MỘT SỐ BẤT ĐẲNG THỨC TÍCH PHÂN CHO TOÁN TỬ ĐẠO HÀM TRÊN THANG THỜI GIAN VÀ ÁP DỤNG

153 423 0
MỘT SỐ BẤT ĐẲNG THỨC TÍCH PHÂN CHO TOÁN TỬ ĐẠO HÀM TRÊN THANG THỜI GIAN VÀ ÁP DỤNG

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO TRNG I HC QUY NHN TRN èNH PHNG MT S BT NG THC TCH PHN CHO TON T O HM TRấN THANG THI GIAN V P DNG LUN N TIN S TON HC BèNH NH - NM 2017 B GIO DC V O TO TRNG I HC QUY NHN TRN èNH PHNG MT S BT NG THC TCH PHN CHO TON T O HM TRấN THANG THI GIAN V P DNG Chuyờn ngnh: Toỏn Gii Tớch Mó s: 62.46.01.02 Phn bin 1: Phn bin 2: Phn bin 3: TP TH HNG DN: PGS TS inh Thanh c GS TSKH V Kim Tun BèNH NH - NM 2017 Li cam oan Lun ỏn ny c hon thnh ti Trng i hc Quy Nhn, di s hng dn ca PGS TS inh Thanh c v GS TSKH V Kim Tun Tụi xin cam oan õy l cụng trỡnh nghiờn cu khoa hc ca tụi Cỏc kt qu Lun ỏn l trung thc, c cỏc ng tỏc gi cho phộp s dng v cha tng c cụng b trc ú Tỏc gi Trn ỡnh Phng Li cm n Lun ỏn c thc hin v hon thnh ti Trng i hc Quy Nhn di s hng dn nhit tỡnh v y tn tõm ca PGS TS inh Thanh c v GS TSKH V Kim Tun Trc tiờn, tỏc gi xin by t lũng bit n sõu sc n Thy inh Thanh c, ngi ó hng dn tỏc gi t nhng bc i u tiờn nghiờn cu khoa hc, Thy khụng ch hng dn mt cỏch tn tỡnh, nh hng, giỳp tỏc gi vt qua khú khn quỏ trỡnh nghiờn cu khoa hc m cũn s quan tõm giỳp v mt vt cht ln tinh thn cho tỏc gi sut quỏ trỡnh hc v nghiờn cu ca mỡnh Tỏc gi xin by t lũng bit n chõn thnh n Thy V Kim Tun, ngi ó nhit tõm giỳp tỏc gi quỏ trỡnh nghiờn cu khoa hc v giỳp tỏc gi hc hi thờm c nhiu iu v nghiờn cu khoa hc v cuc sng mc dự thi gian lm vic chung vi tỏc gi khụng nhiu Tỏc gi xin trõn trng gi li cm n chõn thnh n Ban Giỏm hiu Trng i hc Quy Nhn, Phũng o to sau i hc, Khoa Toỏn cựng Quý thy cụ giỏo ging dy lp nghiờn cu sinh Toỏn gii tớch khúa ó tn tỡnh giỳp v to mi iu kin thun li cho tỏc gi sut thi gian hc v nghiờn cu Tỏc gi xin chõn thnh cm n Thy Nguyn D Vi Nhõn Thy ó giỳp tỏc gi tn tỡnh quỏ trỡnh nghiờn cu khoa hc cng nh vic hon thnh Lun ỏn Cui cựng, tỏc gi xin c t lũng bit n chõn thnh n gia ỡnh, bn bố, nhng ngi luụn sỏt cỏnh ng viờn, chia s giỳp tỏc gi hon thnh Lun ỏn Mc lc Danh mc cỏc ký hiu iii M u Chng Mt s kin thc c bn v gii tớch trờn thang thi gian 1.1 Cỏc nh ngha c bn 1.2 Phộp tớnh vi phõn 11 1.3 Phộp tớnh tớch phõn 14 Chng Bt ng thc loi Opial trờn thang thi gian v ỏp dng 22 2.1 Bt ng thc loi Opial cho hm mt bin 24 2.2 Bt ng thc loi Opial cho hm nhiu bin 38 2.3 Mt s ỏp dng 68 Chng Tớnh dao ng ca mt s phng trỡnh ng lc trờn thang thi gian 77 3.1 Bt ng thc loi Lyapunov trờn thang thi gian 79 3.2 Tớnh dao ng ca phng trỡnh thun nht 84 3.3 Tớnh dao ng ca phng trỡnh khụng thun nht 92 Chng ng nht thc loi Picone trờn thang thi gian v ỏp dng 110 i 4.1 Mt s ng nht thc v bt ng thc loi Picone 112 4.2 Bt ng thc loi Wirtinger v loi Hardy trờn thang thi gian 118 4.3 nh lý Ried cho mt lp h ng lc cp mt 124 Kt lun 130 Danh mc cỏc cụng trỡnh ca tỏc gi 133 Ti liu tham kho 134 Ch mc 144 ii Danh mc cỏc kớ hiu T : Thang thi gian R : Tp cỏc s thc Z : Tp cỏc s nguyờn N : Tp cỏc s t nhiờn T \ ((sup T), sup T] nu sup T < : T nu sup T = T [a, b]T : [a, b] T : Toỏn t nhy tin : Toỏn t nhy lựi : Hm ht : Toỏn t o hm trờn thang thi gian f : f [a, b] T [a, b) T : (a, b] T (a, b) T I nu a < (a) v (b) < b, nu a < (a) v (b) = b, nu a = (a) v (b) < b, nu a = (a) v (b) = b I0 : (a, b) T Ia : [a, ) T n : Thang thi gian n chiu x : (x1 , , xn ) n xy : xj yj vi mi j [1, n]N : a ch s = (1 , , n ) : (1, , 1) (b) : (1 1 (b1 ), , nn (bn )) (hay [a, b]) : {x n : a x b} x : {x n : a x (b)} : {t n : a t x} iii x : {t n : x t (b)} : [a2 , b2 ]T2 ì ã ã ã ì [an , bn ]Tn f (x)x : f (x) x : AC(I) bn b1 ã ã ã an f (x1 , , xn )x1 a1 || f (x) x1 ãããn xnn ã ã ã xn : Tp tt c cỏc hm s nhn giỏ tr thc v liờn tc tuyt i trờn mi on úng ca I Crd (I) : Tp tt c cỏc hm s nhn giỏ tr thc v rd-liờn tc trờn I C1rd (I) : Tp tt c cỏc hm s nhn giỏ tr thc, xỏc nh trờn I cho cỏc o hm ca chỳng thuc lp Crd (I) Lp (I), p : Tp tt c cỏc hm s o c f xỏc nh trờn I cho I |f (x)|p x < Lp ([a, b]T , ), p : Tp tt c cỏc hm s f o c, xỏc nh trờn [a, b]T cho b |f (x)|p (x)x a < , ú W([a, b]T ) Lpa ([a, b]T , ), p : Tp tt c cỏc hm s f AC([a, b]T ) cho f Lp ([a, b]T , ) v f cú mt khụng im tng quỏt l a f g g : : f g 1+àg g 1+àg ef (ã, x0 ) : Nghim nht ca bi toỏn y = f (x)y, Gp (t), p > : |t|p1 sign(t) P(I0 ) : Tp tt c cỏc nghim (u, v) ca h ng lc phi tuyn u = Au + BG f (x0 ) = +1 (v) v = CG+1 (u ) Dv ú A, B, C v D thuc lp hm Crd (I0 ) vi B > v A, D R+ , cho u khụng cú khụng im tng quỏt I0 iv R : Tp tt c cỏc hm hi quy R+ : Tp tt c cỏc hm hi quy f tha + à(x)f (x) > vi mi x T U(a, b) : Tp tt c cỏc hm th Cn rd () : Tp tt c cỏc hm s f : R cú cỏc o hm riờng k1 +ããã+kj f (x) k k x1 ãããj xj j vi kj [1, j ]N , j [1, n]N l cỏc hm rd-liờn tc W() Lpa (, , ), p : Tp tt c cỏc hm trng trờn n () : Tp tt c cỏc hm s f : R thuc lp Crd cho v | kj f (x) = vi kj [0, j 1]N , j [1, n]N , k j xj j xj =aj f (x) p | (x)x x < , ú W() Lpa ([a, b], ), p : Tp tt c cỏc hm s f : [a, b] R thuc lp Cnrd1 ([a, b]) cho f cú khụng im tng quỏt l a v b f (x) p | x1 | (x)x a v < , ú W([a, b]) M u Bt ng thc khụng ch xut hin v úng mt vai trũ quan trng hu ht cỏc lnh vc ca toỏn hc thun tỳy, toỏn ng dng m cũn cú nhiu ng dng nhiu lnh vc khỏc ca cuc sng, chng hn nh khoa hc t nhiờn, khoa hc k thut v kinh t Cỏc bt ng thc hm l mt nhng c s quan trng xõy dng gii tớch núi chung v lnh vc phng trỡnh vi phõn, o hm riờng v tớch phõn núi riờng Trong lnh vc phng trỡnh vi phõn, tớch phõn v o hm riờng, cỏc bt ng thc tớch phõn cho toỏn t o hm l nhng cụng c vụ cựng hu hiu vic nghiờn cu cỏc tớnh cht nh tớnh v nh lng cho nghim ca cỏc lp phng trỡnh ny Mt s i din quan trng ca lp cỏc bt ng thc tớch phõn cho toỏn t o hm l cỏc bt ng thc Opial, Wirtinger v Hardy Di gúc gii tớch thun tỳy, cú th thy rng bt ng thc Opial l dng ni suy ca bt ng thc Poincarộ mt chiu vi mt s iu kin biờn no ú, bt ng thc Wirtinger l dng ca bt ng thc Poincarộ mt chiu i vi cỏc hm tun hon Nm 1960, Opial [63] nh toỏn hc ngi Ba Lan ó a bt ng thc b |f (x)f (x)|dx b b |f (x)|2 dx, (0.1) ú f l hm liờn tc tuyt i v xỏc nh trờn [0, b], nhn giỏ tr phc cho f (0) = f (b) = Trong Bt ng thc (0.1), 4b l hng s tt nht cú th Nm 1962, Beesack [17] ó chng minh rng: Nu f l hm liờn tc tuyt i v xỏc nh trờn [0, b], nhn giỏ tr phc cho f (0) = 0, thỡ b |f (x)f (x)|dx b b |f (x)|2 dx, (0.2) ú 2b l hng s tt nht cú th, ng thc xy v ch f (x) = cx, vi c l hng s Ngay sau ú, nhiu nh toỏn hc trờn th gii ó quan tõm nghiờn cu, phỏt trin, m rng v tng quỏt húa cỏc bt ng thc Opial (0.1) v (0.2) theo nhiu hng khỏc ng thi cng ó a cỏc dng ri rc tng ng Nm 1968, Willett [98] ln u tiờn a mt m rng cho Bt ng thc Kt lun Mc ớch chớnh ca Lun ỏn l thit lp mt s bt ng thc tớch phõn cho toỏn t o hm trờn thang thi gian nh bt ng thc