1. Trang chủ
  2. » Giáo án - Bài giảng

Đề cương ôn tập học kỳ 2 môn toán 12 phan đình lộc

26 345 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 582,62 KB

Nội dung

Trường THPT Đăk Glong Năm học: 2016 – 2017 ĐỀ CƯƠNG ÔN TẬP HỌC KỲ - KHỐI 12 NĂM HỌC: 2016 – 2017 I NGUYÊN HÀM - TÍCH PHÂN - ỨNG DỤNG Câu Nguyên hàm hàm số f ( x ) = x − A x4 − 3ln x + x.ln + C Câu  B + x là: x x3 + + 2x + C x C x4 2x + + +C x ln D x + + x.ln + C x  ∫  sin x + − x dx = ? 1 ln − x + C 1 D − cos5 x − ln − x + C B − cos5 x + A 5cos5 x − 7ln − x + C C −5cos5 x + 7ln − x + C Câu Nguyên hàm hàm số f ( x ) = sin x cos3 x là: A −  cos8 x + cos x  + C 2  B  cos8 x + cos x  + C 2  C cos8 x + cos x + C D Câu Cho I = ∫ dx ex + A I = ∫ dt t −7 , đặt = t ( cos8 x + cos x ) + C e x + Mê ̣nh đề nào sau đúng? 2t D I = ∫ dt t −7 2t C I = ∫ dt t −7 B I = ∫ dt t (t − ) Câu Diện tích hình phẳng giới hạn đồ thị hàm số ( C ) : y = cos x đường Ox, Oy, x = π là: A S = π B S = C S = 2π D S = x x x x sin dx = a sin − bx cos + C đó a, b là hai số nguyên a + b = ∫ 3 A −12 B C 12 D x + 3x + 3x − F = Câu Biết F ( x) nguyên hàm hàm số f ( x) = F ( x ) là: ( ) x2 + x + x2 x2 A B −x+ − −x+ x +1 x + 13 2 x 13 x 13 C D +x+ + +x+ − x +1 x +1 Câu Biết Câu Nguyên hàm hàm số: y = cos2x.sinx là: A cos3 x + C B − cos3 x + C A C - cos3 x + C Câu Tích phân = I ∫ ( x − 1) ln xdx = GV: Phan Đình Lộc -1- D sin x + C Trường THPT Đăk Glong A = I 2ln − Năm học: 2016 – 2017 B I = C I 2ln + = Câu 10 Nguyên hàm F(x) hàm số f(x) = x tan² x là: A F(x) = x tan x – x – ln |sin x| + C C F(x) = x tan x – x²/2 + ln |cos x| + C D I = 2ln B F(x) = x tan x – x²/2 – ln |cos x| + C D F(x) = x tan x – x + ln |sin x| + C π Câu 11 Cho tı́ch phân I = x ∫0 cos2 x dx Mê ̣nh đề nào sau đúng? π π π π A I x tan x − ∫ tan xdx = B I x tan x + ∫ tan xdx = 3 0 π π π π C I x cot x 03 − ∫ cot xdx = ∫ D I = − x cot x 03 + cot xdx 0 x − 3x + Câu 12 Biế t ∫ = dx a ln − b, đó a, b là các số hữu tı̉ a + b = 2x + A B C D 2 Câu 13 Biế t 2ln a − b, ∫ (2 x − 1)ln xdx = đó a, b là các số hữu tı̉ a + b = B 3,5 A ∫3 Câu 14 Biế t I = −1 C 1,5 D x−3 dx =−8 + 6ln a, đó a là các số nguyên Mê ̣nh đề đúng là: x +1 + x + A a > 10 B D a < C 2a − = 2a + = π  sin  x −  4−a b 4  Câu 15 Cho tı́ch phân ∫ đó a, b là các số nguyên tố dx = sin x + 2(1 + sin x + cos x ) π Giá tri ̣biể u thức a + b = A 13 B 36 2 C 16 D 81 Câu 16 Diện tích S của hình phẳng tơ đậm hình bên tính theo cơng thức sau đây? ∫ A S = − f ( x)dx + C S = ∫ f ( x)dx ∫ B S = − f ( x)dx + ∫ f ( x)dx 4 ∫ f ( x)dx − ∫ f (x)dx D S = ∫ f ( x)dx Câu 17 Diện tích S của hình phẳng giới hạn giới hạn đồ thị hàm số y = − x + x − , hai tru ̣c to ̣a đô ̣ và đường thẳ ng x = là: A S = GV: Phan Đình Lộc B S = C S = -2- D S = Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 18 Go ̣i S là diện tích hình phẳng giới hạn các đường:= y x sin x= , y 0,= x 0,= x π Khẳ ng đinh ̣ nào sau sai? A sin S =1 B cos S = S D sin S = =1 4 − x và tru ̣c Ox Thể tích khối C tan Câu 19 Cho hình phẳng ( H ) giới hạn đường cong = y tròn xoay tạo thành cho ( H ) quay quanh trục Ox là: A 16π B 32π C 32π D 32π Câu 20 Một Bác thợ gốm làm lọ có dạng khối trịn xoay tạo thành quay hình phẳng giới hạn đường = y x + trục Ox quay quanh trục Ox Biết đáy lọ miệng lọ có đường kính 2dm 4dm Thể tích lo ̣ là: A 8π dm B Câu 21 Cho hàm số y = tô đen là: A 4ln 14 π dm3 C 15 dm x +3 có đồ thị (C) hình vẽ Diện tích vùng x −1 B + 4ln C 2ln D + 2ln Câu 22 Cho hàm số y = 3x – x³ có đồ thị (C) Diện tích hình phẳng giới hạn đồ thị (C) trục hoành là: A 9/4 B 9/2 C D Câu 23 Nguyên hàm F(x) hàm số f(x) = x.sin2x là: A F(x) = (2x sin 2x – cos 2x)/4 + C C F(x) = (2x cos 2x – sin 2x)/4 + C B F(x) = (2x sin 2x + cos 2x)/4 + C D F(x) = (sin 2x – 2x cos 2x)/4 + C Câu 24 Nguyên hàm F(x) hàm số f(x) = 2sin3x.sin5x là: 1 B F(x) = (4tan 2x + tan 8x) + C A F(x) = (4tan 2x – tan 8x) + C 8 1 C F(x) = (4sin 2x – sin 8x) + C D F(x) = (4sin 2x + sin 8x) + C 8 Câu 25 Nguyên hàm F(x) hàm số f(x) = 4cos5x.cos3x F(π/4) = là: 1 A F(x) = sin 2x + sin 8x + B F(x) = sin 2x + sin 8x + 4 C F(x) = 4sin 2x + sin 8x D F(x) = 4sin 2x + sin 8x e2 Câu 26 Tích phân I = A 2e + x +5 dx bằng: x B 2e + ∫ C 4e + D 4e + Câu 27 Tích phân I = ∫ (2x + − 4x − 4x + 1)dx bằng: A I = B I = 17/2 C I = 15/2 D I = 13/2 Câu 28 Số thực m > cho I = ∫ dx = Khi m = (2x + 1) 16 A m = 3/2 B m = C m = D m = 1/2 m + ln x Câu 29 Số thực m > cho I = ∫ dx = 12 Khi m = x A m = e B m = e² C m = e³ D m = 2e GV: Phan Đình Lộc -3m D 15 π dm3 Trường THPT Đăk Glong ln Câu 30 Cho I = ∫e x ln A Năm học: 2016 – 2017 dx = aln3 + bln2; a, b số hữu tỉ Giá trị a + b là: + 2e − x − B C –1 D x −1 dx = a + blnc; a, b, c số hữu tỉ Giá trị abc là: x −1 A abc = 12 B abc = –15 C abc = 15 D abc = –12 ae + b Câu 32 Cho tích phân I = ∫ xe3x dx = với a, b, c số nguyên dương Giá trị c/(a + b) là: c A B C D 9/2 Câu 31 Cho tích phân I = ∫ 1+ Câu 33 Cho I = ∫ mx ln(1 + x )dx = ln (4/e) Khi m = A m = B m = 1/2 C m = D m = 3/2 π/2 Câu 34 Cho I = ∫ mx cos 2xdx = – m Khi m = A m = B m = C m = dx Câu 35 Tìm số thực m > –1 cho I = ∫ = π/6 x + 2x + −1 D m = m A m = – m Câu 36 Cho I = ∫ B m = – C m = D m = C m = ±2 D m = ±1 m − x dx = π Đáp án m là: A m = B m = Câu 37 Diện tích hình phẳng giới hạn y = ex + 1, trục hoành, x = x = là: A e + B e² – e C e – D e Câu 38 Cho diện tích hình phẳng giới hạn y = 3x² – 6x, trục Ox, x = m x = S = 20 Giá trị m là: A m = –1 B m = C m = D m = Câu 39 Gọi V thể tích khối trịn xoay tạo nên quay miền D quanh trục Ox biết miền D giới hạn đường: y = m − x ; y = 0; x = 0; x = Số thực m > cho V = 66π là: A m = B m = C m = D m = Câu 40 Thể tích khối trịn xoay tạo nên quay miền D quanh trục Ox biết miền D giới hạn đường y = – x²; y = x² + là: A V = 12π B V = 16π C V = 8π D V = 6π cos x Câu 41 Nguyên hàm hàm số: y = là: sin x.cos x A tanx - cotx + C B - tanx - cotx + C C tanx + cotx + C D cotx −tanx + C −x   e Câu 42 Nguyên hàm hàm số: y = e x  +  là: cos x   1 A 2e x − tan x + C B 2e x − C 2e x + D 2e x + tan x + C +C +C cos x cos x π Câu 43 I = ∫ tan xdx = GV: Phan Đình Lộc -4- Trường THPT Đăk Glong A I = C I = − B ln2 Câu 44 I = ∫ dx = x + 4x + 3 B I = ln Câu 45 I = ∫ π A I = ln Năm học: 2016 – 2017 π D I = 3 C I = − ln 2 D I = ln 2 dx = x − 5x + B I = ln A I = C I = ln2 D I = −ln2 C J =2 D J = 1 xdx = ( x + 1) Câu 46 J = ∫ A J = B J = Câu 47 K = ∫ x dx = x −1 A K = ln2 B K = 2ln2 C K = ln D K = ln 3 dx = x − 2x + A K = B K = C K = 1/3 D K = 1/2 Câu 49 Hình phẳng giới hạn đồ thị hàm số y = , Ox, đường thẳng x = 1, x = có diện tích là: A 24(đvdt) B 25(đvdt) C 26(đvdt) D 27(đvdt) Câu 50 Hình phẳng giới hạn đồ thị hai hàm số y = , y = 4x – có diện tích là: Câu 48 K = ∫ (đvdt) A B (đvdt) C (đvdt) D (đvdt) π Câu 51 L = ∫ e x cos xdx = A = L eπ + B L = −e π − 2x − Câu 52 E = ∫ 2x + 2x − + A E = + ln + ln C = L D L = − (e π + 1) π (e − 1) dx = B E = − ln + ln 3 D E = − ln + ln C E = + ln15 + ln Câu 53 Tích phân ∫ x − d x với tích phân sau đây? A ∫ ( x − 1) d x GV: Phan Đình Lộc 3 B − ∫ ( x − 1) d x C ∫ ( x + 1) d x -5- D − ∫ ( x + 1) d x Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 54 Tích phân ∫ x − d x với tích phân sau đây? A ∫ ( x − 1) d x+ ∫ ( x − 1) d x B ∫ ( x − 1) d x-∫ ( x − 1) d x C − ∫ ( x − 1) d x+ ∫ ( x − 1) d x D ∫ ( x − 1) d x x 0,= x Diện tích Câu 55 Hình phẳng (H) giới hạn đường y= x − , trục hoành hai đường= hình phẳng (H) tính là: A.