hydrogen in the target product 6, HSQC and HMBC spectra were studied carefully First, HSQC spectrum indicated cross-peaks of carbons bearing protons However, there were still some pairs of carbons or protons that was difficult to indentify such as C7/C15; C3/C4; C1/C6; C9/C13; C10/C12; H4/H3; H9/H13; H2/H5 and NH/OH, C13 were identified Other assignments were shown in the Figure Compound 3, 4, and were recorded mass spectroscopy MS spectrum of compound indicated the first fragment was NO [M-30+H] at m/z 273 au, [M30-H] at m/z 271 au that matched with calculated MS spectrum of compound 4, and also confirmed the expected structure as shown in the experimental section CONCLUSION Four new benzo[d]thiazole derivatives (3, 4, and 6) were successfully synthesized in high yield Fe powder and concentrated HCl in ethanol was the best condition for converting nitro group to amine group in our case All reactions worked under simple conditions and gave excellent yields Structures of compound nitroaromatic 3, salt 4, N,O-diacetyl and N-acetyl were confirmed with IR, NMR and MS analyses Acknowledgements (HNUE) This research is supported by Hanoi SPHN16-20 TT National University of under the project code Education REFERENCES naphthoquinone derivatives, Arch Pharmacol Res., 27, 893 (2004) [1] Hofmann, A W., Uebereine Reihe [4] aromatischer, und Hayashi, N.; Agatsuma, T.; Oda, Y.; Basen, Tanzawa, F.; Iwasaki, S.; Koyama, K.; Sulfocyanaten den Senfölen isomerer Yoshida, M.; Hayakawa, I.; Chemische Berichte, 13, 8-22 (1880) Furukawa, H.; Kurakata, S., Synthesis [2] Caleta, I.; Kralj, M.; Branimir and Bertosa, B.; Sanja Tomic, S.; Pavlovic, benzothiazole G.;Pavelic, K.; Karminski-Zamola, G., antitumor agents, Bioorg Med Chem Novel Lett., 15, 3328 (2005) Cyano- Amidinobenzothiazole and Derivatives: biological evaluation derivatives as of potent [5] Bradshaw, T D.; Stevens, M F G.; Synthesis, Antitumor Evaluation, and X- Westwell, A D ray and Quantitative Structure, Activity Potent and Selective Antitumour Agent Relationship (QSAR) Analysis, J Med 2-(4-Amino-3-methylphenyl) Chem., 52, 1744 (2009) benzothiazole (DF 203) and Related [3] Chung, Y.; Shin, Y.-K.; Zhan, C.- Compounds, Curr Med Chem., 8, 203 G.; Lee, S.; Cho, H., Synthesis and (2001) evaluation of antitumor activity of 2- [6] and Browne, H L.; Trapani, V.; Bradshaw, 6-[(1,3-benzothiazol-2- yl)aminomethyl]-5,8-dimethoxy-1,4- Hutchinson, The Discovery of the I.; Chua, M.-S.; T D.; Westwell, A D.; Stevens, M F G., Antitumor Benzothiazoles: Synthesis [10] Karl B and Eng W T., Synthesis and in Vitro Biological Properties of and Fluorinated nitrocatechol inhibitors of pig liver 2-(4- evaluation of bifunctional Aminophenyl)benzothiazoles, J Med catechol-O-methyltransferase, Chem., 44, 1446 (2001) Med Chem., 13, 5740–5749 (2005) [7] Mortimer, C G.; Wells, G.; [11] Hoang Thi Tuyet Lan, Nguyen Crochard, J.-P.; Stone, E L.; Bradshaw, Hien, Nguyen Huu Dinh, Synthesis and T D.; Stevens, M F G.; Westwell, A structures of some azomethins from 2- D., Antitumor Benzothiazoles: 2-(3,4- methoxy-4-(3-methylfuroxan-4-yl)-5- Dimethoxyphenyl)-5- nitrophenoxy fluorobenzothiazole (GW 610, NSC Journal of Chemistry, 51(6 ABC), 141- 721648), a Simple Fluorinated 2- 145 (2013) Arylbenzothiazole, Shows Potent and [12] Zahradník, P., Quantum-chemical Selective Inhibitory Activity against study Lung, Colon, and Breast Cancer Cell transmission of substituent effect in Lines, J Med Chem., 49, 179 (2006) benzothiazole [8] Kou-San Ju and Rebecca E Parales, Papers, 44 (2), 145-150 (1990) Nitroaromatic from [13] Furniss, B S; Hannaford A J.; Synthesis to Biodegradation, Microbiol Smith, P W G.; Tatchell, A R., Mol Biol Rev., 74(2), 250 (2010) Vogel’s textbook of practical organic [9] chemistry, 5th ed., Pearson education Thorata, Compounds, B R., Mustapha of acetic acid, electronic Bioorg Vietnam structure derivatives, and Chem Mandewalea, Sharda Shelke, Prasad limited (1989) Kamat, R G Atrama, Mahesh Bhalerao [14] Sahoo, S., S.; Shukla, S.; Nandy, and R Yamgara, Synthesis of novel S.; Sahoo, H., B., Synthesis of novel Schiff bases of 4-hydroxy-3-methoxy-5- coumarin derivatives and its biological nitrobenzaldehyde and Development of evaluations, European HPLC Chromatographic Method for Experimental Biology, their analysis, J Chem Pharm Res., (2012) 4(1),14-17 (2012) Journal 2, of 899-908 [15] Silverstein, R M.; Webster, F X.; Kiemle, D J., Spectrometric identification of organic compounds, John Wiley Sons, Inc (2005) Contact: Duong Quoc Hoan Department of Chemistry, Hanoi National University of Education, Hanoi, Vietnam 136 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam Tel: 0986-778-213 Email: hoandq@hnue.edu.vn ... nghiên cứu - Nghiên cứu tổng hợp khảo sát hoạt tính sinh học số dẫn xuất chứa dị vòng benzo[d]thiazole, dẫn xuất chứa hai dị vòng benzo[d]thiazole benzo[d]oxazole - Nghiên cứu tổng hợp khảo sát. .. hợp với dị vòng benzo[d]oxazole nghiên cứu nhằm góp phần phong phú vào nghiên cứu dị vòng thiazole nên định chọn đề tài: Nghiên cứu tổng hợp khảo sát hoạt tính sinh học số dẫn xuất chứa dị vòng. .. đây, hóa học hợp chất dị vòng phát triển mạnh mẽ Số lượng hợp chất dị vòng tổng hợp ngày nhiều, đặc tính tính chất chúng nghiên cứu ngày đầy đủ hệ thống Nhiều đặc tính quý báu hợp chất dị vòng khám