loi Opial, loi Wirtinger, loi Hardy v cỏc ỏp dng ca chỳng lnh vc phng trỡnh v h phng trỡnh ng lc trờn thang thi gian Lun ỏn c chia lm chng khụng bao gm Mc lc, Danh mc cỏc kớ hiu, Ti liu tham kho v Danh mc cỏc cụng trỡnh ca tỏc gi Chng trỡnh by tt c s toỏn hc gii tớch trờn thang thi gian Cỏc Chng 2, v l cỏc chng trng tõm ca Lun ỏn Chng bao gm nhiu dng khỏc ca bt ng thc Opial trờn thang thi gian trng hp mt hoc nhiu bin cui chng, chỳng tụi a mt s ỏp dng ca bt ng thc loi Opial trờn thang thi gian Trong Chng 3, chỳng tụi trung nghiờn cu tớnh dao ng ca mt s phng trỡnh ng lc trờn thang thi gian bng cỏch xột bi toỏn v s phõn b ca cỏc khụng im tng quỏt ca nghim Chỳng tụi dnh Chng thit lp ng nht thc loi Picone trờn thang thi gian cho nghim ca mt lp h phng trỡnh ng lc phi tuyn cp v s dng nú c lng tiờn nghim cho mt s phng trỡnh v h phng trỡnh ng lc trờn thang thi gian Theo ú, chỳng tụi thu c mt s bt ng thc loi Wirtinger v loi Hardy mi trờn thang thi gian v ỏp dng chỳng nghiờn cu tớnh cht nh tớnh cho nghim ca h ng lc m chỳng tụi ang xột C th hn, Lun ỏn ó t c cỏc kt qu chớnh sau õy: Thit lp mt s bt ng thc tớch phõn cú trng cho toỏn t o hm tỏc ng lờn tớch cỏc hm s trờn thang thi gian, mt s bt ng thc tớch phõn cú trng cho toỏn t o hm tỏc ng lờn hp ca cỏc hm s trờn thang thi gian T ú, ỏp dng thit lp mt s bt ng thc loi Opial tng quỏt trờn thang thi gian Bờn cnh ú, chỳng tụi cũn ỏp dng cỏc kt qu mi ny thit lp mt s bt ng thc loi Lyapunov trờn thang thi gian, hu ớch v cn thit vic nghiờn cu cỏc liờn quan n nghim ca s mt lp phng trỡnh 130 ng lc na tuyn tớnh nh: tớnh khụng tiờu im, tớnh dao ng, cỏc chn di ca cỏc giỏ tr riờng, khong cỏch gia cỏc khụng im tng quỏt ca nghim, m s lng khụng im tng quỏt c bit, chỳng tụi ó gii mt bi toỏn m Saker t [84] Nhn c mt s kt qu v s phõn b cỏc khụng im tng quỏt ca nghim ca mt s lp phng trỡnh ng lc khụng thun nht trờn thang thi gian C th, nhn c mt s iu kin cho tớnh khụng tiờu im, tớnh khụng dao ng ca cỏc lp phng trỡnh ny Bờn cnh ú, thit lp mt s bt ng thc loi Lyapunov, loi Hartman trờn thang thi gian phc v cho vic nghiờn cu tớnh dao ng ca mt lp phng trỡnh ng lc khụng thun nht trờn thang thi gian Thit lp mt s bt ng thc loi Opial cho hm nhiu bin Thit lp mt s ng nht thc v bt ng thc loi Picone cho mt lp h phng trỡnh ng lc cp mt trờn thang thi gian c bit, kt qu ca chỳng tụi hiu chnh v tng quỏt húa kt qu ca Saker, Mahmoud v Peterson [87] T ú, chỳng tụi nhn c bt ng thc loi Wirtinger trờn thang thi gian v bt ng thc loi Hardy trờn thang thi gian Bờn cnh ú, chỳng tụi ỏp dng cỏc kt qu mi nghiờn cu nh tớnh nghim ca mt lp h phng trỡnh ng lc cp mt trờn thang thi gian C th, nhn c nh lý hoỏn v vũng quanh Ried, nh lý tỏch Sturm, nh lý so sỏnh Sturm v mt nguyờn lý bin phõn lý thuyt dao ng Cỏc kt qu trờn l mi v l nhng úng gúp thc s vo hng nghiờn cu v cỏc bt ng thc tớch phõn cho toỏn t o hm trờn thang thi gian v ỏp dng Chỳng cú ý ngha khoa hc, mang tớnh thi s v c s quan tõm ca nhiu tỏc gi lnh vc nghiờn cu ca Lun ỏn Trờn c s nhng kt qu thu c Lun ỏn, chỳng tụi d kin tng lai s nghiờn cu cỏc sau: Thit lp cỏc bt ng thc tớch phõn cho toỏn t o hm bc khụng nguyờn nh bt ng thc loi Opial, loi Wirtinger v loi Hardy trờn thang thi 131 gian v ỏp dng ca chỳng Thit lp ng nht thc v bt ng thc loi Picone cho cỏc h phng trỡnh vi phõn bc khụng nguyờn trờn thang thi gian Nghiờn cu tớnh dao ng ca cỏc phng trỡnh, h