= S ∫ ( x − )dx B = S ∫ 1 x − dx C.= S ∫ ( x − ) dx D = S π ∫ ( x − ) dx 0 y x3 − x đường Ox,= x 1,= x là: Câu 56 Diện tích hình phẳng giới hạn đồ thị hàm số ( C ) : = A S = 153 B S = 40 D S = C S = 44 Câu 57 Diện tích hình phẳng giới hạn đồ thị hàm số ( C ) : y = ln x đường Ox, Oy, y = là: A S = e − B S = e − C S = D S = e Câu 58 Diện tích hình phẳng giới hạn đồ thị hàm số ( C ) : y = x đường thẳng y= x + là: A S = 13 B S = C S = D S = 31 y x − x trục Ox là: Câu 59 Diện tích hình phẳng giới hạn đồ thị hàm số ( C ) : = A S = 64 15 B S = 128 15 C S = 128 D S = 1792 15 y x3 + x đường Ox, x = −1 là: Câu 60 Diện tích hình phẳng giới hạn đồ thị hàm số ( C ) : = A S = B S = 24 C S = 57 D S = 96 II SỐ PHỨC Câu Số phức z thỏa z² = –5 + 12i là: A z = ± 3i C z = – 2i z = –3 + 2i B z = ± 2i D z = + 3i z = –2 – 3i 7−i − 2) là: + 3i A B C –2 D –2 Câu Số phức z thỏa mãn |z – 2i + 2| = |z – + i| z số ảo Khi z là: A z = i B z = –i C z = 2i D z = –2i Câu Giải phương trình tập số phức: z² – 6z + 25 = có nghiệm là: A z = ± 4i B z = ± 3i C z = ± 8i D ± 6i Câu Giải phương trình tập số phức: z + = có nghiệm là: A z = ± i z = –2 ± i B z = ± 2i z = –1 ± 2i C z = ± i z = –1 ± i D z = ± 2i z = –2 ± 2i Câu Giải phương trình tập số phức: z² + 2(1 + i)z = –2i có nghiệm là: A z = –1 + i B z = –1 – i C z = –1 ± i D z = ± i Câu Phần thực phần ảo số phức z = ( GV: Phan Đình Lộc -6- Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu Tập hợp điểm M mặt phẳng phức biểu diễn số phức z thỏa mãn < |z – i|² < hình phẳng có diện tích là: A 5π B 4π C 3π D π Câu Tập hợp điểm M mặt phẳng phức biểu diễn số phức z thỏa mãn |z + i| = |z – – i| là: A Một đường trịn có bán kính B Một đường trịn có bán kính C Một đường thẳng qua M(1; 0) D Một đường thẳng qua N(1; 2) Câu Số phức z thỏa mãn: z.z + 3(z − z) = 13 + 18i là: A ± 2i B ±2 – 3i C ± 3i D ±2 + 3i 1− i Câu 10 Cho số phức z = |4z2017 + 3i| = 1+ i A B C D Câu 11 Tìm số phức z, biết |z|² = 20 phần ảo z gấp lần phần thực A z = + 2i B z = + 4i C z = ± (2 + 4i) D z = ± (4 + 2i) Câu 12 Cho số phức z thỏa mañ (1 + i ) z =− i Trên mặt phẳng toạ độ, điểm điểm biểu diễn số phức z A M (1;2 ) B N ( −1;2 ) C P (1; −2 ) D Q ( −1; −2 ) Câu 13 Cho số phức z = + 3i Khi đó: z 1 1 C = D = − i + i − i z 2 2 z 4 1 Câu 14 Tìm số phức z biết rằng: = − z − 2i (1 + 2i ) 10 14 14 14 10 35 A = B = C = D = z + i z − i z + i z + i 25 25 25 25 13 26 13 25 Câu 15 Tính mơ đun số phức z thoả mãn z (2 − i ) + 13i = A = + i 4 A z = 34 z B = B z = 34 C z = 34 D z = 34 Câu 16 Phần ảo số phức z biết 2i + + iz = (3i − 1) là: A B −9 C D −8 Câu 17 Điểm M hình vẽ bên điểm biểu diễn số phức z Tìm phần y thực phần ảo số phức z A Phần thực −4 phần ảo B Phần thực phần ảo −4i O C Phần thực phần ảo −4 D Phần thực −4 phần ảo 3i -4 x M Câu 18 Cho số phức z thỏa mãn ( + i ) z + (1 + 2i ) z =3 − 4i Môđun số phức z là: D 17 26 Câu 19 Cho số phức z = a + bi (a, b ∈ R) thoả mãn (1 + i ) z + z =3 + 2i P = a + b = 1 A P = B P = C P = −1 D P = − 2 Câu 20 Trong mặt phẳng tọa độ Oxy , Tập hợp điểm biểu diễn số phức z thỏa z − ( − 4i ) = là: A 29 GV: Phan Đình Lộc B C -7- Trường THPT Đăk Glong A Đường tròn tâm I(3; 4), bán kính C Đường trịn tâm I(3;- 4), bán kính Năm học: 2016 – 2017 B Đường trịn tâm I(3; 4), bán kính D Đường trịn tâm I(-3;- 4),bán kính Câu 21 Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn số phức z thỏa zi − ( + i ) = là: A ( x − 1) + ( y + ) = B ( x − 1) + ( y − ) = C ( x + 1) + ( y − ) = D ( x + 1) + ( y + ) = A z = ±i −5 C z = ±i 2 2 2 2 Câu 22 Trong tâ ̣p số phức, kı́ hiê ̣u z là bâ ̣c hai của sớ −5 Khi z = B z = ±5i D z =± −5 Câu 23 Kı́ hiê ̣u z1 z2 các nghiê ̣m phức của phương trı̀nh z + z + = Tổ ng A = z1 + z = 2 A −2 B −6 C D −4 Câu 24 Trong mă ̣t phẳ ng to ̣a đô ̣, kı́ hiê ̣u A và B là hai điể m biể u diễn cho các nghiê ̣m phức của phương trı̀nh z + z + = Đô ̣ dài đoa ̣n thẳ ng AB là: B A C −2 D 2 Câu 25 Kí hiệu z0 nghiệm phức có phần ảo dương phương trình z − 16 z + 17 = Trên mặt phẳng toạ độ, điểm điểm biểu diễn số phức w = iz0 ? 1      C M  − ;1 D M  ;1 4      Câu 26 Kı́ hiê ̣u z1 , z2 , z3 và z4 là các nghiê ̣m phức của phương trı̀nh z − z − 12 = Tổ ng 1 2   A M  ;2  B M  − ;2  T = z1 + z2 + z3 + z4 = B T = C T= + D T= + A T = Câu 27 Tìm mệnh đề sai mệnh đề sau: A Số phức z = a + bi biểu diễn điểm M(a; b) mặt phẳng phức Oxy B Số phức z = a + bi có môđun lµ a + b a = C Sè phøc z = a + bi = ⇔  b = D Sè phøc z = a + bi cã sè phøc liên hợp z = b − Câu 28 Cho sè phøc z = a + bi Tìm mệnh đề mệnh đề sau: A z + z = 2bi B z - z = 2a C z z = a2 - b2 D z = z Câu 29 Sè phøc liên hợp số phức z = a + bi lµ sè phøc: A z’ = -a + bi B z’ = b - C z’ = -a - bi D z’ = a - bi -1 Câu 30 Cho sè phøc z = a + bi ≠ Số phức z có phần thực là: a b A a + b B a - b C D 2 a +b a + b2 −1 Câu 31 Cho sè phøc z = a + bi ≠ Số phức z có phần ảo : a b A a2 + b2 B a2 - b2 C D 2 a +b a + b2 Câu 32 Cho sè phøc z = a + bi Sè phức z có phần thực là: A a2 + b2 B a2 - b2 C a + b D a - b Câu 33 Cho sè phøc z = a + bi Số phức z2 có phần ảo là: A ab B 2a b C a b D 2ab Câu 34 Cho hai sè phøc z = a + bi vµ z’ = a’ + b’i Số phức zz có phần thực là: A a + a’ B aa’ C aa’ - bb’ D 2bb’ GV: Phan Đình Lộc -8- Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 35 Cho hai sè phøc z = a + bi vµ z’ = a’ + b’i Số phức zz có phần ảo là: A aa + bb’ B ab’ + a’b C ab + a’b’ D 2(aa’ + bb’) z Câu 36 Cho hai sè phøc z = a + bi vµ z’ = a’ + bi Số phức có phần thực là: z' aa '+ bb ' aa '+ bb ' a + a' 2bb ' B C D A 2 2 a' + b' a +b a +b a ' + b '2 z Câu 37 Cho hai sè phøc z = a + bi vµ z’ = a’ + bi Số phức có phần ảo là: z' aa '− bb ' aa '− bb ' aa '+ bb ' 2bb ' B C D A 2 2 a' + b' a +b a ' + b '2 a +b Câu 38 Trong C, cho phương trình bậc hai az2 + bz + c = (*) (a ≠ 0) Gäi ∆ = b2 4ac Xét mệnh đề: 1) Nếu số thực âm phương trình (*) vô nghiệm 2) Nếu phương trình có hai nghiệm số phân biệt 3) Nếu = phương trình có nghiệm kép Trong mệnh đề trên: A Không có mệnh đề B Có mƯnh ®Ị ®óng C Cã hai mƯnh ®Ị ®óng D Cả ba mệnh đề Cõu 39 Số phức z = - 3i có điểm biểu diễn là: A (2; 3) B (-2; -3) C (2; -3) D (-2; 3) Câu 40 Cho sè phøc z = – 4i Sè phøc liên hợp cđa z cã ®iĨm biĨu diƠn lµ: A (5; 4) B (-5; -4) C (5; -4) D (-5; 4) Câu 41 Cho sè phøc z = + 7i Số phức liên hợp z có điểm biểu diễn là: A (6; 7) B (6; -7) C (-6; 7) D (-6; -7) Câu 