Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 31 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
31
Dung lượng
1,23 MB
Nội dung
Ôn Tập GiảiTích12 GV: Phạm Văn Sơn I. ĐẠO HÀM 1) Dùng đònh nghóa tính đạo hàm của các hàm số: a) y = f(x) = cosx b) y = f(x) = 1x |x| + tại x 0 = 0. 2) Cho hàm số y = f(x) = x 3 −3x 2 +1, có đồ thò (C). a) Tìm f’(x). Giải bất phương trình f’(x) ≤ 0. b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 3. 3) Cho (C) : y = f(x) = x 4 − 2x 2 . a) Tìm f’(x). Giải bất phương trình f’(x) > 0. b) Viết phương trình tiếp tuyến của (C) : 1. Tại điểm có hoành độ bằng 2 . 2. Tại điểm có tung độ bằng 3. 3. Biết tiếp tuyến song song với d 1 : y = 24x+2007 4. Biết tiếp tuyến vuông góc với d 2 : y = 10x 24 1 − . 4) Viết phương trình tiếp tuyến với (P): y = f(x) = x 2 − 2x − 3 đi qua M 1 (5;3). 5) Viết phương trình tiếp tuyến của (C):y=f(x)=x 3 –3x+1 kẻ từ M(3; − 1). 6) Viết phương trình tiếp tuyến của (C) : y = f(x) = x − 2+ 1x 4 − đi qua A(0;3). 7) Viết phương trình tiếp tuyến của (C): y = f(x)= 1x 1x + − đi qua H(1;1). 8) Tìm đạo hàm các hàm số a) y = ( x 3 – 3x + 2 ) ( x 4 + x 2 – 1 ) b) y = 1xx x2x 2 3 ++ − c) y = qpx cbxax 2 + ++ 9) Tìm đạo hàm các hàm số : a) y = ( 5x 3 + x 2 – 4 ) 5 b) y = sin 2 (cos 3x) c) y = ln 3 x d) y = e sinx e) y = e 4x + 5 f) y = 1x2 2 x a ++ (0< a ≠ 1) 10) Tìm đạo hàm các hàm số : a) y= ln ( x + 2 x1 + ) b) y = log 3 ( x 2 – sin x ) c) y = e x – ln ( sin x) d) y = tg ( 2x+3) e) y = tg 2 x . sinx f) y = 2 x tg g) y = cotg ( 5x 2 + x – 2 ) h) y = cotg 2 x + cotg2x 11) Tính đạo hàm của hàm số f(x) = ≥ < 0x nếu x 0x nếu x 2 3 tại điểm x 0 = 0 12) Tìm đạo hàm cấp n ( n nguyên dương) của các hàm số sau : a) y = lnx b) y = e Kx c) y = sin x d) y = cos x e) y = ln (x 2 + x – 2 ) 13) Chứng minh rằng : - 1 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn a) Với y= 3 + x 5 ( x ≠ 0), ta có xy’ + y = 3 b) Với y = x sin x, ta có : xy – 2 ( y’ – sin x ) +xy” = 0 c) Với y = ( x +1 ) e x ta có : y’ – y = e x d) Với y= e sin x ta có : y’ cos x – ysin x – y” = 0 e) Với y = ln x1 1 + ta có xy’ + 1 = e y 14) Chứng minh các đẳng thức đạo hàm: a) Cho hàm số y = xcos.xsin1 xcosxsin 33 − + . Chứng minh rằng: y’' = −y b) Cho y = ln(sinx) . Chứng minh rằng : y’+y’’sinx+tg 2 x = 0 c) Cho y = e 4x +2e − x . Chứng minh rằng : y’’’−13y’−12y = 0 d) Cho y = 4x 3x + − . Chứng minh rằng : 2(y’) 2 = (y−1)y’’ e) Cho y = 73xgxcotxgcot 3 1 3 ++++− . Chứng minh rằng: y’ = cotg 4 x 15) Cho f(x) = xsin1 xcos 2 2 + . Chứng minh rằng : 3) 4 ('f3) 4 (f = π − π 16) Cho f(x) = 2 2 x e.x − . Chứng minh rằng : ) 2 1 (f3) 2 1 (f2 ' = 17) Giải phương trình : f’(x) = 0 biết rằng: a) f(x) = cos x +sin x + x. b) f(x) = (x 2 +2x−3)e x c) f(x) = sinx.e x d) f(x) = xxcosxsin3 +− 18) Giải bất phương trình f / (x) < 0 với f(x) = 3 1 x 3 −2x 2 + π . 