phng trỡnh vi phõn bc khụng nguyờn trờn thang thi gian Xõy dng mt s dng bt ng thc Lyapunov trờn thang thi gian cho mt s lp h phng trỡnh ng lc trờn thang thi gian T ú ỏp dng, nghiờn cu tớnh dao ng nghim ca cỏc lp h phng trỡnh ny Thit lp mt s bt ng thc hm quan trng nh Poincarộ, PoincarộWirtinger, Hardy-Littlewood, trờn thang thi gian v ng dng ca chỳng Thit lp cỏc bt ng thc ma trn trờn thang thi gian, nghiờn cu cỏc phng trỡnh ma trn trờn thang thi gian Thit lp cỏc tiờu chun dao ng loi Leighton-Wintner v loi Hinton-Lewis cho mt s lp h phng trỡnh ng lc phi tuyn 132 Danh mc cụng trỡnh ca tỏc gi (1) N D V Nhan, D T Duc V K Tuan, and T D Phung (2016), Dynamic Picones identity and its applications, J Math Anal Appl., (ó gi ng) (2) N D V Nhan, T D Phung, D T Duc, and V K Tuan (2017), Opial and Lyapunov inequalities on time scales and their applications to dynamic equations, Kodai Math J., 40, 254277 (3) T D Phung (2017), Some inequalities for partial derivatives on time scales, Acta Math Vietnam., 42, 369394 (4) T D Phung and D T Duc (2017), New Opial-type inequalities on time scales, Tp khoa hc-Trng H Quy Nhn, Tp 11, S 1, 4759 (5) T D Phung, N D V Nhan, D T Duc, and V K Tuan (2016), Disfocality and disconjugacy for second order forced dynamic equations, (tin n phm) 133 Ti liu tham kho [1] R P Agarwal (1983), An integro-differential inequality, General Inequalities III, eds E F Beckenbach and W Walter, Birkhăauser, Basel, 503, 501503 [2] R P Agarwal, M Bohner, S R Grace, and D ORegan (2005), Discrete Oscillation Theory, Hindawi Publishing Corporation, New York [3] R Agarwal, M Bohner, and A Peterson (2001), Inequalities on time scales: A survey, Math Inequal Appl., 4, 535557 [4] R P Agarwal, M Bohner, and P Rehỏk (2003), Half-linear dynamic equations, Nonlinear Analysis and Applications: To V Lakshmikantham on his 80th Birthday, Vol 1,2, 157 (Kluwer Academic Publishers, Dordrecht, 2003) ă [5] R P Agarwal, E C etin, and A Ozbekler, Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales, RACSAM, DOI 10.1007/s13398-016-0290-6, 16 pages [6] R P Agarwal, V O Espinar, K Perera, and D R Vivero (2006), Basic properties of Sobolevs spaces on time scales, Adv Difference Equ., 2006, Article ID 38121, 114 [7] R P Agarwal, V O Espinar, K Perera, and D R Vivero (2008), Wirtingers inequalities on time scales, Canad Math Bull., 51, 161171 ă [8] R P Agarwal and A Ozbekler (2015), Disconjugacy via Lyapunov and VallộePoussin type inequalities for forced differential equations, Appl Math Comput., 265, 456468 134 ă [9] R P Agarwal and A Ozbekler (2015), Lyapunov type inequalities for second order sub and super-half-linear differential equations, Dyn Syst Appl., 24, 211220 [10] R Agarwal, D Oregan, and S H Saker (2014), Dynamic Inequalities on Time Scales, Springer International Publishing, Switzerland [11] R P Agarwal and P Y H Pang (1995), Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht [12] S Ahmad (1983), On Sturmian theory for second order systems, Proc Amer Math Soc., 87, 661665 [13] W Allegretto (2001), Sturm theorems for degenerate elliptic equations, Proc Amer Math Soc., 129, 30313035 [14] M Andric, A Barbir, and J Pecaric (2014), Generalizations of Opial-type inequalities in several independent variables, Demonstr Math., XLVII, 839 847 [15] M Anwar, R Bibi, M Bohner, and J Pecaric (2011), Integral