42 Cho sè phøc z = a + bi víi b Số z z là: A Số thùc B Sè ¶o C D i Câu 43 Gọi A điểm biểu diễn số phức z = + 5i B điểm biểu diễn cđa sè phøc z’ = -2 + 5i T×m mƯnh ®Ị ®óng c¸c mƯnh ®Ị sau: A Hai ®iĨm A B đối xứng với qua trục hoành B Hai điểm A B đối xứng với qua trục tung C Hai điểm A B đối xứng với qua gốc toạ độ O D Hai ®iĨm A vµ B ®èi xøng víi qua ®­êng thẳng y = x Cõu 44 Gọi A điểm biĨu diƠn cđa sè phøc z = + 2i B điểm biểu diễn số phức z = + 3i Tìm mệnh đề mệnh đề sau: A Hai điểm A B đối xứng với qua trục hoành B Hai điểm A B đối xứng với qua trục tung C Hai điểm A B đối xứng với qua gốc toạ độ O D Hai điểm A B ®èi xøng víi qua ®­êng th¼ng y = x Cõu 45 Điểm biểu diễn số phức z = + bi víi b ∈ R, n»m trªn đường thẳng có phương trình là: A x = B y = C y = x D y = x + Câu 46 §iĨm biĨu diƠn cđa c¸c sè phøc z = a + víi a R, nằm đường thẳng có phương trình là: A y = x B y = 2x C y = 3x D y = 4x Câu 47 Cho sè phøc z = a - víi a ∈ R, ®iĨm biĨu diƠn cđa sè phøc liên hợp cđa z nằm đường thẳng có phương trình là: A y = 2x B y = -2x C y = x D y = -x Câu 48 Cho sè phøc z = a + a i víi a ∈ R Khi điểm biểu diễn số phức liên hợp z nằm trên: A Đường thẳng y = 2x B Đường thẳng y = -x + C Parabol y = x2 D Parabol y = -x2 Câu 49 Thu gän z = i + (2 – 4i) – (3 2i) ta được: A z = + 2i B z = -1 - 2i C z = + 3i D z = -1 - i Câu 50 Thu gän z = ( + 3i ) ta được: A z = + 2i B z = 11 - 6i Câu 51 Thu gän z = (2 + 3i)(2 - 3i) ta được: C z = + 3i GV: Phan Đình Lộc -9- D z = -1 - i Trường THPT Đăk Glong Năm học: 2016 – 2017 A z = B z = 13 C z = -9i D z =4 - 9i Câu 52 Thu gän z = i(2 - i)(3 + i) ta được: A z = + 5i B z = + 7i C z = D z = 5i Câu 53 Sè phøc z = (1 + i) b»ng: A -2 + 2i B + 4i C - 2i D + 3i Câu 54 NÕu z = - 3i th× z3 b»ng: A -46 - 9i B 46 + 9i C 54 - 27i D 27 + 24i Câu 55 Sè phøc z = (1 - i)4 b»ng: A 2i B 4i C -4 D 2 Câu 56 Cho sè phøc z = a + bi Khi ®ã sè phøc z = (a + bi) lµ sè ảo điều kiện sau đây: A a = vµ b ≠ B a ≠ vµ b = C a ≠ 0, b ≠ vµ a = ±b D a= 2b Câu 57 Điểm biểu diễn số phức z = là: − 3i  3 A ( 2; − ) B  ;  C ( 3; − ) D ( 4; − 1)  13 13 Cõu 58 Số phức nghịch đảo số phức z = - 3i lµ: 3 A z −1 = + B z −1 = + C z −1 = + 3i D z −1 = -1 + 3i i i 2 4 − 4i Câu 59 Sè phøc z = b»ng: 4−i 16 13 16 11 9 23 B C − i D A − i − i − i 5 17 17 15 15 25 25 + 2i − i Câu 60 Thu gän sè phức z = ta được: + i + 2i 21 61 23 63 15 55 A z = B z = C z = D z = + i + i + i + i 26 26 13 13 26 26 26 26 Câu 61 Cho sè phøc z = − + i Sè phøc ( z )2 b»ng: 2 3 A − − B − + C + 3i D − i i i 2 2 Câu 62 Cho sè phøc z = − + i Sè phøc + z + z2 b»ng: 2 A − + B - 3i C D i 2 Câu 63 Cho sè phøc z = a + bi Khi số z + z là: A Mét sè thùc B C Mét sè ảo D i Cõu 64 Cho số phức z = a + bi Khi ®ã sè z − z lµ: 2i A Mét sè thùc B C Một số ảo D i Cõu 65 Giả sử A, B theo thứ tự điểm biểu diễn cđa c¸c sè phøc z , z Khi dài véctơ AB bằng: A z1 − z B z1 + z C z − z1 D z + z1 ( ) ( ) Cõu 66 Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mÃn điều kiện z i = là: A Một đường thẳng B Một đường tròn C Một đoạn thẳng D Một hình vuông Cõu 67 Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mÃn ®iỊu kiƯn z − + 2i = lµ: A Một đường thẳng B Một đường tròn C Một đoạn thẳng D Một hình vuông Cõu 68 Tập hợp điểm mặt phẳng biểu diễn cho số phức z thoả mÃn z2 số thực âm là: GV: Phan Đình Lộc - 10 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 84 Cho a, b ∈ R biĨu thøc 3a2 + 5b2 ph©n tÝch thµnh tÝch thõa sè phøc lµ: A 3a + 5bi B 3a + 5i 3a − 5i C ( 3a + 5bi )( 3a − 5bi ) 3a − 5bi ( )( ) ( )( ) D Không thể phân tích thành thừa số phức Cõu 85 Cho hai sè phøc z = x + yi vµ u = a + bi NÕu z2 = u th× hƯ thức sau đúng: 2 2 a2 a2 a x − y = x − y = a x − y = x + y = B  C  D  A  2 b x + y = 2xy = b 2xy = b 2xy = b Câu 86 Cho sè phøc u = + 4i NÕu z2 = u hệ thức sau đúng: z= + i  z= + i  z= + i A  B  C   z =−2 − i  z= − i  z =−4 − i  z= + 2i D   z= − i Câu 87 Cho sè phøc u = −1 + 2i NÕu z2 = u hệ thức sau đúng: z z  z= + 2i = = 2+i + 2i  z= + 2i A  B  C  D  =  z= − i = −i  z  z 2 − i  z =−1 − 2i Câu 88 Cho (x + 2i)2 = yi (x, y ∈ R) Giá trị x y bằng: A x = y = x = -2 y = -8 B x = vµ y = 12 x = -3 y = -12 C x = y = x = -1 vµ y = -4 D x = vµ y = 16 x = -4 y = -16 Câu 89 Cho (x + 2i)2 = 3x + yi (x, y R) Giá trị x y b»ng: A x = vµ y = x = y = B x = -1 y = -4 x = vµ y = 16 C x = vµ y = x = y = -4 D x = y = x = vµ y = Câu 90 Trong C, phương trình iz + - i = có nghiƯm lµ: A z = - 2i B z = + i C z = + 2i D z = - 3i Câu 91 Trong C, phương trình (2 + 3i)z = z - có nghiƯm lµ: 2 B z = − + i C z = + i D z = − i A z = + i 10 10 5 10 10 5 Câu 92 Trong C, phương trình (2 - i) z - = cã nghiƯm lµ: 4 A z = − i B z = − i C z = + i D z = − i 5 5 5 5 Cõu 93 Trong C, phương trình (iz)( z - + 3i) = cã nghiƯm lµ:  z = 2i  z = −i  z = 3i z = i A  B  C  D   z= + 3i  z= + 3i  z= − 5i  z= 3i Cõu 94 Trong C, phương trình z + = cã nghiƯm lµ:  z = 2i  z= + 2i  z= + i  z= + 2i A  B  C  D   z = −2i  z= − 2i  z= − 2i  z= 5i Cõu 95 Trong C, phương trình = − i cã nghiƯm lµ: z +1 A z = - i B z = + 2i C z = - 3i D z = + 2i Cõu 96 Trong C, phương trình z2 + 3iz + = cã nghiƯm lµ: z = i  z = 3i  z= + i  z= − 3i A  B  C  D   z = −4i  z = 4i  z = −3i  z= + i Cõu 97 Trong C, phương trình z - z + = cã nghiƯm lµ:    + 5i + 3i + 3i z = z = z =  z= + 5i 2 A  B  C  D     − 5i − 3i  z= − 5i − 3i z = z = z =    2 Cõu 98 Trong C, phương trình z + (1 - 3i)z - 2(1 + i) = cã nghiƯm lµ:  z = 3i  z= + 3i  z = 2i z = i A  B  C  D   z =−2 + i  z= − i  z =−1 + i  z =−2 + 5i GV: Phan Đình Lộc - 12 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 99 Hai sè phøc có tỉng b»ng (4 – i) vµ tÝch b»ng 5(1 - i) Hai số phức là:  z= + i  z= + i  z= + 2i  z= + i B  C  D  A   z= − 2i  z= − 3i  z= − 2i  z= − 2i ( )( ) cã nghiƯm lµ: Câu 100 Trong C, phương trình z + i z − 2iz − = (1 − i ) B - i ; -1 + i ; 2i ( −1 + i ) , i 2 3 C D - 2i ; -15i ; 3i (1 − 2i ) ; ( −2 + i ) ; 4i 2 Câu 101 Trong C, phương trình z4 - 6z2 + 25 = có nghiƯm lµ: A ±3 ± 4i B ±5 ± 2i C ±8 ± 5i Câu 102 Trong C, ph­¬ng trình z + = 2i có nghiệm là: z A ± i B ± i C ± i A ( , ) ( ) ( ) D ±2 ± i ( ) D i Cõu 103 Trong C, phương trình z + = cã nghiƯm lµ: 1± i 2±i 1± i 5±i A -1 ; B -1; C -1; D -1; 2 4 Cõu 104 Trong C, phương trình z4 - = cã nghiƯm lµ: A ± ; ±2i B ±3 ; ±4i C ±1 ; ±i D ±1 ; 2i Cõu 105 Trong C, phương trình z4 + = cã nghiƯm lµ: B ± (1 − 2i ) ; ± (1 + 2i ) C ± (1 − 3i ) ; ± (1 + 3i ) D ± (1 − 4i ) ; ± (1 + 4i ) A ± (1 − i ) ; ± (1 + i ) Câu 106 Cho z2 + bz + c = Nếu phương trình nhận z = + i làm nghiệm b c b»ng: A b = 3, c = B b = 1, c = C b = 4, c = D b = -2, c = Câu 107 Cho z3 + az + bz + c = NÕu z = + i vµ z = hai nghiệm phương trình a, b, c b»ng: a = a = −4 a = a =     A b = B b = C b = D b = −1 c = c = −4 c = c =     Câu 108 Tæng ik + ik + + ik + + ik + b»ng: A i B -i C D −1 − 5i −1 + 5i Cõu 109 Phương trình bậc hai với