19) Cho các hàm số f(x) = sin 4 x + cos 4 x; g(x) = x4cos 4 1 Chứng minh rằng : f ’(x) = g’(x), ∀x∈R 20) Tìm vi phân của mỗi hàm số sau tại điểm đã chỉ ra: a) f(x) = ln (sinx) tại x 0 = 4 π . b) f(x) = x. cosx tại x 0 = 3 π 21) Tìm vi phân của mỗi hàm số: a) f(x) = 1x 2 + b) f(x) = x.lnx. c) f(x) = x xsin . 22) Biết rằng ln 781 = 6,6606 , hãy tính gần đúng ln 782. II.SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ 23) Tìm các điểm tới hạn của hàm số :y = f(x) = 3x+ 5 x 3 + . 24) Xét tính đơn điệu của hàm số a) y = f(x) = x 3 −3x 2 +1. b) y = f(x) = 2x 2 −x 4 . c) y = f(x) = 2x 3x + − . d) y = f(x) = x1 4x4x 2 − +− . e) y = f(x) = x+2sinx trên ( −π ; π). f) y = f(x) = xlnx. g) y = f(x) = )5x(x 3 2 − . h) y= f(x) = x 3 −3x 2 . - 2 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn i) 1x 3x3x f(x) y 2 − +− == . j) y= f(x) = x 4 −2x 2 . k) y = f(x) = sinx trên đoạn [0; 2π]. 25) Cho hàm số y = f(x) = x 3 −3(m+1)x 2 +3(m+1)x+1. Đònh m để hàm số : a) Luôn đồng biến trên khoảng xác đònh của nó. Kq:1 ≤ m ≤ 0 b) Nghòch biến trên khoảng ( −1;0). Kq: m ≤ 3 4 − c) Đồng biến trên khoảng (2;+∞ ). Kq: m ≤ 3 1 26) Đònh m∈Z để hàm số y = f(x) = mx 1mx − − đồng biến trên các khoảng xác đònh của nó. Kq: m = 0 27) Đònh m để hàm số y = f(x) = 2x 2x6mx 2 + −+ nghòch biến trên nửa khoảng [1;+∞). Kq: m ≤ 5 14 − 28) Chứng minh rằng : x1e x +> , ∀x > 0. 29) Chứng minh rằng : hàm số luôn luôn tăng trên khoảng xác đònh (trên từng khoảng xác đònh) của nó : a) y = x 3 −3x 2 +3x+2. b) 1x 1xx y 2 − −− = . c) 1x2 1x y + − = . 30) Tìm m để hàm số ( ) ( ) x7mx1m 3 x y 2 3 −−−−= : a) Luôn luôn đồng biến trên khoảng xác đònh của nó. b) Luôn luôn đồng biến trên khoảng (2;+∞) 31) Tìm m để hàm số : mx 2mmx2x y 2 − ++− = luôn đồng biến trên từng khoảng xác đònh của nó. 32) Tìm m để hàm số : mx 1mx)m1(x2 y 2 − ++−+ = luôn đồng biến trên khoảng (1;+∞). Kq: 223m −≤ 33) Tìm m để hàm số y = x 2 .(m −x) −m đồng biến trên khoảng (1;2). Kq: m≥3 34) Chứng minh rằng : a) ln(x+1) < x , ∀ x > 0. b) cosx >1 − 2 x 2 , với x > 0 . II. CỰC ĐẠI VÀ CỰC TIỂU 35) Tìm các điểm cực trò của hàm số bằng đạo hàm cấp 1: a) y = x 3 . b) y = 3x + x 3 + 5. c) y = x.e − x . d) y = x xln . 36) Tìm các điểm cực trò của hàm số bằng đạo hàm cấp 2: a) y = sin 2 x với x∈[0; π ] b) y = x 2 lnx.c) y = x e x . 37) Xác đònh tham số m để hàm số y=x 3 −3mx 2 +(m 2 −1)x+2 đạt cực đại tại x=2. ( Đề thi TNTHPT 2004 − 2005) Kết quả : m=11 38) Đònh m để hàm số y = f(x) = x 3 −3x 2 +3mx+3m+4 a.Không có cực trò. Kết quả : m ≥1 - 3 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn b.Có cực đại và cực tiểu. Kết quả : m <1 c. Có đồ thò (C m ) nhận A(0; 4) làm một điểm cực trò (đạt cực trò 4 khi x = 0). Hd: M(a;b) là điểm cực trò của (C): y =f(x) khi và chỉ khi: = ≠ = b)a(f 0)a(''f 0)a('f Kết quả : m=0 d.Có cực đại và cực tiểu và đường thẳng d qua cực đại và cực tiểu đi qua O. Kq : d:y = 2(m−1)x+4m+4 và m= −1 39) Đònh m để hàm số y = f(x) = x1 mx4x 2 − +− a. Có cực đại và cực tiểu. Kết quả : m>3 b.Đạt cực trò tại x = 2. Kết quả : m = 4 c.