inequalities on time scales via the theory of isotonic linear functionals, Abstr Appl Anal., 2011, Article ID 483595, 16 pages [16] P R Beesack (1961), Hardys inequality and its extensions, Pacific J Math., 11, 3961 [17] P R Beesack (1962), On an integral inequality of Z Opial, Trans A mer Math Soc., 104, 470475 [18] M Bohner, S Clark, and J Ridenhour (2002), Lyapunov inequalities for time scales, J Inequal Appl., 7, 6177 [19] M Bohner and G Sh Guseinov (2004), Partial differentiation on time scales, Dynam Systems Appl., 13, 351379 [20] M Bohner and B Kaymakácalan (2001), Opial inequalities on time scales, Ann Polon Math., 77, 1120 135 [21] M Bohner, R R Mahmoud, and S H Saker (2015), Improvements of dynamic Opial-type inequalities and applications, Dynamic Syst Appl., 24, 229242 [22] M Bohner and A Peterson (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkhăauser, Boston [23] M Bohner and A Peterson (Eds.) (2003), Advances in Dynamic Equations on Time Scales, Birkhăauser, Boston [24] D W Boyd (1969), Best constants in inequalities related to Opials inequality, J Math Anal Appl., 25, 378387 [25] I Brnetic and J Pecaric (1997), Note on the generalization of the GodunovaLevin-Opial type inequality in several independent variables, J Math Anal Appl., 215, 545549 [26] R C Brown and D B Hinton (1997), Opials inequality and oscillation of 2nd order equations, Proc Amer Math Soc., 125, 11231129 [27] A Cabada and D R Vivero (2005), Criterions for absolute continuity on time scales, J Difference Equ Appl., 11, 10131028 [28] A Cabada and D R Vivero (2006), Expression of the Lebesgue -integral on time scales as a usual Lebesgue integral: application to the calculus of antiderivatives, Math Comput Modelling., 43, 194207 [29] W S Cheung (1989), On Opial-type inequalities in two variables, Aequationes Math., 38, 236244 [30] K M Das (1969), An inequality similar to Opials inequality, Math Soc., 22, 258261 [31] J B Diaz and F T Metcalf (1967), Variations on Wirtingers inequality, in: Inequalities, 79103 (Academic Press, New York) [32] O Doslý and P Rehỏk (2005), Half-Linear Differential Equations, NorthHolland Mathematics Studies Series, 202, North-Holland 136 [33] D T Duc and N D V Nhan (2011), Generalize some norm inequalities of Saitoh, Kodai Math J., 34, 191201 [34] D T Duc, N D V Nhan, and N T Xuan (2015), Inequalities for partial derivatives and their applications, Canad Math Bull., 58, 486496 [35] E K Godunova and V I Levin (1967), On an inequality of Maroni, Mat Zametki., 2, 221224 [36] B J Harris and Q Kong (1995), On the oscillation of differential equations with an oscillatory coefficient, Trans Amer Math Soc., 347, 18311839 [37] R J Higgins and A Peterson (2004), Cauchy functions and Taylors formula for time scales T, Proceedings of the Sixth International Conference on Difference Equations CRC, Boca Raton, Fla, USA, pp 299308 [38] H L Hong, W C Lian, and C C Yeh (1996), The oscillation of half-linear differential equations with an oscillatory coefficient, Math Comput Modelling, 24, 7786 [39] L K Hua (1965), On an inequality of Opial, Scientia Sinica, 14, 789790 [40] J Jaros (2011), On an integral inequality of the Wirtinger type, Appl Math Lett., 24, 13891392 [41] J Jaros (2013), Wirtinger inequality and nonlinear differential systems, Arch Math., 49, 3541 [42] J Jaros