nghiệm: z1 = , z2 = là: 3 A z2 - 2z + = B 3z2 + 2z + 42 = C 2z2 + 3z + = D z2 + 2z + 27 = Câu 110 Cho P(z) = z + 2z - 3z + Khi ®ã P(1 - i) b»ng: A -4 - 3i B + i C - 2i D + i Câu 111 Trong mặt phẳng phức, gọi A, B, C điểm biểu diễn số phức z = -1 + 3i, z = + 5i, z = + i Sè phøc víi điểm biểu diễn D cho tứ giác ABCD hình bình hành là: A + 3i B - i C + 3i D + 5i Cõu 112 Trong mặt phẳng phức, gọi A, B, C điểm biểu diễn c¸c sè phøc z = (1 - i)(2 + i,) z = + 3i, z = -1 - 3i Tam giác ABC là: A Một tam giác cân (không đều) B Một tam giác C Một tam giác vuông (không cân) D Một tam giác vuông cân 20 Cõu 113 Tính (1 - i) , ta được: A -1024 B 1024i C 512(1 + i) D 512(1 - i) Cõu 114 Đẳng thức đẳng thức sau đúng? A (1+ i)8 = -16 B (1 + i)8 = 16i C (1 + i)8 = 16 D (1 + i)8 = -16i Câu 115 Cho sè phøc z ≠ BiÕt r»ng số phức nghịch đảo z số phức liên hợp Trong kết luận đúng: A z R B z số ảo C z = D z = GV: Phan Đình Lộc - 13 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 116 Cho pt : 2x – 6x + = Gọi z , z hai nghiệm phương trình Kết luận sau : A z + z 2 = B z - z 2 = 7/4 C z 2.z 2 = 25/4 D z 2 – z = 7/4 Câu 117 Cho số phức z = – i Lựa chọn phương án : A z3 = – 2i B z3 = + 2i C z3 = - – 2i D z3 = -2 + 2i Câu 118 Cho số phức z = – i ; z = - + i ; z = + i Lựa chọn phương án : A B z = C = z1 + z2 D =2 Câu 119 Mệnh đề sau sai: B z = z  A đường trịn tâm O, bán kính R = C.Tập hợp điểm biểu diễn số phức thõa mãn D Hai số phức phần thực phần ảo tương ứng Câu 120 Cho số phức z = - – (3 i A Số phức liên hợp với số phức z : B C D Câu 121 Cho hai số phức z = (1 – i)(2i – 3) z = (1 + i)(3 – 2i) Lựa chọn phương án : A z z B z 1/ z ) D z – 5z ) Kết luận sau sai ? Câu 122 Cho số phức: z = (1+ A.z2 = C z B C D ) Câu 123 Gọi z , z hai nghiệm phương trình z2 + = P = z + z bằng: A.2i B.0 C.-2i Câu 124 Cho z = - i Tính M = A.- i + z3 : B.0 C.2i Câu 125 Tìm số phức z biết : A z = 5; z = – 4i D.2 D.2 , z = 25 B z = -5 ; z = – 4i C z = 5; z = + 4i D z = -5; z = + 4i Câu 126 Cho z = – i, phần ảo số phức w = ( )3 + + z + z2 bằng: A.0 B.- C.- D.- Câu 127 Cho số phức z = 1+ i , z = – i Kết luận sau sai? A B.z + z = Câu 128 Cho z = 2i A ( i – 1) , z = + i Khi B - ( i + 1) C |z z | = D | z – z | = bằng: C ( – i) D Câu 129 Số phức sau số thực? A z = B z = C z = Câu 130 Tìm số phức z, biết GV: Phan Đình Lộc - 14 - D z = ( i + 1) Trường THPT Đăk Glong A Năm học: 2016 – 2017 B C D Câu 131 Gọi z , z hai nghiệm phức pt z2 + 2z + 10 = Giá trị biểu thức: B = |z |2 + |z |2 là: A B =2 B B = C B = 20 D B = 10 Câu 132 Số phức z thỏa mãn phương trình: (2 + i)2 (1 – i)z = – 3i + (3 +i)z : A.z = -1 + 3i/4 B.1 – 3i/4 C.- -3i/4 D + 3i/4 Câu 133 Tập hợp điểm biểu diễn số phức z thỏa mãn đk | z – + 4i | = là: A Đường tròn tâm I ( -3 ; 4), bk R = B Đường tròn tâm I(3; - 4), bk R = C Đường tròn tâm I( 3;- 4), bk R = C Đương tròn tâm I (-3;4), bk R = Câu 134 Giá trị biểu thức A = ( + i A Một số nguyên dương Câu 135 Cho A |z| = 81 )6 : B Một số nguyên âm )2(1 - i C Một số ảo D Số )2 Modun số phức z bằng: B |z| = C |z| = D |z| = 39 Câu 136 Nghiệm pt : ( – 3i)z + ( + i) = - ( + 3i)2 là: A - 2- 5i B + 5i C -2 + 5i là: Câu 137 Phần thực phần ảo số phức z = A B.-1 D – 5i C i D – i Câu 138 Trong mặt phẳng phức cho ba điểm A, B, C biểu diễn số phức z = 2; z = + i ; z = -4i M điểm cho: A z = 18 –i Khi M biểu diễn số phức : B z = -9 + 18i Câu 139 Cho số phức z = + C z = – i i; z = - + 2i; z = - – i biểu diễn điểm A, B, C mặt phẳng Gọi M điểm thõa mãn: A z = 6i D z = -1 + 2i Điểm M biểu diễn số phức : B z = C z = - D z = - 6i Câu 140 Trong mặt phức cho tam giác ABC vuông C Biết A, B biểu diễn số phức: z = - – 4i; z = – 2i Khi điểm C biểu diễn số phức: A z = – 4i B z = - + 2i C z = + 2i Câu 141 Nghiệm phức pt: ((2 – i) + + i)(iz + A - + i ;1/2 B – i; ½ D z = – 2i = là: C + i; ½ D – i; -1/2 Câu 142 Cho tam giác vuông cân ABC C, điểm A, B theo thứ tự biểu diễn số phức Điểm C biểu diễn số phức z sau : A z = -1 –i z = - + i B z = – i z = +i C z = 1- i z = – i D z = - – i z = + i 2 Câu 143 Cho z1 = ( − 2i ) , z2 = (1 + i ) , giá trị A= z1 + z2 là: A – 10i GV: Phan Đình Lộc B -5 – 10i C + 10i - 15 - D -5 + 10i Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 144 Nghiệm phương trình z − 3z =−3 − 5i là: A 3-i B 3+i C -3-i D -3+i III HỆ TỌA ĐỘ OXYZ Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(–1; 3; 1), B(–3; –1; 0), C(1; 1; –1) Gọi G trọng tâm tam giác ABC Đường thẳng qua G vng góc với mặt phẳng (ABC) có phương trình: x −1 y +1 z x +1 y −1 z x +1 y −1 z x −1 y +1 z A = = B = = C = = D = = 1 −1 1 −2 1 −1 −2 Câu Trong không gian với hệ tọa độ Oxyz, mặt cầu đường kính AB với A(–1; 2; 3), B(3; 2; –7) là: A (S): (x + 1)² + (y + 2)² + (z – 4)² = 34 B (S): (x – 1)² + (y – 2)² + (z + 2)² = 116 C (S): (x + 1)² + (y + 2)² + (z – 2)² = 116 D (S): (x – 1)² + (y – 2)² + (z + 2)² = 34 Câu Trong không gian với hệ tọa độ Oxyz, mặt cầu ngoại tiếp tứ diện OABC với A(2; 1; 3), B(1; 0; –1), C(0; –1; 1) là: A (S): x² + y² + z² – 4x – 2z = B (S): x² + y² + z² + 4x + 2z = C (S): x² + y² + z² – 4x – 2y = D (S): x² + y² + z² + 4x + 2y = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; –2; –2), B(3; 2; 0), C(0; 2; 1), D(–1;1; 2) Mặt phẳng (P) chứa AB (P) song song với CD là: A (P): 3x + y + 2z – = B (P): 3x + y + 2z – = C (P): 3x – y + 2z – = D (P): 3x – y + 2z – = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(2; –1; 3) mặt phẳng (α): x + 2y – z – = Tọa độ hình chiếu vng góc A mặt phẳng (α) là: A (3; 1; 2) B (1; –3; 1) C (4; 3; 1) D (0; –5; –1) x −1 y − z +1 x − y −1 z −1 d : = = Câu Trong không gian Oxyz, cho hai đường thẳng d : = = 2 Biết hai đường thẳng cắt Mặt phẳng (P) chứa (d ) (d ) là: A (P): 5x – y – 3z – = B (P): 5x + y – 3z – 12 = C (P): 5x – y – 3z + = D (P): 5x + y – 3z + 12 = Câu Trong không gian Oxyz, cho A(2; –1; 0), B(0; –2; 3), C(–2; 1; 2), D(3; 2; 5) Mặt cầu (S) có tâm D tiếp xúc mặt phẳng (ABC) là: A (S): (x – 3)² + (y – 2)² + (z – 5)² = 35 B (S): (x – 3)² + (y – 2)² + (z – 5)² = 27 C (S): (x + 3)² + (y + 2)² + (z + 5)² = 35 D (S): (x + 3)² + (y + 2)² + (z + 5)² = 27 Câu Trong không gian Oxyz, cho mặt phẳng (P): x + 2y + 2z + = mặt cầu (S): (x – 1)² + (y – 2)² + (z – 2)² = 25 Vị trí tương đối chúng là: A khơng cắt B cắt theo đường trịn bán kính C cắt theo đường trịn bán kính D tiếp xúc x+4 y−4 z+2 Câu Trong không gian Oxyz, cho đường thẳng d: = = mp(P): 2x – 3y – 6z + = −4 Gọi M điểm thuộc d có hồnh độ x M = Mặt cầu (S) có tâm M tiếp xúc với (P) là: A (S): (x – 2)² + (y + 4)² + (z – 6)² = B (S): (x – 2)² + (y + 4)² + (z – 6)² = C (S): (x – 2)² + (y – 4)² + (z + 6)² = D (S): (x – 2)² + (y – 4)² + (z + 6)² = x +2 y z+3 Câu 10 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d): mặt phẳng (P): = = −2 2x + y – z – = Đường thẳng (Δ) qua giao điểm A d với (P), nằm (P) vng góc với d là:  x = −2  x = −5  x = −4  x = −4     