Đạt cực tiểu khi x = −1 Kết quả : m = 7 40) Chứng tỏ rằng với mọi m hàm số y = mx 1mx)1m(mx 422 − +−−+ luôn có cực trò. 41) Cho hàm số y = f(x) = 3 1 x 3 −mx 2 +(m 2 −m+1)x+1. Có giá trò nào của m để hàm số đạt cực tiểu tại x = 1 không? Hd và kq : Sử dụng đkc,đkđ. Không 42) Cho hàm số y = f(x) = 3 1 x 3 −mx 2 +(m+2)x−1. Xác đònh m để hàm số: a) Có cực trò. Kết quả: m <−1 V m > 2 b) Có hai cực trò trong khoảng (0;+∞). Kết quả: m > 2 c) Có cực trò trong khoảng (0;+∞). Kết quả: m <−2 V m > 2 43) Biện luận theo m số cực trò của hàm số y = f(x) = −x 4 +2mx 2 −2m+1. Hd và kq : y’=−4x(x 2 −m) m ≤ 0: 1 cực đại x = 0 m > 0: 2 cực đại x= m ± và 1 cực tiểu x = 0 44) Đònh m để đồ thò (C) của hàm số y = f(x) = 1x mxx 2 + +− có hai điểm cực trò nằm khác phía so với Ox. Kết quả : m > 4 1 45) Đònh m để hàm số y = f(x) = x 3 −6x 2 +3(m+2)x−m−6 có 2 cực trò và hai giá trò cực trò cùng dấu. Kết quả : 4 17 − < m < 2 46) Chứùng minh rằng với mọi m hàm số y = f(x) =2x 3 −3(2m+1)x 2 +6m(m+1)x+1 luôn đạt cực trò tại hai điểm x 1 và x 2 với x 2 −x 1 là một hằng số. 47) Tìm cực trò của các hàm số : a) x 1 xy += . b) 6x2 4 x y 2 4 ++−= . c) y = 21x 3 +− 48) Đònh m để hàm số có cực trò : a) 2mxx3xy 23 −+−= . Kết quả: m<3 b) 1x 2mmxx y 22 − −++− = . Kết quả: m<−2 V m>1 - 4 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn 49) Đònh m để hàm số sau đạt cực đại tại x=1: y = f(x) = 3 x 3 −mx 2 +(m+3)x−5m+1. Kết quả: m = 4 50) Cho hàm số : f(x)= 3 1 − x 3 −mx 2 +(m−2) x−1. Đònh m để hàm số đạt cực đại tại x 2 , cực tiểu tại x 1 mà x 1 < −1 < x 2 < 1. Kết quả: m>−1 51) Chứng minh rằng : e x ≥ x+1 với ∀x∈|R. III. GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ 52) Tìm giá trò nhỏ nhất của hàm số y=f(x)=x 2 −2x+3. Kq: R Min f(x) = f(1) = 2 53) Tìm giá trò lớùn nhất và nhỏ nhất của hàm số y = f(x) = x 2 −2x+3 trên [0;3]. Kq: ]3;0[ Min f(x)=f(1)=2 và ]3;0[ Max f(x)=f(3)=6. 54) Tìm giá trò lớùn nhất của hàm số y = f(x) = 1x 4x4x 2 − +− với x<1. Kết quả : )1;( Max −∞ f(x) = f(0) = −4 55) Muốn xây hồ nước có thể tích V = 36 m 3 , có dạng hình hộp chữ nhật (không nắp) mà các kích thước của đáy tỉ lệ 1:2. Hỏi: Các kích thước của hồ như thế nào để khi xây ít tốn vật liệu nhất? Kết quả : Các kích thước cần tìm của hồ nước là: a=3 m; b=6 m và c=2 m 56) Tìm giá trò lớn nhất của hàm số y = 1xx x 24 2 ++ . Kết quả : R Max y = f(±1) = 3 1 57) Đònh m để hàm số y = f(x) = x 3 −3(m+1)x 2 +3(m+1)x+1 nghòch biến trên khoảng( −1;0). Kết quả : m ≤ 3 4 − 58) Tìm trên (C): y = 2x 3x 2 − − điểm M sao cho tổng các khoảng cách từ M đến hai trục tọa độ là nhỏ nhất. Kết quả :M(0; 2 3 ) 59) Tìm giá trò nhỏ nhất và lớn nhất của hàm số y = 3 sinx – 4 cosx. 60) Tìm GTLN: y=−x 2 +2x+3. Kết quả: R Max y=f(1)= 4 61) Tìm GTNN y = x – 5 + x 1 với x > 0. Kết quả: );0( Min ±∞ y=f(1)= −3 62) Tìm GTLN, GTNN y = x – 5 + 2 x4 − . Kết quả: 522)2(fyMax ]2;2[ −== − ; 7)2(fyMin ]2;2[ −=−= − 63) Tìm