and T Kusano (1999), A Picone type identity for second order halflinear differential equations, Acta Math Univ Comenian., 68, 137151 ă Ocalan ă [43] B Karpuz, B Kaymakácalan, and O (2010), A generalization of Opials inequality and applications to second-oder dynamic equations, Differ Equa Dyn Sys., 18, 1118 ă [44] B Karpuz and U M Ozkan (2011), Some generalizations for Opials inequality involving several function and their derivatives of arbitrary order on arbitrary time scales, Math Inequal Appl., 14, 7992 137 [45] B Kaymakácalan, V Lakshmikantham, and S Sivasundaram (1996), Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston [46] A N Kolmogúrov and S V Fomớn S V (1960), Elements of the theory of functions and functional analysis, Vol 2: Measure The Lebesgue integral Hilbert space Translated from the first (1960) Russian ed by Hyman Kamel and Horace Komm Graylock Press, Albany, N.Y 1961 [47] K Kreith (1970), A Picone identity for first order systems, J Math Anal Appl., 31, 297308 [48] A Kufner and L E Persson (2003), Weighted Inequalities of Hardy Type, World Scientific, New Jersey [49] A Lasota (1968), A discrete boundary value problem, Ann Polon Math., 20, 183190 [50] C M Lee (1968), On a discrete analogue of inequalities of Opial and Yang, Canad Math Bull., 11, 7377 [51] C F Lee, C C Yeh, C H Hong, and R P Agarwal (2004), Lyapunov and Wirtinger inequalities, Appl Math Lett., 17, 847853 [52] L Li and M Han (2014), Some new dynamic Opial-type inequalities and applications for second order integro-differential dynamic equations on time scales, Appl Math Comput., 232, 542547 [53] W C Lian, C C Yeh, and H J Li (1995), The distance between zeros of an oscillatory solution to a half-linear differential equation, Comput Math Appl., 29, 3943 [54] J Liu, X Zhang, and B Jiang (2012), Some generalizations and improvements of discrete Hardys inequality, Comput Math Appl., 63, 601607 [55] A M Lyapunov (1907), Probleme gộnộral de la stabilitộ du mouvement, Ann Fav Sci Univ Toulouse, 2, 27247 138 [56] P M Maroni (1967) Sur linộgalitộ dOpial-Beesack, C R Acad Sci Paris., A 264, 6264 Milovanovc (1996), Discrete inequalities of [57] G V Milovanovic and I Z Wirtingers type, Recent Progress in Inequalities, (Nis), 289308, Math Appl., 430, (Kluwer Academic Publishers, Dordrecht, 1998) [58] E Mă uller- Pfeiffer (1992), Sturm Comparison theorems for non-selfadjoint differential equations on non-compact intervals, Math Nachr., 159, 291298 [59] N D V Nhan, D T Duc, and V K Tuan (2013), Weighted norm inequalities for derivatives and their applications, Kodai Math J., 36, 228245 [60] N D V Nhan, D T Duc V K Tuan, and T D Phung (2016), Dynamic Picones identity and its applications, J Math Anal Appl., (submitted) [61] N D V Nhan, D T Duc, V K Tuan, and N D H Vu (2014), Inequalities for differences and their applications, J Difference Equa Appl., 20, 13191343 [62] N D V Nhan, T D Phung, D T Duc, and V K Tuan (2017), Opial and Lyapunov inequalities on time scales and their applications to dynamic equations, Kodai Math J., 40, 254277 [63] Z Opial (1960), Sur une inộgalitộ, Ann Polon Math., 8, 2932 [64] B G Pachpatte (1986), On Opial-type integral inequalities, J Math Anal Appl., 120, 547556 [65] B G Pachpatte (1987), On some new discrete inequalities involving partial sums, Indian J Pure Appl Math., 9, 