A (Δ):  y= + t B (Δ):  y= + t C (Δ):  y= + t D (Δ):  y= − t z =−5 − t z =−7 + t  z =−9 + t   z =−7 − t  Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – 2y + z + = đường thẳng (d): x −2 y−3 z −3 Mặt phẳng (Q) chứa d vng góc với (P) là: = = −1 A (Q): 3x + 2y – 2z – = B (Q): 3x + 2y – 2z + = GV: Phan Đình Lộc - 16 - Trường THPT Đăk Glong Năm học: 2016 – 2017 C (Q): 3x – 2y – 2z + = D (Q): 3x + 2y – 2z – = Câu 12 Trong không gian Oxyz, cho điểm A(2; –1; 1), B(3; 4; 4), C(–3; 2; 0) Xác định tọa độ chân đường cao hạ từ A tam giác ABC A (0; 3; 2) B (3; 2; 0) C (–2; 1; 3) D (–3; 2; 0) Câu 13 Trong không gian Oxyz, cho điểm A(0; –1; 5), B(2; –1; 4) mp (α): x – 2y + 2z – = Tính độ dài chiếu vng góc đoạn AB mặt phẳng (α) A h = B h = C h = D h = Câu 14 Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I thuộc đường thẳng d : x + y −1 z +1 x − y +1 z −1 tiếp xúc với đường thẳng d : = = điểm A(1; y o ; z o ) là: = = −1 1 −2 A (S): (x – 1)² + (y – 1)² + (z – 2)² = 18 B (S): (x + 2)² + (y – 1)² + (z + 1)² = 18 C (S): (x – 1)² + (y – 1)² + (z – 2)² = 36 D (S): (x + 2)² + (y – 1)² + (z + 1)² = 36 Câu 15 Trong không gian Oxyz, cho điểm M(1; 1; 0) mặt phẳng (α): x + y – 2z – = Tìm tọa độ điểm N đối xứng với M qua mặt phẳng (α) A (–1; –1; 4) B (–2; –2; 2) C (0; 0; 2) D (1; 1; 4)  x= − 4t  Câu 16 Trong không gian Oxyz, cho điểm A(–3; 0; 3) đường thẳng d:  y =−3 − t Tọa độ hình chiếu z = + 2t  vng góc A đường thẳng d là: A (–2; –4; 0) B (–2; –4; 3) C (2; –3; 4) GV: Phan Đình Lộc - 17 - D (–2; 3; 4) x + y −1 z − Câu 17 Trong Oxyz, khoảng cách A(3; 0; –1) đường thẳng (Δ): = = là: −4 A B C D Câu 18 Trong không gian Oxyz, mặt cầu tâm I(3; 4; –2) tiếp xúc với trục Oz có bán kính là: A B C D Câu 19 Trong không gian Oxyz, cho mặt cầu (S ): x² + y² + z² – 4x + 4y – 2z + = (S ): x² + y² + z² – 4x + 4y + 2z + = Vị trí tương đối hai mặt cầu là: A tiếp xúc B tiếp xúc C cắt D chứa Câu 20 Trong không gian Oxyz, cho mặt cầu (S ): (x – 3)² + (y + 4)² + z² = 25 (S ): (x – 1)² + (y + 2)² + (z + 2)² = Phương trình mặt phẳng (P) chứa giao tuyến hai mặt cầu A (P): x – y + z = B (P): x + y + z = C (P): x – y + z + = D (P): x + y + z + = x −1 y + z − Câu 21 Trong không gian Oxyz, khoảng cách đường thẳng d : = = trục Ox là: −4 A B C D Câu 22 Trong không gian Oxyz cho mặt phẳng (P): 2x + y + 2z + = Mặt phẳng (P) cắt mặt cầu (S) tâm O theo giao tuyến đường trịn có bán kính Phương trình mặt cầu (S) là: A (S): x² + y² + z² = 13 B (S): x² + y² + z² = 25 C (S): x² + y² + z² = 16 D (S): x² + y² + z² = 24 Câu 23 Trong không gian Oxyz, cho mặt phẳng (P): x + y – z + = Điểm M nằm (P) cách O đoạn ngắn M có tọa độ là: A (1; 1; 5) B (–1; –1; 1) C (2; 2; 1) D (0; 0; 3) Câu 24 Trong Oxyz, cho điểm A(1; 0; 2), B(1; 1; 3), C(0; 3; 3), D(2; 5; 1) phát biểu: (1) Đường thẳng AB vng góc với đường thẳng CD (2) Các điểm A, B, C, D tạo thành hình bình hành (3) Hình chiếu vng góc C đường thẳng qua hai điểm A, B có tọa độ (1; 2; 4) (4) Các điểm A, B, C, D tạo thành tứ diện Số phát biểu là: A B C D Câu 25 Trong Oxyz, mặt cầu (S) có tâm thuộc Ox, tiếp xúc với Oy qua điểm A(1; 1; –2) là: A (S): (x – 3)² + y² + z² = B (S): (x + 3)² + y² + z² = C (S): (x – 2)² + y² + z² = D (S): (x + 2)² + y² + z² = Trường THPT Đăk Glong Năm học: 2016 – 2017     Câu 26 Trong không gian Oxyz , cho OM =k − 2i − j To ̣a đô ̣ điể m M là: A M (1; −2; −3) B M ( −2; −3;1) C M ( −3; −2;1) D M (1; −3; −2 )    Câu 27 Trong không gian Oxyz , cho vectơ a va c = (1; −1;0 ) , b = − 2;3; − ( ) ̀ = ( −1;0;4 ) To ̣a đô ̣     vectơ u =a + 2b − 3c là:     A C u = D = u ( 3; −3;5 ) = u ( 0;5; −14 ) B = u ( 5; −14;8 ) ( −6;5; −14 )    Câu 28 Trong không gian Oxyz , cho vectơ a = ( 2;5;0 ) và = b ( 3; −7;0 ) Góc a,b là: ( ) 0 0 A 30 B 60 C 135 D 45 Câu 29 Trong không gian Oxyz , cho mặt phẳng ( P ) : x − z − = Vectơ nào sau là mô ̣t vectơ pháp tuyế n của ( P )  (1; −2; −3)    C n= D.= n4 ( 2;0; −6 ) (1;0; −2 ) (1; −2;0 )  Câu 30 Trong không gian Oxyz , cho điể m M (1; −2; −3) và vectơ = n ( 2; −3;2 ) Phương trı̀nh của mặt A n1 = B.= n2  phẳng qua điể m M và có vectơ pháp tuyến n là: A x − y + z − = C x − y − z + = B x − y + z + = D x − y − z − = x −1 Câu 31 Trong không gian Oxyz , cho hai đường thẳng d1 : = x − y − z −1 d2 : = = Vị trí tương đối d1 d là: −2 A Chéo B Trùng C Song song y +2 z −5 = −3 D Cắt  x = + 3t  Câu 32 Trong không gian Oxyz , cho đường thẳng d :  y= + 3t Vectơ nào sau là mô ̣t vec tơ chı̉  z= − 6t  phương của d ?     A u1 = (1;2;3) B u2 = ( 3;3;6 ) C = D u4 = (1;1;2 ) u3 (1;1; −2 ) Câu 33 Trong không gian Oxyz , cho điể m A (1;2;3) mă ̣t phẳ ng Phương trình tham số đường thẳng qua điểm A  x =−1 + 4t  A  y =−2 + 3t  z =−3 − 7t   x = + 4t  B  y= + 3t  z= − 7t  ( P ) : x + y − 7z − =0 vng góc với mặt phẳng ( P ) là:  x= + t  C  y= + 2t  z= + 3t   x =−1 + 8t  D  y =−2 + 6t   z =−3 − 14t ( ) Câu 34 Trong Oxyz , cho điể m M ( 3;5; −8 ) và mp (α ) : x − y + z − 28 = d M , (α ) = 47 41 45 C D 7 Câu 35 Trong không gian Oxyz , cho điểm M (1;1;1) mă ̣t phẳ ng ( P ) : x + y − z + 14 = Toạ độ điểm H là hı̀nh chiế u vuông góc của M ( P ) là: A H ( −9; −11; −1) B H ( 3;5; −5 ) C H ( 0; −1;4 ) D H ( −1; −3;7 ) A GV: Phan Đình Lộc B - 18 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 36 Trong không gian Oxyz , cho mặt cầu ( S ) : x + y + z − x − y + z − 11 = To ̣a đô ̣ tâm 2 I và bán kı́nh R của ( S ) là: B I (1;3; −2 ) ; R = A I (1;3; −2 ) ; R = 25 D I ( −1; −3;2 ) ; R = C I (1;3; −2 ) ; R = Câu 37 Trong không gian Oxyz , cho hai điểm A ( 2; −1; −2 ) , B ( 2;0;1) Phương trı̀nh mặt cầu tâm A và qua điể m B là: 2 2 2 A ( x − ) + ( y + 1) + ( z + ) = B ( x − ) + ( y + 1) + ( z + ) = 10 C ( x + ) + ( y − 1) + ( z − ) = 2 Câu 38 Trong Oxyz, cho hai mặt phẳng D ( x + ) + ( y − 1) + ( z − ) = 10 2 và ( P ) : x + y + z + =0, ( Q ) : x + y + z + = x = t  đường thẳ ng d :  y = −1 Phương trình của mặt cầu ( S ) có tâm nằm d tiếp xúc với hai mặt  z = −t  phẳng ( P ) và ( Q ) là: 4 2 2 2 A ( x + 3) + ( y + 1) + ( z − 3) = B ( x − 3) + ( y + 1) + ( z + 3) = 9 2 2 2 D ( x − 3) + ( y + 1) + ( z + 3) = C ( x + 3) + ( y + 1) + ( z − 3) = 4 x+2 y−2 z Câu 39 Trong Oxyz , cho đường thẳng d : = = mp ( P ) : x + y − z + = −1 1 Phương trình đường thẳng ∆ nằ m mặt phẳng ( P ) vuông góc và cắt đường thẳng d  x =−1 + t  x =−3 + t  x =−3 − t  x =−1 − t     A  y= − t B  y = + t C  y = − 2t D  y= − 2t z= − t  z = −2t  z = − 2t  z = −2t     Câu 40 Trong Oxyz, cho tứ diê ̣n ABCD có các đı̉nh A (1;2;1) , B ( −2;1;3) , C ( 2; −1;1) , D ( 0;3;1) ( ) ( ) Phương trình mặt phẳng ( P ) qua hai điểm A, B cho d C , ( P ) = d D, ( P ) A x + y − z − 15 = hoă ̣c x + z − = B x + y − z − 15 = hoă ̣c x + y − = C x + y − z − 14 = hoă ̣c x − z − = D x + y + z − 15 = hoă ̣c x + z − = Câu 41 Trong không gian Oxyz, cho các điểm A(1;0;0) , B (0; b;0) , C (0;0; c ) , b, c dương mặt phẳng ( P ) : y − z + = Phương trình mặt phẳng ( ABC ) vng góc với ( P ) và d ( O, ( ABC ) ) = là: A x + y + z − = C x − y − z + = B x + y + z + = D x − y − z − = Câu 42 Mặt phẳng ( P ) : x − 3x + z = nhận vectơ sau làm vectơ pháp tuyến:    1 1  n (2; −6;1) ( −1;3; −1) A, n = (1;3;1) B, = C n = D n =  ; ;  2 2 Câu 43 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x – z + = Vectơ vectơ pháp tuyến (P) ? GV: Phan Đình Lộc - 19 - Trường THPT Đăk Glong   A, = B, = n (3; −1; 2) n (2; −6;1) Năm học: 2016 – 2017   C n = (−3;0;1) D n = ( 0;3; )  Câu 44 Phương trình mặt phẳng qua A (1; −2; ) nhận n = ( 2;3;5 ) làm VTPT là: 0 A x + y + z + 16 = B x + y + z − 16 = 0 C x + y − z − 16 = D x − y + z − 16 = Câu 45 Trong khơng gian Oxyz, phương trình mặt phẳng (P) qua điểm M(-2;3;1) vng góc với đường thẳng qua hai điểm A(3;1;-2), B(4;-3;1) là: A x − y + z + 11 = B x − y + z − 11 = C x + y + z + 11 = D x − y − z − 11 = 0 0 Câu 46 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1; 0; 0), B(0; –1; 3), C(1; 1; 1) Phương trình mặt phẳng (P) qua điểm C vng góc với AB là: A x + y – 3z + = B x + y – 3z – = C x + y + 3z – = D x – y + 3z – = Câu 47 Cho A(2,-3,-1), B(4,-1,2), phương trình mặt phẳng trung trực AB là: 15 B x − y − z + = C x + y − z = D x + y + z − = A x + y + z + = 0 0 Câu 48 Cho A(1; 3; 2) B(-3; 1; 0) Phương trình mặt phẳng trung trực đoạn AB là: A x + y + z − = B x + y + z − = C x + y − z − = D x + y + z − = Câu 49 Cho hai điểm A(1; -4; 4) B(3; 2; 6) Phương trình mp trung trực đoạn AB là: A x – 3y + z + = B x + 3y + z – = C x + 3y – z – = D x – 3y – z + = Câu 50 Phương trình mặt phẳng (α) qua A(2, −1,3) vuông góc với Ox là: B (α) : y + = C (α) : z − = D (α) : 3y + z = A (α) : x − = 0 0 Câu 51 Phương trình mặt phẳng (α) qua A(3,2, −1) vuông góc với Ox là: A (α) : y − = B (α) : x − = C (α) : z + = D 0 ( α) : y + z − = Câu 52 Phương trình mặt phẳng (α) qua A(2, −1,3) vuông góc với Oy: 0 0 A (α) : x − = B (α) : y + = C (α) : z − = D (α) : 3y + z = Câu 53 Phương trình mặt phẳng (α) qua A(3,2, −1) vuông góc với Oy: 0 0 B (α) : x − = C (α) : z + = D (α) : y + z − = A (α) : y − = Câu 54 Phương trình mặt phẳng (α) qua A(2, −1,3) vuông góc với Oz: 0 0 A (α) : x − = B (α) : y + = C (α) : z − = D (α) : 3y + z = Câu 55 Phương trình mặt phẳng (α) qua A(3,2,2) A hình chiếu vuông góc O leân (α) là: A (α) : 3x + 2y + 2z − 35 = B (α) : x + 3y + 2z − 13 = 0 0 C (α) : x + y + z − = D (α) : x + 2y + 3z − 13 = Câu 56 Phương trình mp (α) qua A( −2,3,5) A hình chiếu vuông góc B(1,4,3) lên (α) là: 0 A (α) : x + 2y + 2z − 14 = B (α) : 3x + y − 2z + 13 = C (α) : x + y + z − = D (α) : x + 2y + 3z − 19 = 0 Câu 57 Phương trình mặt phẳng (P) tiếp xúc mặt cầu (S): x² + y² + z² – 2x – 2y – 2z – 22 = điểm M(4; –3; 1) là: A 3x – 4y – 20 = B 3x – 4y – 24 = C 4x – 3y – 25 = D 4x – 3y – 16 = → Câu 58 Cho A(–1; 1; 3), B(2; 1; 0), C(4;–1; 5) Một pháp vectơ n mp(ABC) có tọa độ là: → → → → A n = (2; 7; 2) B n = (–2, –7; 2) C n = (–2; 7; 2) D n = (–2; 7; –2) Câu 59 Mặt phẳng qua điểm A(1;0;0), B(0;-2;0), C(0;0,3) có phương trình là: x y z x y z A x − y + z = B + C D x − y + z = + = + + = 1 −2 −1 −3 GV: Phan Đình Lộc - 20 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 60 Cho A(-1;2;1), B(-4;2;-2), C(-1;-1;-2) Phương trình tổng quát mp(ABC) là: A (ABC): x +y -z =0 B (ABC):x-y +3z =0 C (ABC):2x +y +z -1 =0 D (ABC): 2x +y -2z +2 =0 Câu 61 Mặt phẳng qua ba điểm A(1;0;0), B(0;-2;0), C (0;0;-3) có phương trình là: B x − y − z − = C 3x − y − 5z + = D x + y + 3z = A x − y − 3z = 0 0 Câu 62 Trong không gian cho điểm: A(5;1;3), B(1;6;2), C(5;0;4) Phương trình mp(ABC) là: A x+y-z-9=0 B x+y-z+9=0 C x+y+z-9=0 D x+y+z+9=0 Câu 63 Cho ba điểm B(1;0;1), C(-1;1;0), D(2;-1;-2) Phương trình mặt phẳng qua B, C, D là: A −4 x − y + z − = B x − y + z − = C x − y + z + = 0 D x − y + z − =0 Câu 64 Phương trình mặt phẳng (α) qua ñieåm: O, B( −2, −1,3) , C(4, −2,1) : A (α) : 5x + 14 y + 8z − = B (α) : 5x + 14 y + 8z + = 0 C (α) : 5x + 14 y + 8z = D (α) : 5x + 14 y + 8z + = 0 Câu 65 Cho điểm I(1; 2; 5) Gọi M, N, P hình chiếu điểm I trục Ox, Oy, Oz, pt mp (MNP) là: A x y z + + = B x y z + + = C x y z + + = 1 D x y z + − = 1 Câu 66 Phương trình mặt phẳng (α) qua hình chiếu A(2,3,4) trục tọa độ: A (α) : 6x − y + 3z − 12 = B (α) : 6x − y − 3z − 12 = 0 0 D (α) : 6x + y + 3z − 12 = C (α) : 6x + y − 3z − 12 = Câu 67 Phương trình mặt phẳng (α) qua hình chiếu A(1,3, −2) trục tọa ñoä: A (α) : 6x − 2y − 3z − = B (α) : 6x + 2y − 3z − = 0 C (α) : 6x − 2y + 3z − = D (α) : 6x + 2y + 3z − = 0 Câu 68 Phương trình mặt phẳng (α) qua G(1,2,3) cắt trục tọa độ A, B, C cho G trọng tâm tam giác ABC là: A (α) : 6x + 3y + 2z − = B (α) : 6x + 3y + 2z + 18 = 0 0 C (α) : 6x + 3y + 2z + = D (α) : 6x + 3y + 2z − 18 = Câu 69 Phương trình mặt phẳng (α) qua G(2,1, −3) cắt trục tọa độ A, B, C cho G trọng tâm tam giác ABC: A (α) : 3x + 6y − 2z − = B (α) : 3x + 6y − 2z − 18 = 0 0 C (α) : 3x + 6y + 2z − = D (α) : 3x + 6y + 2z − 18 = Câu 70 Phương trình mặt phẳng (α) qua G(1,1, −2) cắt trục tọa độ A, B, C cho G trọng tâm tam giác ABC: A (α) : 2x + 2y − z − = B (α) : 2x + 2y + z − = 0 0 D (α) : 2x + 2y − z − = C (α) : 2x + 2y + z − = Câu 71 Cho tứ diện ABCD có A(3; -2; 1), B(-4; 0; 3), C(1; 4; -3), D(2; 3; 5) Phương trình tổng quát mp chứa AC song song BD là: A 12x – 10y – 21z – 35 = B 12x – 10y + 21z – 35 = C 12x + 10y + 21z + 35 = D 12x + 10y – 21z + 35 = Câu 72 Trong không gian cho điểm : A(5;1;3), B(1;6;2), C(5;0;4), D(4;0;6) Phương trình mặt phẳng (P) qua AB song song với CD: A (P): 10x +9y -5z +74=0 B (P): 10x +9y -5z -74=0 C (P): 10x +9y +5z +74=0 D (P): 10x +9y +5z -74=0 Câu 73 Phương trình mặt phẳng chứa điểm A(1;0;1) B(-1;2;2) song song với trục Ox là: A x + 2z – = B.y – 2z + = C 2y – z + = D x + y – z = Câu 74 Phương trình tổng quát mp qua hai điểm A(4; -1; 1), B(3; 1; -1) song song trục Ox là: A y + z + = B y – z – = C y + z = D y – z =   Câu 75 PT mặt phẳng (P) qua điểm M(1; 2; –3) có vectơ phương a = (2; 1; 2), b = (3; 2; –1): GV: Phan Đình Lộc - 21 - Trường THPT Đăk Glong Năm học: 2016 – 2017 A –5x + 8y + z – = B –5x – 8y + z – 16 = C 5x – 8y + z – 14 = D 5x + 8y – z – 24 = Câu 76 Phương trình mặt phẳng (α) qua điểm A(3,2, −1) trục Ox: A (α) : 3x + 2y − z − 14 = B (α) : y + 2z = C (α) : x − y − = D (α) : y − 2z − = 0 0 Câu 77 Phương trình mặt phẳng (α) qua điểm A(1,1,3) trục Ox: A (α) : 3y − z = B (α) : 3y + z − = C (α) : x + y − = D (α) : y − 2z + = Câu 78 Phương trình mặt phẳng (α) qua điểm A(3,6, −5) trục Oy: 0 0 B (α) : x + z + = C (α) : x + y − = D (α) : 5x + 3z = A (α) : 3y − z − 23 = Câu 79 Phương trình mặt phẳng (α) qua điểm A(1,3, −2) truïc Oy: B (α) : x + z + = C (α) : 2x + z = D (α) : x + 3z + = A (α) : 2x − z − = 0 0 Câu 80 Phương trình mặt phẳng (α) qua điểm A( −5,2,1) trục Oz: B (α) : y + 2z − = C (α) : x − y + = D (α) : y − 2z = A (α) : 2x + 5y = 0 0 Câu 81 Phương trình mặt phẳng (α) qua điểm A(1,1,3) trục Oz: A (α) : 3y − z = B (α) : x + y − = C (α) : x + z − = D (α) : x − y = 0 0 Câu 82 mp (P) qua A(1; – 1; 4) giao tuyến mp (α): 3x–y – z +1 = (β): x + 2y + z – = là: A 4x + y – = B 2x – 3y – 2z + = C 3x – y – z = D 3x + y + 2x + = Câu 83 Phương trình mặt phẳng (α) qua điểm M(0,0,0) giao tuyến mặt phẳng (P) : 2x + 5y − 6z + = vaø (Q) : 3y + 2z + = 0: 0 0 A (α) : 6x − 9y − 22z = B (α) : 6x + 9y + 22z = C (α) : 6x − 9y + 22z = D (α) : 6x + 9y − 22z = Câu 84 Phương trình mặt phẳng (α) qua điểm M(1,2, −3) giao tuyến mặt phẳng (P) : 2x − 3y + z + = vaø (Q) : 3x − 2y + 5z + 17 = 0: A (α) : 5x − 5y + 6z + 12 = B (α) : 2x − 3y + z + = 0 C (α) : 3x − 2y + 5z + 17 = D (α) : 5x − 5y + 6z − 12 = 0 Câu 85 Phương trình mặt phẳng (α) qua giao tuyến mặt phẳng (P) : 2x + 3y − = vaø 0: (Q) : 2y − 3z − = đồng thời vuông góc với mặt phẳng (R) : 2x + y + z − = 0 B (α) : 2x + 17y − 21z − 39 = A (α) : 2y − 3z − = C (α) : 2x − 11y + 21z + 31 = D (α) : 2x + 3y − = 0 Câu 86 Phương trình mặt phẳng (α) qua giao tuyến mặt phẳng (P) : y + 2z − = vaø 0: (Q) : x + y − z + = đồng thời vuông góc với mặt phẳng (R) : 2x + y + z − = A (α) : y + 2z − = B (α) : x + y − z + = 0 0 C (α) : 3x + y − 7z + 17 = D (α) : 2x + 5y + z + = Câu 87 Phương trình mặt phẳng (α) qua giao tuyến mặt phẳng (P) : x + 2y − z − = vaø (Q) : 2x + y + z + = đồng thời vuông góc với mặt phẳng (R) : x − 2y − 3z + = 0: A (α) : x + 2y − z − = B (α) : 2x + y + z + = C (α) : 3x + 3y + = D (α) : x − y + 2z + = 0 0 Câu 88 Cho điểm: S(4;-4;1), A(2;2;2), B(0;4;1), C(8;8;2) D(10;6;3).Thể tích hình chóp S.ABCD: A V= 30(đvdt) B V= 24(đvdt) C V= 18(đvdt) D V= 12(đvdt) Câu 89 Cho hình lập phương ABCD.A’B’C’D’ cạnh Chọn hệ trục sau: A gốc tọa độ, trục Ox trùng với tia AB, trục Oy trùng với tia AD, trục Oz trùng với tia AA’ Pt mp (B’CD’) là: A x + z – = B.y – z – = C x + y + z – = D x + y + z – = Câu 90 Cho mặt phẳng (P): 2x +3y +6z -18 =0 điểm A(-2;4;-3) Phương trình mp(Q) chứa điểm A song song với (P) A (Q): 2x +3y +6z +10= B (Q):2x +y +z -3 =0 C (Q):2x -y +2z +2 =0 D (Q):2x -3y +6z +2 =0 Câu 91 Phương trình mặt phẳng (P) qua gốc tọa độ O song song với mp(Q): 5x –3y +2z +10=0: A (P): 5x –3y +2z +2 =0 B (P): 5x –3y +2z +1=0 C (P): 5x -3y +2z =0 D (P): 5x +3y -2z =0 GV: Phan Đình Lộc - 22 - Trường THPT Đăk Glong Câu 92 Phương trình mặt phẳng qua A ( 2;6; −3) song song với ( Oyz): Năm học: 2016 – 2017 A y = B z = −3 C x = D x + z = 12 Câu 93 Cho hai mặt phẳng (Q ): 3x – y + 4z + = (Q ): 3x – y + 4z + = Phương trình mặt phẳng (P) song song cách hai mặt phẳng (Q ) (Q ) là: A (P): 3x – y + 4z + 10 = B (P): 3x – y + 4z + = C (P): 3x – y + 4z – 10 = D (P): 3x – y + 4z – = Câu 94 Cho điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 6), D(2; 4; 6) Phương trình mặt phẳng qua A song song với mặt phẳng (BCD): A 6x – 3y – 2z – 12 = B 6x – 3y – 2z + 12 = C 3x + 2y – 6z + = D 3x – 2y + 6z – = Câu 95 Phương trình mặt phẳng (α) qua điểm M(2,1,5) song song với mặt phẳng (Oxy): A (α) : z − = B (α) : z + = C (α) : z − = D (α) : z − = 0 0 Câu 96 Phương trình mặt phẳng (α) qua điểm M(2,1,5) song song với mặt phẳng (Oxz): A (α) : y − = B (α) : y + = C (α) : y − = D (α) : y − = 0 0 Câu 97 Cho A(1;0;-2), B(0;-4;-4), (P): x − y + z + = Ptmp (Q) chứa đường thẳng AB ⊥ (P) là: A 2x – y – z – = B 2x + y – z – = C 2x – z – = D 4x + y –4 z – 12 = Câu 98 Trong không gian Oxyz viết phương trình mặt phẳng (P) qua điểm A(2;0; −1); B(1; −2;3) vng góc với mặt phẳng (Q): x − y + z + =0 A 2x + 5y + 3z + = C x − y + 3z − =0 D 2x − z − = 0 B x + y + z − =0 Câu 99 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1),B(–1;1;3) mặt phẳng (P): Phương trình mặt phẳng (Q) qua hai điểm A,B vng góc với mặt phẳng (P) x –3y + z – = A (Q) : y + 3z − 11 = B (Q) : y + 3z − 11 = 0 C (Q) : y + 3z + 11 = D (Q) : y + 3z + 11 = 0 Câu 100 PTTQ mặt phẳng (α) chứa Ox vng góc với mặt phẳng (Q): 3x –4y +5z -12 =0 A (α): x-z =0 B (α): x +y=0 C (α): 5y –4z =0 D (α):5y +4z =0 Câu 101 Phương trình tổng qt mặt phẳng (β) chứa Oy vng góc với mp(R): x+y +z –1 =0 A (β): x +y =0 B (β):y –4z =0 C (β):x –z =0 D (β): x+z =0 Câu 102 Phương trình tổng quát mặt phẳng (γ) chứa Oz vng góc với mặt phẳng (T): x-y-z +1 =0 A (γ): x –z=0 B (γ): x +y=0 C (γ): x +z =0 D (γ): x-y =0 Câu 103 PTTQ (Q) qua B(1;2;3), vng góc với mp(P) : x -y +z -1 =0 song song với Oy A (Q): x-z +2 =0 B (Q): x+z -4=0 C (Q):2x -z +1 =0 D (Q): x +2z -7=0 Câu 104 PTTQ (R) qua C(1;1;-1), vng góc với mp(P): x +2y +3z -1 =0 song song với Oz A ( R): 2x -y -1 =0 B ( R): x-y =0 C ( R):x +y -2=0 D ( R):2x +y -3 =0 Câu 105 Phương trình tổng quát mp(α) chứa Ox vng góc với (Q): 3x –4y +5z -12 =0 là: A (α): x-z =0 B (α): x +y=0 C (α): 5y –4z =0 D (α):5y +4z =0 Câu 106 Phương trình mặt phẳng (P) chứa trục Oy vng góc mặt phẳng (Q): 2x – z – = là: A x + y – 2z = B x + 2z = C x – 2z = D x + 2z – = Câu 107 Phương trình mp(P) qua giao tuyến Δ hai mp(Q): 2x -y -12z -3=0 (R ): 3x +y -7z-2=0 vng góc với mặt phẳng (π): x+2y+6z -1=0 là: A (P): 4x-3y -2z -1=0 B (P): 4x-3y +2z -1=0 C (P): 4x-3y +2z +1=0 D (P): 4x+3y -2z +1=0 x= 1+ t +1 y −1 z +1  Câu 108 (P) qua A(4; –3; 1) song song với hai đường thẳng (d ): x= có = 2 d :  y = 3t  z= + 2t  pt : A –4x–2y +5z+ 5= B 4x + 2y–5z+5 = C –4x+2y+5z+5 = D 4x+2y+5z+5 = Câu 109 Phương trình mặt phẳng (P) qua gốc tọa độ O vng góc với hai mặt phẳng: (R ): 2x –y +3z –1=0; (π): x +2y +z =0 A (P): 7x –y –5z =0 B (P): 7x –y +5z =0 C (P): 7x +y –5z =0 D (P): 7x +y +5z =0 GV: Phan Đình Lộc - 23 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 110 Cho điểm I(2;6;-3) mặt phẳng (P): x –2 =0 ; (Q):y – = ; (R): z + = Trong mệnh đề sau tìm mệnh đề sai : A (P) qua I B (Q) // (xOz) C (R) // Oz D (P) ⊥ (Q) Câu 111 Trong không gian Oxyz cho hai mặt phẳng () : x  2y  3z   ( ) : 2x  4y  6z   Trong khẳng định sau khẳng định ? A (),( ) trùng B () / /( ) C () cắt ( ) D () cắt vng góc ( ) Câu 112 Cho mp (P): x + 2y – z – = ; (Q): 2x – y + 3z +13 = 0; (R): 3x – 2y + 3z +16 = cắ t ta ̣i điể m A To ̣a đô ̣ điể m A là: A A(1;2;3) B A(1;-2;3) C A(-1;-2;3) D A(-1;2;-3) Câu 113 Trong Oxyz, cho (P): x − 3y + 2z = Chọn khẳng định (Q): 2x − 2y − 4z+1 = A (P) (Q) cắt khơng vng góc B (P) song song với (Q) C (P) (Q) vng góc D (P) trùng với (Q) Câu 114 Cho mp (P): x – 2y + = (Q): –x + 2y + = Chọn mệnh đề mệnh đề sau: A (P) // (Q) B (P) cắt (Q) C (P) ≡ (Q) D (P) ⊥ (Q) Câu 115 Cho mp (P): 2x + y = Mp ⊥ (P) A x – y + z + = B x– 2y + z – = C 2x – y + z – = D –2x – y = Câu 116 Định giá trị m n để hai mặt phẳng sau song song với nhau: (P): 2x +my +3z –5=0 (Q): nx –6y –6z +2=0 A m=1; n=-2 B m=3; n=4 C m=-3; n=4 D m=3; n=-4 Câu 117 Xác định m để hai mặt phẳng sau vng góc: (P): (2m – 1)x – 3my + 2z – = (Q): mx + (m – 1)y + 4z – = A m = –2 m = B m = –2 m = C m = m = D m = –4 m = Câu 118 Định giá trị m để hai mặt phẳng sau vng góc với nhau: (P): 3x –5y +mz –3=0 (Q): mx +3y +2z+ 5=0 A m=1 B m=2 C m=3 D m=4 Câu 119 Định giá trị m n để hai mặt phẳng sau song song với nhau: (α): 3x -y +mz –9=0 (β): 2x +ny +2z -3=0 A m=3/2; n=1 B m=3; n=2/3 C m=3; n=-2/3 D m=-3; n=2/3 Câu 120 Cho mp (P): 2x + y + mz – = (Q): x + ny + 2z + = (P) // (Q) khi: A m = n = B m = n = C m = n = D m = n = Câu 121 Góc hai mp (P) (Q) qua M(1; –1; –1), với (P) chứa trục Ox, (Q) chứa trục Oz : A 300 B 600 C 900 D 450 Câu 122 Xác định góc (φ) hai mặt phẳng (P): x +2y +2z –3=0 (Q): 16x +12y –15z +10=0 A φ= 30º B φ= 45º C cosφ = 2/15 D φ= 60º Câu 123 Cho hai mp (P): x + 5y – z + = (Q): 2x – y + z + = Gọi cos ϕ góc hai mp (P) (Q) giá trị cos ϕ bằng: A B C D 5 Câu 124 Cho (P): 2x +3y +6z -18 =0 điểm A(-2;4;-3) Tính khoảng cách d mặt phẳng (P) A A d=6 B d=5 C d=3 D.4 Câu 125 Tı́nh khoảng cách từ điể m A(1;2;3) đế n mp(P) : 2x – y + 2z + = A d=5 B d=4 C d=3 D.2 Câu 126 Tı́nh khoảng cách từ điể m M(3;3;6) đế n mp(P) : 2x – y + 2z + = 10 10 3 B C D A 3 Câu 127 Go ̣i A, B, C lầ n lươ ̣t là hı̀nh chiế u của điể m M(2;3;-5) xuố ng mp(Oxy) ,(Oyz) ,(Ozx) Tı́nh khoảng cách từ M đế n mp(ABC) A B C D.Mô ̣t đáp số khác Câu 128 Trong mặt phẳng Oxyz, cho tứ diện ABCD có A(2; 3; 1), B(4; 1; –2), C(1; 3; 2), D(–2; 3; –1) Độ dài đường cao kẻ từ D tứ diện GV: Phan Đình Lộc - 24 - Trường THPT Đăk Glong Năm học: 2016 – 2017 A B C D Câu 129 Cho điể m A(-1;2;1) B(-4;2;-2) C(-1;-1;-2) D(-5;-5;2) Tı́nh khoảng cách từ D đế n mp(ABC) A B C 3 D Câu 130 Khoảng cách mặt phẳng (P) x+2y+2z+11=0 (Q) x+2y+2z+2=0 là: A B C D Câu 132 Khoảng cách hai mặt phẳng : (P): x + y - z + = 0.và (Q) : 2x + 2y - 2z + = là: B C 7/2 D A 3 Câu 133 Cho hai mặt phẳng (P): 2x – 3y + 6z + = (Q): 4x – 6y + 12z + 18 = Tính khoảng cách hai mặt phẳng (P) (Q) A B C D Câu 134 Mặt cầu tâm I(4;2;-2) tiếp xúc với mặt phẳng (P) : 12x - 5z – 19 = có bán kính là: A 39 B C 13 D 39/13 Câu 135 Trong không gian với hệ trục tọa độ Oxy, cho mặt cầu ( S ) : x + y + z + x − y − z + m − = Tìm số thực m để  : 2x  y  2z   cắt (S) theo đường trịn có chu vi 8 B −4 C −1 D −3 A −2 Câu 136 Phương trình mặt cầu (S) có tâm I(1; 5; 2) tiếp xúc với mặt phẳng (P): 2x + y + 3z + = là: A (S): (x – 1)² + (y – 5)² + (z – 2)² = 16 B (S): (x – 1)² + (y – 5)² + (z – 2)² = 12 C (S): (x – 1)² + (y – 5)² + (z – 2)² = 14 D (S): (x – 1)² + (y – 5)² + (z – 2)² = 10 2 Câu 137 Cho mặt cầu ( S ) : ( x − 1) + ( y + 3) + ( z − ) = 49 Phương trình sau phương trình mặt phẳng tiếp xúc với mặt cầu (S)? A 6x + y + 3z = B 2x + y + 6z-5 = D x + y + 2z-7 = C 6x + y + 3z-55 = 0 Câu 138 Cho mặt phẳng: (P): 2x -y +2z -3=0 điểm A(1;4;3) Lập phương trình mặt phẳng (π) song song với mp(P) cách điểm A cho đoạn A (π): 2x -y +2z -3 =0 B (π): 2x -y +2z +11=0 C (π): 2x -y +2z -19=0 D B, C Câu 139 Cho mặt phẳng (P): 2x –y +2z –3 =0 Lập phương trình mặt phẳng (Q) song song với mặt phẳng (P) biết (Q) cách điểm A(1;2;3) khoảng A (Q): 2x –y +2z +9=0 B (Q): 2x –y +2z + 15 =0 C (Q): 2x –y +2z – 21=0 D A, C Câu 140 Viết phương trình mặt phẳng (P) song song với (Q): x + 2y – 2z + = cách điểm A(2; –1; 4) đoạn A x + 2y – 2z + 20 = x + 2y – 2z – = B x + 2y – 2z + 12 = x + 2y – 2z – = C x + 2y – 2z + 20 = x + 2y – 2z – = D x + 2y – 2z + 12 = x + 2y – 2z + = Câu 141 Cho mặt phẳng: (P): 2x -y +2z -3=0 Lập phương trình mặt phẳng (Q) song song với mp(P) cách (P) đoạn A (Q): 2x -y +2z +24=0 B (Q): 2x -y +2z -30=0 C (Q): 2x -y +2z -18=0 D Cả Avà B Câu 142 Viết phương trình mặt phẳng (α) qua M(2,1, 4) cắt tia Ox, Oy, Oz A, B, C cho OA = OB = OC B (α) : x + 2y + z − = A (α) : x + y + z − = 0 0 C (α) : x + 2y + 2z − 12 = D (α) : x + 2y + 3z − 16 = Câu 143 Viết phương trình mặt phẳng (α) qua M(2,1, 4) cắt tia Ox, Oy, Oz A, B, C cho tam giác ABC A (α) : x + y + z − = B (α) : x + 2y + z − = 0 C (α) : x + 2y + 2z − 12 = D (α) : x + 2y + 3z − 16 = 0 Câu 144 Viết phương trình mặt phẳng (α) qua M(−1,2, 4) cắt tia Ox, Oy, Oz A, B, C cho tam giác ABC ñeàu A (α) : x + y + z − = B (α) : x + 2y + z − = 0 C (α) : x + 2y + 2z − 12 = D (α) : x + 2y + 3z − 16 = 0 GV: Phan Đình Lộc - 25 - Trường THPT Đăk Glong Năm học: 2016 – 2017 Câu 145 Cho P(1;1;1), Q(0;1;2), (α ) : x − y + z + = Tọa độ điểm M có tung độ 1, nằm (α ) thỏa mãn MP = MQ có hồnh độ là: A B −1 C D Câu 146 Điểm H mp (Oyz), cách điểm A(3; −1; 2), B(1; 2; −1), C (−1;1; −3) Khi H có tọa độ là: A H (0;− 31 ;− ) 18 18 B H (0; 17 ;− ) 9 C H (0;− 17 ;− ) 21 21 D H (0;− 29 ;− ) 18 18 Câu 147 Điểm K mp (Oxz), cách điểm A(1; 0; 2), B(−2;1;1), C (1; −3; −2) Khi K có tọa độ là: ;0;− ) 15 A K ( B K ( ;0;− ) 24 C K (− 21 ;0;− ) D K ( −3 ;0;− ) 14 14 Câu 148 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 1; 0), B(3; 0; 5), C(2; 2; 1) Gọi M điểm chạy mặt phẳng Oyz P = MA² + MB² + MC² đạt giá trị nhỏ M có tọa độ là: A (0; 2; 1) B (0; 1; 3) C (0; 2; 3) D (0; 1; 2) Câu 149 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; 0), B(0; 1; 5), C(2; 0; 1) Gọi M điểm chạy mặt phẳng Oyz Giá trị nhỏ P = MA² + MB² + MC² là: A 23 B 25 C 27 D 21 Câu 150 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 1; 2) Tìm điểm N thuộc mặt phẳng Oxy cho độ dài đoạn thẳng MN ngắn A (1; 1; 0) B (1; 2; 2) C (2; 1; 0) D (2; 2; 0) Câu 151 Trong không gian với hệ tọa độ Oxyz,  cho các điểm A(1; 2; 3), B(3; 2; 1) Gọi M điểm thuộc mặt phẳng Oxy Tìm tọa độ M để P = | MA + MB | đạt giá trị nhỏ A (1; 2; 1) B (1; 1; 0) C (2; 1; 0) D (2; 2; 0) Câu 152 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) mặt phẳng (P): 2x – y – z + = Tìm tọa độ điểm M thuộc (P) cho MA = MB = A (3; –2; 3) B (2; 0; 4) C (–1; 0; 2) D (0; 1; 3) Câu 153 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(–1; 2; 3), B(1; 0; –5) mặt phẳng (P): 2x + y – 3z – = Tìm tọa độ điểm M thuộc (P) cho điểm A, B, M thẳng hàng A (0; 1; 2) B, (–2; 1; –3) C (0; 1; –1) D (3; 1; 1) Câu 154 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1) Tìm tọa độ điểm M thuộc mặt phẳng (α): 2x + 2y + z – = cho MA = MB = MC A (2; 1; 3) B (–2; 5; 7) C (2; 3; –7) D (1; 2; 5) Câu 155 Tìm giá trị tung độ điểm M thuộc Oy cho M cách mặt phẳng ( P) : x − y − = z + 0,(Q) : x + y −= 6z − 22 11 A m = B m = −2 C m = D m = 10 GV: Phan Đình Lộc - 26 - ... – 2z + 20 = x + 2y – 2z – = B x + 2y – 2z + 12 = x + 2y – 2z – = C x + 2y – 2z + 20 = x + 2y – 2z – = D x + 2y – 2z + 12 = x + 2y – 2z + = Câu 141 Cho mặt phẳng: (P): 2x -y +2z -3=0 Lập phương... GV: Phan Đình Lộc - 16 - Trường THPT Đăk Glong Năm học: 20 16 – 20 17 C (Q): 3x – 2y – 2z + = D (Q): 3x + 2y – 2z – = Câu 12 Trong không gian Oxyz, cho điểm A (2; –1; 1), B(3; 4; 4), C(–3; 2; 0)... AC song song BD là: A 12x – 10y – 21 z – 35 = B 12x – 10y + 21 z – 35 = C 12x + 10y + 21 z + 35 = D 12x + 10y – 21 z + 35 = Câu 72 Trong không gian cho điểm : A(5;1;3), B(1;6 ;2) , C(5;0;4), D(4;0;6)

Ngày đăng: 16/06/2017, 09:42

TỪ KHÓA LIÊN QUAN

w