GTLN, GTNN của hàm số y=2x 3 +3x 2 −1 trên đoạn − 1; 2 1 Kết quả: 4)1(fyMax ]1; 2 1 [ == − ; 1)0(fyMin ]1; 2 1 [ −== − 64) Tìm GTLN, GTNN của: a) y = x 4 -2x 2 +3. Kết quả: R Min y=f(±1)=2; Không có R Max y b) y = x 4 +4x 2 +5. Kết quả: R Min y=f(0)=5; Không có R Max y - 5 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn c) 2xcos 1xsin22 y + − = . Kết quả: R Min y= 3 7 − ; R Max y=1 d) 1xx 3x3x y 2 2 ++ ++ = . Kết quả: R Min y= 3 1 ; R Max y=3 65) Cho hàm số 2xx 1x3 y 2 ++ + = . Chứng minh rằng : 1y 7 9 ≤≤− 66) Cho hàm số ( ) π∈α +α− α+−α = ;0 1cosx2x cosx2cosx y 2 2 . Chứng minh rằng : −1≤ y ≤ 1 Hướng dẫn:y’=0 ⇔ 2sin 2 α . x 2 −2sin 2 α =0 ⇔ x=−1 V x=1. Tiệm cận ngang: y=1 Dựa vào bảng biến thiên kết luận −1≤ y ≤ 1. 67) Đònh x để hàm số sau đạt giá trò nhỏ nhất và tính giá trò nhỏ nhất : y =f(x)= lg 2 x + 2xlg 1 2 + Hướng dẫn và kết quả : Txđ: (0; +∞ ) . Đặt t= lg 2 x, t≥0, ⇒ hàm số y=g(t)=t+ 2t 1 + xác đònh trên [0; +∞), dùng đạo hàm đưa đến y’=0 ⇔ t=−3 ∉[0; +∞ ) V t=−1 ∉[0; +∞ ) ⇒ hàm số y=g(t) đồng biến trên [0;+∞ ) ⇒ );0[ Min +∞ g(t) = g(0) = 2 1 ⇒ );0( Min +∞ f(x) = f(1) = 2 1 68) Tìm giá trò LN và giá trò NN của hàm số y=2sinx− xsin 3 4 3 trên đoạn [0;π] (Đề thi TNTH PT 2003 − 2004) Kết quả: ];0[ Max π f(x)=f(π /4)= f(3π /4)= 3 22 ; ];0[ Min π f(x)=f(0)=f(π )=0 IV. TÍNH LỒI, LÕM VÀ ĐIỂM UỐN CỦA ĐỒ THỊ HÀM SỐ 69) Tìm các khoảng lồi, lõm và điểm uốn của đồ thò các hàm số : a) y = f(x) = x 4 −6x 2 +1 b) y = f(x) = x 4xx 2 +− 70) Đònh m để đồ thò (C m ):y = f(x) = x 3 −3(m−1)x 2 +m 2 x−3 nhận I(1;−1) làm điểm uốn. Kết quả: m = 2 . 71) Đònh m để đồ thò (C m ):y = f(x) = x 4 −6mx 2 + 3 a) Có hai điểm uốn. Kết quả: m > 0 b) Không có điểm uốn. Kết quả: m ≤ 0 72) Chứng minh rằng đồ thò (C): 1xx 1x2 y 2 ++ + = có 3 điểm uốn thẳng hàng. Viết phương trình đường thẳng đi qua 3 điểm uốn này. Hướng dẫn và kết quả: (C) có 3 điểm uốn A(−2;−1), B(− 2 1 ;0), C(1;1). →−→− = AC 2 1 AB ⇒ A, B, C thẳng hàng. Đường thẳng d qua A, B, C qua C(1;1) có hệ số góc 3 2 xx yy k AC AC = − − = nên có phương trình : y = k(x-x C )+y C = 3 2 (x-1)+1⇔ y= 3 2 x + 3 1 . 73) Tìm điểm uốn và xét tính lồi, lõm của (C):y = f(x) = x 2 −3x+2 Kết quả: Lõm trên các khoảng (−∞;1) và (2; +∞). Lồi trên khoảng (1;2). Điểm uốn : I 1 (1;0) và I 2 (2;0) - 6 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn 74) a) Chứng minh rằng nếu (C): y = f(x) = ax 3 +bx 2 +cx+d (a≠0) cắt Ox tại 3 điểm cách đều nhau thì điểm uốn của (C) nằm trên Ox. b) Tìm m để (C m ):y = x 3 −3mx 2 +2m(m−4)x+9m 2 −m cắt trục hoành tại 3 điểm cách đều nhau (có hoành độ lập thành một cấp số cộng). Hướng dẫn và kết quả: a) Cho y = 0⇔ ax 3 +bx 2 +cx+d = 0 có 3 nghiệm x 1 , x 2 , x 3 , lập thành cấp số cộng ⇒ 2x 2 = x 1 +x 3 ⇒ 3x 2 = x 1 +x 2 +x 3 = a b − ⇒ x 2 = a3 b − . Vậy điểm uốn I(x 2 ;0)∈Ox. b) Tìm I(m;m 2 −m). Điều kiện cần : I∈Ox ⇒ m 2 −m = 0 ⇒ m = 0 V m = 1. Điều kiện đủ : Chọn m = 1. 