640647 [66] B G Pachpatte (1987), On two independent variable Opial-type integral inequalities, J Math Anal Appl., 125, 4757 [67] B G Pachpatte (1993), Some inequalities similar to Opial inequality, Demonstr Math., 26, 643647 [68] J Pecaric (1993), An integral inequality, Hadronic Press, Palm Harbor, FL., 471478 139 [69] M Picone (1910), Sui valori eccezionali di un parametro da cui dipende unequazione differenziale lineare ordinaria del secondordine, Ann Scuola Norm Sup Pisa., 11, 1141 [70] H Poincarộ (1984), Sur les ộquations de la physique mathộmatique, Rend Circ Mat Palermo, 8, 57156 [71] T D Phung (2017), Some inequalities for partial derivatives on time scales, Acta Math Vietnam., 42, 369394 [72] T D Phung and D T Duc (2017), New Opial-type inequalities on time scales, Tp khoa hc- Trng H Quy Nhn, Tp 11, S 1, 4759 [73] T D Phung, N D V Nhan, D T Duc, and V K Tuan (2016), Disfocality and disconjugacy for second order forced dynamic equations, (manuscript) [74] P Rehỏk (2001), Oscillatory properties of second order half-linear difference equations, Czechoslovak Math J., 51(126), 303321 [75] P Rehỏk (2005), Hardy inequality on time scales and its application to halflinear dynamic equations, J Inequal Appl., 2005(5), 495507 [76] W Rudin (1987), Real and complex analysis, Third edition McGraw-Hill Book Co., New York [77] S H Saker (2011), Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn Contin Discr Impuls Syst Series B: Applications & Algorithms, 18, 149161 [78] S H Saker (2011), Some Opial-type inequalities on time scales, Abs Appl Anal., Vol 2011, Article ID 265316, 19 pages [79] S H Saker (2012), Lyapunov type inequalities for a second order differential equation with a damping term, Ann Polon Math., 103, 3757 [80] S H Saker (2012), Opials type inequalities on time scales and some applications, Ann Polon Math., 104, 243260 140 [81] S H Saker (2012), Some new inequalities of Opials type on time scales, Abs Appl Anal., Vol 2012, Article ID 683136, 14 pages [82] S H Saker (2012), New inequalities of Opials type on time scales and some of their applications, Discrete Dyn Nature Soc., Vol 2012, Article ID 362526, 23 pages [83] S H Saker (2012), Some Opial dynamic inequalities involving higher order derivatives on time scales, Discrete Dyn Nature Soc., Vol 2012, Article ID 157310, 22 pages [84] S H Saker (2013), Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math Comput Modelling, 58, 1777 1790 [85] S H Saker, R Agarwal, and D Oregan (2012), Gaps between zeros of secondorder half-linear differential equations, Appl Math Comput., 219, 875885 [86] S H Saker, R P Agarwal, and D Oregan (2014), Higher order dynamic inequalities on time scales, Math Ineq Appl., 17, 461472 [87] S H Saker, R R Mahmoud, and A Peterson (2015), A new Picones dynamic inequality on time scales with applications, Appl Math Lett., 48, 162169 [88] S H Saker, M M Osman, D Oregan, and R Agarwal (2015), Some new Opial dynamic inequalities with weight functions on time scales, Math Inequal Appl., 18, 11711187 [89] S H Saker, D ORegan, and R P Agarwal (2014), Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math Nachr., 287, 686698 [90] O Shisha (1973), On the discrete version of Wirtingers inequality, Amer Math Monthly, 80, 755760 [91] H M Srivastava, K L Tseng, S J Tseng, and J C Lo (2010), Some weighted