75) Tìm khoảng lồi, lõm và điểm uốn của (C) : a) y=x 3 −3x 2 +2. b) 2x 4xx y 2 + +− = . 76) Chứng minh rằng đồ thò của các hàm số sau có phần lồi, lõm nhưng không có điểm uốn: a) 2x 1x y − + = . b) y = x + x 1 . 77) Tìm tham số để: a) (C m ) : y=x 3 −3x 2 +3mx+3m+4 nhận I(1;2) làm điểm uốn. b) (C a,b ) : y=ax 3 +bx 2 +x+1 nhận I(1;−2) làm điểm uốn. c) Biện luận theo m số điểm uốn của (C m ) :y=x 4 +mx 2 +m−2 . 78) Tìm m để đồ thò (C m ):y = f(x) = x 3 −3x 2 −9x+m cắt Ox tại 3 điểm theo thứ tự có hoành độ lập thành cấp số cộng. Kết quả : m = 11. 79) Tìm điều kiện của a và b để đường thẳng (d): y = ax+b cắt đồ thò (C) : y=x 3 −3x 2 −9x+1 tại ba điểm phân biệt A, B, C và AB = BC. Hướng dẫn và kết quả : • Lập phương trình hoành độ giao điểm : ax+b = x 3 −3x 2 −9x+1⇔ f(x) = x 3 −3x 2 −(a+9)x+1−b = 0.(1) • Điều kiện cần: Điểm uốn của đồ thò hàm số (1) là I(1;−a−b−10)∈Ox ⇒ −a−b−10 = 0 ⇒ a+b = −10. • Điều kiện đủ : a+b = −10 ⇒ f(x) = (x−1).g(x) = 0 với g(x) = x 2 −2x+b−1. YCBT ⇔ ≠−= >−=∆ 02b)1(g 0b2 g ⇔ b<2 Kết luận : < −=+ 2b 10ba 80) Viết phương trình đường thẳng đi qua 3 điểm uốn của đồ thò (C):y= 1x 1x 2 + + . Kq:y = 4 3 x 4 1 + 81) Tìm m để (C m ):y = x 3 −3mx 2 +2m(m−4)x+9m 2 −m có điểm uốn : a) Nằm trên đường thẳng (d) : y = x.Kết quả : m = 0 V m = 2 . - 7 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn b) Đối xứng với M(−3;−6) qua gốc tọa độ O. Kết quả : m= 3 . c) Đối xứng với N(5;−20) qua Ox. Kết quả : m= 5 . d) Đối xứng với P(−7;42) qua Oy. Kết quả : m= 7 . V. TIỆM CẬN 82)Tìm các đường tiệm cận của đồ thò các hàm số : a) y = 2x3x 1x2 2 2 +− − . Kết quả: x = 1; x = 2 và y = 2 b) y = 2x 1xx 2 + +− . Kết qua û: x = −2 và y = x−3 83) Tìm các đường tiệm cận ngang của đồ thò các hàm số : a) y = 1+ x 2 e − . Kết quả: y = 1 b) y = x 1xx 2 ++ . Kết quả: y = ±1 84) Tìm các đường tiệm cận xiên của đồ thò hàm số y = 1x 2 + .Kết qua û: y = ±x 85) Tìm các tiệm cận của đồ thò các hàm số: y = 3 32 xx3 − . Kết quả : y = −x+1. 86) Cho (C m ) : ( ) 1x mmx1mx y 222 + ++++ = . a) Biện luận m số tiệm cận của đồ thò (C m ). b) Tìm m để tiệm cận xiên của đồ thò (C m ) đi qua I(1;2). 87)Tìm trên đồ thò (C):y = 1x 2x + + điểm M có tổng các khoảng cách từ đó đến hai tiệm cận là nhỏ nhất. 88) Lấy một điểm bất kỳ M∈(C):y = f(x) = 2x 1x3x 2 − −+ . Chứng minh rằng tích các khoảng cách từ M đến 2 tiệm cận của (C) luôn không đổi. Kq: d 1 .d 2 = 2 9 . VI. KHẢO SÁT HÀM SỐ 89) Khảo sát sự biến thiên và vẽ đồ thị các hàm số: a) y = x 3 -3x+1 b) y = 3x 2 -x 3 c) y = x 3 +3x−4 d) y = (1-x) 3 e) y = 2 1 x 2 x 2 4 +− f) y = x 4 +x 2 -2. g) y=2x 2 −x 4 -1 h) y=x 4 -1 i) y = 1x 1x − + j) y = 2x x2 + k) y = 1x x 2 − l) y = 2x 4 1x + −− m) y = x1 )2x( 2 − − n) y = 2x 1 2x + +−− VII.CÁC BÀI TOÁN LIÊN HỆ ĐẾN KHẢO SÁT HÀM SỐ 90) Biện luận theo m số giao điểm của 2 đồ thò: - 8 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn a) (C): y = 2x 3x6x 2 + +− và d: y = x−m. Hd: Lý luận x= 2 m8 3m2 −≠ − + b) (H): 1x 1x y − + = và d: y= −2x+m. Hd: x=1 không là nghiệm phương trình hoành độ giao điểm. 91) A.Vẽ đồ thò (C) hàm số y = x 3 +3x 2 −2 B.Biện luận bằng đồ thò (C) số nghiệm của pt: x 3 +3x 2 −(m−2) = 0 92) Viết phương trình các đường thẳng vuông góc với đường thẳng y= 4 1 x+3 và tiếp xúc với đồ thò (C) hàm số y= −x 3 +3x 2 −4x+2. 93) Viết phương trình tiếp tuyến của đồ thò (C): y=x 3 +3x 2 +1 biết tiếp tuyến đi qua gốc toạ độ O. 94) Dùng đồ thò (C): y = x 3 −3x 2 +1 biện luận theo m số nghiệm của phương trình x 3 −3x 2 − 9x+1−m = 0. 95) Cho parabol (P): y=x 2 −2x+2 và đường thẳng d: y=2x+m. a) Khảo sát và vẽ đồ thò (P) b) Biện luận theo m số điểm chung của d và (P). c) Khi d cắt (P) tại hai điểm phân biệt A và B. Tìm tập hợp trung điểm M của đoạn AB. 96) Cho hàm số 1x 1x y − + = , có đồ thi (H). a) Khảo sát và vẽ đồ thò (H). b) Cho đường thẳng d: y= −2x+m. Giả sử d cắt (H) tại hai điểm M và N. Tìm tập hợp trung điểm I của MN. 97) Chứng minh rằng đồ thò (C) của hàm số y=f(x)=x 3 −3x 2 +1 nhận điểm uốn của nó làm tâm đối xứng. 98) Cho hàm số y = x 4 −4x 3 −2x 2 +12x−1. a) Chứng minh rằng đồ thò (C) của hàm số có trục đối xứng. b) Tìm các giao điểm của (C) với trục Ox. Hướng dẫn và kết quả: a)Dự đoán trục đối xứng của đồ thò (C) : Tìm đến y (3) và cho y (3) = 0 , tìm được nghiệm x=1 cũng là nghiệm của y’=0. Từ đó chứng minh x=1 là trục đối xứng của (C). b) Cho Y= 0, tìm được X= 104 ±± ⇒ y=0 và x =1 104 ±± . 99) Chứng minh rằng (C): y = 1x 3x + − có hai trục đối xứng. Hướng dẫn và kết quả: Tâm đối xứng là I(−1;1). Suy luận có hai đường phân giác y=−x và y = x+2 của các góc tạo bởi 2 tiệm cận là trục đối xứng của (C). Chứng minh hai đường thẳng này là hai trục đối xứng của (C). 100) Khảo sát sự biến thiên và vẽ đồ thò (C): y = 2x 2x + − . Từ đồ thò (C) đã vẽ, hãy suy ra đồ thò của các hàm số: a) (C 1 ): y = f 1 (x) = 2x 2x + − b) (C 2 ): y = f 2 (x) = 2x 2x + − c) (C 3 ): y = f 3 (x) = 2x 2x + − d) (C 4 ): |y| = f 4 (x) = 2x 2x + − e) (C 5 ): y = f 5 (x) = 2x 2x + − f) (C 6 ): |y| = f 6 (x) = 2x 2x + − - 9 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn 101) a) Khảo sát và vẽ đồ thò (C) hàm số : y = f(x) = x 3 −3x 2 +2. b) Từ đồ thò (C), suy ra đồ thò (C’): y = g(x) = | x| 3 −3x 2 +2. Từ đó biện luận theo m số nghiệm của phương trình: | x| 3 −3x 2 +1 − m = 0. 102) Chứng tỏ rằng (C m ): y=x 2 +(2m+1)x+m 2 −1 (1) luôn tiếp xúc với một đường thẳng cố đònh. Xác đònh phương trình đường thẳng đó. Lời giải 1: 1. Dự đoán đường thẳng cố đònh: Cách 1: Chuyển (1) về phương trình m 2 +2xm+x 2 +x−1−y=0, phương trình này có ∆= (x) 2 −1.(x 2 +x−1−y)=0 ⇔ −x+1+y=0 ⇔ y= x−1 là đường thẳng cố đònh. Cách 2: Chuyển (1) về phương trình m 2 +2xm=−x 2 −x+1+y (2) Lấy đạo hàm 2 vế theo m: 2m+2x=0 ⇔ m=−x, thay trở lại (2):y=x−1 là đường thẳng cố đònh. 2. Chứng tỏ (C m ) tiếp xúc với đường thẳng cố đònh: ( Bắt đầu lời giải) Phương trình hoành độ giao điểm của (C m ) và d:y=x−1 là: x 2 +(2m+1)x+m 2 −1=x−1 ⇔ x 2 +2mx+m 2 =0 ⇔ (x+m) 2 =0 ⇔ x=−m (nghiệm kép) Vậy (C m ) luôn tiếp xúc d:y=x−1. Chú ý: Chỉ có đường thẳng và đường bậc 2,mới có khái niệm “ 2 đường tiếp xúc nhau ⇔ phương trình hoành độ giao điểm ( bậc 2 ) có nghiệm kép” . Trong các hàm số khác và hàm bậc nhất ta phải dùng hệ điều kiện tiếp xúc. Lời giải 2: Gọi d: y=ax+b là đường thẳng cố đònh. d tiếp xúc (C m ) khi và chỉ khi phương trình hoành độ giao điểm có nghiệm kép với mọi m: x 2 +(2m+1)x+m 2 −1= ax+b⇔ x 2 +(2m+1−a) x+m 2 −b−1=0 có nghiệm kép với ∀ m ⇔ ∆ =(2m+1−a) 2 −4.1(m 2 −b−1)=0 với ∀ m⇔−4(a−1)m+(a−1) 2 +4b+4=0 với ∀ m ⇔ =++ =− 044b1)-(a 01a 2 ⇔ −= = 1b 1a . Vậy d:y=x−1 là đường thẳng cố đònh mà (C m ) luôn tiếp xúc. 103) Chứng tỏ rằng (C m ): y= mx mmx)1m3( 2 + +−+ (1), m ≠ 0 luôn tiếp xúc với hai đường thẳng cố đònh. Xác đònh phương trình hai đường thẳng đó. 1. Dự đoán các đường thẳng cố đònh: Biến đổi (1) về phương trình bậc hai ẩn m: m 2 +(y−1−3x)m+(y−1)x=0 (2), đặt t=y−1 ta có phương trình: m 2 +(t−3x)m+tx=0(3) Phương trình (3) có ∆=0 ⇔ (t−3x) 2 −4tx=0 ⇔ t 2 −10xt+9x 2 =0⇔ t=9xV t=x. Thay t=y−1,suy ra hai đường thẳng d 1 :y=9x+1, d 2 :y=x+1 cố đònh tiếp xúc (C m ) 2. Chứng tỏ (C m ) tiếp xúc với d 1 , và tiếp xúc d 2 : ( Bắt đầu lời giải) • d 1 :y=9x+1 tiếp xúc (C m ) khi và chỉ khi hệ sau có nghiệm: = + += + +−+ 9 )mx( m4 1x9 mx mmx)1m3( 2 2 2 ⇔ (3x+m) 2 =0 ⇔ x= − 3 m - 10 - [...]... c) ∫ x 3 5 ln 4 2 3 ∫ (2x −1) x 2 − x +1 dx 0 e k) ∫ 1 ln 2 x dx x - 12 - 0 1 3 +1) Ôn Tập GiảiTích12 GV: Phạm Văn Sơn - 13 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn Giáo trình Giảitích12 118) Chứng minh rằng: 3π 4 π dx π ≤ a) ≤ ∫ 2 4 π 3 − 2 sin x 2 b) - Trang 16 11 54 2 ≤ ∫ ( x + 7 + 11 − x )dx ≤ 108 −7 4 119) Tính các tích phân: Tích phân Kết quả π 4 a) ∫ sin 2x.dx 1 2 0 e b) ∫ 1 1 + ln x dx x π... 3 (x −1) 2 +C Từ đó, hãy Ôn Tập GiảiTích12 GV: Phạm Văn Sơn 115) Tính các tích phân: Tích phân Kết quả Tích phân Kết quả a) ∫cot gx.dx l nsinx+C d) ∫ 1 dx l n l n x ln x b) x+C e) cot g x.dx ∫ −cotgx−x+C 3 1 e 2 cos x + e c) − 2 ∫sin x cos xdx 1 sin3x+C sinxdx +C 3 2 ∫ 2 2 cos x +3 dx x f) ∫ sin x +C 116) Tính các tích phân: Tích phân Kết quả 2 a) ∫ 1 l n tg 2 Tích phân Kết quả e) x +2 dx 2x... e +1 π 2 1 sin x dx 2 0 1 + cos x v) ∫ w) 1 ln( 2 + 3 ) 2 ln 4 x ∫ x dx 1 e 1 4 1 5 121 ) Tính các tích phân: Tích phân Kết quả ∫ xe a) Tích phân Kết quả e 1 2x dx 0 π 2 b) ∫ ( x − 1) cos xdx 0 Tích phân e 2 +1 4 c) ∫ ln xdx 1 d) π −2 2 π 4 xdx 2 x ∫ cos 0 Kết quả Tích phân - 15 - 1 π − ln 2 4 Kết quả Ôn Tập GiảiTích12 e) GV: Phạm Văn Sơn π 2 1 ∫ x sin x.cos xdx 2 h) ∫ x ln(1 + x )dx π 8 0 e f) ∫ (ln... f(x) là một hàm số lẻ thì: 128 ) Chứng minh rằng a x −x a − a ∫f (t )dt =∫f (t )dt ∫ sin x.f (cos x)dx =0 Áp dụng bài 124 ) −a - 16 - Hd: t=−x Ôn Tập GiảiTích12 129) Chứng minh rằng GV: Phạm Văn Sơn a a −a 0 2 2 ∫ cos x.f (x )dx =2∫ cos x.f (x )dx 1 1 Áp dụng bài 123 ) n m 130) Chứng minh rằng ∫ x (1 − x) dx =∫ x (1 − x) dx Hd:x=1−t m n 0 0 131) Tính các tích phân sau: Tích phân Kết quả 2 2 a) ∫... π 4 d) ∫ tg 4 xdx 0 π 2 3π −8 12 dx e) π sin 4 x ∫ 4 1 f) ∫ 3 1 − xdx 4 3 0 1 2 g) ∫ x x + 1 dx 3 4 0 1 dx h) ∫ x 2 + x + 1 0 1 ∫ k) 0 1 (2 2 −1) 3 π e x dx 1+ ex π 2 l) ∫ sin x 3 3 3 cos x dx 0 2( e +1 − 2 ) 3 4 - 14 - - Soạn cho lớp LTĐH Ôn Tập GiảiTích12 GV: Phạm Văn Sơn 120 ) Tính các tích phân: Tích phân 2 ∫x m) 2 dx Kết quả Nhân tử số và mẫu số cho π x 2 −1 x.Kq: 12 3 n) ∫ 9 − x 2 dx −3 9π 2... và Jn = ∫ x n sin x.dx và tính I3 0 0 Kết quả: 139) Giải phương trình: x ∫e 0 t dt = 0 π ( ) 3 − 3π + 6 2 Kq: 0 140) Tính diện tích hình phẳng giới hạn bởi (C): y= −x2+3x−2, d1:y = x−1 và d2:y=−x+2 Kq: - 19 - 1 12 Ôn Tập GiảiTích12 GV: Phạm Văn Sơn 141) Tính diện tích hình phẳng giới hạn bởi (C): y= x3−3x và đường thẳng y=2 Kq: 142) Tính diện tích hình phẳng giới hạn bởi Kq: 27 4 (P1 ) : y = x 2... π2 4 123 ) Chứng minh rằng: Nếu f(x) là một hàm số chẵn,liên tục trên đoạn [−a;a] (a>0) thì: a a −a 0 ∫ f (x)dx = 2 ∫ f (x)dx Hd: t=−x 124 ) Chứng minh rằng: Nếu f(x) là một hàm số lẻ, liên tục trên đoạn [−a;a] (a>0) thì: a ∫ f (x)dx =0 Hd: t=−x −a π 8 ∫x 125 ) Chứng minh rằng: − π 8 6 sin 7 xdx = 0 Áp dụng bài 124 ) 1 ∫e 126 ) Chứng minh rằng: −1 1 cos x dx =2 ∫ e cos x dx 0 Áp dụng bài 123 ) 127 ) Chứng... nhau Biết rằng tổng của 3 chữ số này bằng 12? - 22 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn Kết quả: Có 7 tập hợp chứa 3 phần tử khác 0 có tổng 12 và có 3 tập hợp chứa 3 phần tử có phần tử 0 có tổng 12. Vậy có 7.3!+3.(2.2.1)=54 số 163) Với 6 chữ số 2, 3, 5, 6, 7, 8 có bao nhiêu cách lập những số gồm 4 chữ số khác nhau, biết: 3 a) Các số này < 5000? Kết quả: 2 A 5 Ï =120 số b) Các số này chẵn < 7000? Kết quả:... k2 π V u = π − v + l 2 π - 28 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn cosu = cosv ⇔ u = ± v + k2 π tgu = tgv V cotgu = cotgv ⇔ u = v + k π 2 Phương trình bậc hai af 2(x) + b f(x)+c=0, a≠0: Với f(x) là một hàm số chứa sinx, cosx, tgx hoặc cotgx Phương pháp giải: Đặt t= sinx V t=cosx, điều kiện |t|≤1 hoặc t=tgx, t=cotgx ⇒ at 2+ bt+c=0 giải tìm t thích hợp Sau đó giải f(x)=t để tìm x 3 Phương trình asinu... 2 nằm trong 2 ô liền nhau nên có 2!=2 cách xếp Theo quy tắc nhân, có 24.2=48 số 7 8 7 8 8 9 - 23 - Ôn Tập GiảiTích12 GV: Phạm Văn Sơn b) Có 5! =120 số tự nhiên có 5 chữ số khác nhau được lập nên từ 5 chữ số đã cho trong đó có thể có 1 và 2 đứng cạnh nhau; hoặc 1 và 2 không đứng cạnh nhau Vậy có 120 −48=72 số trong đó 1 và 2 không đứng cạnh nhau 171) Từ 4 chữ số 0,1,2,3 có thể lập được bao nhiêu số tự . xsin 2 1 )122 ( 3 2 − 2 1 12 83 −π 3 4 4 3 )122 ( 3 1 − 33 π )21e(2 −+ 4 3 - 14 - Ôn Tập Giải Tích 12 GV: Phạm Văn Sơn 120 ) Tính các tích phân: Tích phân. 1 ln( 3 +1) 0 3 1 - 12 - On Taọp Giaỷi Tớch 12 GV: Phaùm Vaờn Sụn - 13 - Ôn Tập Giải Tích 12 GV: Phạm Văn Sơn Giáo trình Giải tích 12 - Trang 16 - Soạn