Opial-type inequalities on time scales, Taiwanese J Math., 14, 107122 141 [92] H M Srivastava, K L Tseng, S J Tseng, and J C Lo (2011), Some generalizations of Maronis inequality on time scales, Math Inequal Appl., 14, 469480 [93] K R Stromberg (1996), An introdution to classical real analysis, Chapman & Hall, London (First edition: Chapman & Hall, 1981) [94] C A Swanson (1978), Wirtingers inequality, SIAM J Math Anal., 9, 484 491 [95] A Tiryaki (2005), Sturm-Picone type theorems for nonlinear differential systems, Electron J Differential Equations, Vol 2005, No 154, pp 19 [96] A Tiryaki (2014), Sturm-Picone type theorems for second-order nonlinear elliptic differential equations, Electron J Differential Equations, Vol 2014, No 214, pp 110 [97] T Tyagi and V Raghavendra (2008), A note on generalization of Sturms comparison theorem, Nonlinear Dyn Syst Theory, 8(2), 213216 [98] D Willett (1968), The existence-uniqueness theorem for an nth order linear ordinary differential equation, Amer Math Monthly, 75, 174178 [99] F H Wong, W C Lin, S L Yu, and C C Yeh (2008), Some generalization of Opials inequalities on time scales, Taiwanese J Math., 12, 463471 [100] F H Wong, S L Yu, C C Yeh, and W C Lian (2006), Lyapunovs inequality on time scales, Appl Math Lett., 19, 12931299 [101] J Yan (1989), On the distance between zeroes and the limit-point problem, Proc Amer Math Soc., 107, 971975 [102] G S Yang (1966), On a certain result of Z Opial, Proc Japan Acad., 42, 7883 [103] G S Yang (1982), Inequality of Opial-type in two variables, Tamkang J Math., 13, 255259 142 [104] X Yang (2003), On inequalities of Lyapunov type, Appl Math Comput., 134, 293300 [105] L Yin and C Zhao (2013), Some new generalizations of Maroni inequality on time scales, Demonstr Math., XLVI, 645654 [106] C Zhang and S Sun (2008), Sturm-Picone comparison theorem of secondorder linear equations on time scales, Adv Difference Equ., Vol 2008, Article ID 496135, 112 [107] C J Zhao and W S Cheung (2011), On some Opial-type inequalities, J Ineq Appl., 2011, pages [108] Z Zhao, Y Xu, and Y Li (2005), Dynamic inequalities on time scales, Inter J Pure Appl Math., 22, 4956 143 Ch mc Gp (x), 79 AC(I), 111 Ia , 111 T, T , 11 , 27 GR 1,m , 46 GR m , 40 HR Crd (I), 111 Lpa (, , ), 40 Crd (T, R), 14 Lpa ([a, b]T , ), 25 C1rd (I), 111 R, 111 , 11 R+ , 111 Cn rd (), 40 U(a, b), 126 Cnrd (T, R), 14 W([a, b]T ), 25 n , 38 W(), 40 , 39 Lpa ([a, b], ), 60 à, 10 , , ex (ã, t0 ), 111 f , 12 x y , 111 (b), 38 Lp ([a, b]T , ), 25 L (I), 111 [a, b]T , 11 AC([a, b]T ), 24 , 39 , 39 x , 39 P(I0 ), 112 1, 38 = (1 , , n ), 38 x, 38 x y , 38 f (x) , x 40 f (x)x, 39 x , 39 I, 111 I0 , 111 144 ... tớch trờn thang thi gian Chng 2: Bt ng thc Opial trờn thang thi gian v ỏp dng Chng 3: Tớnh dao ng ca mt s phng trỡnh ng lc trờn thang thi gian Chng 4: ng nht thc Picone trờn thang thi gian v... trờn thang thi gian, l cn thit cho vic nghiờn cu cỏc tớnh cht nh tớnh v nh lng cho nghim ca phng trỡnh ng lc trờn thang thi gian T ú nhiu nh toỏn hc ó quan tõm n lý thuyt bt ng thc trờn thang. .. C, (0, 1) khụng phi l cỏc thang thi gian Tụpụ trờn thang thi gian T l tụpụ cm sinh t tụpụ chun trờn cỏc s thc R nh ngha 1.2 ([22, Definition 1.1]) Cho T l mt thang thi gian tựy ý Toỏn t nhy tin

Ngày đăng: 29/05/2017, 16:42

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan