1. Trang chủ
  2. » Đề thi

ON THI 2017 CD1

23 240 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 2,37 MB

Nội dung

n tập chuẩn bò kỳ thi thpt quốc gia – Năm 2017 Trang CHỦ ĐỀ ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ A LÝ THUYẾT CẦN NHỚ I, SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ Bài tốn 1: Tìm khoảng đồng biến – nghịch biến hàm số: Cho hàm số y = f ( x ) +) f ' ( x ) > đâu hàm số đồng biến +) f ' ( x ) < đâu hàm số nghịch biến Quy tắc: +) Tính f ' ( x ) , giải phương trình f ' ( x ) = tìm nghiệm +) Lập bảng xét dấu f ' ( x ) +) Dựa vào bảng xét dấu kết luận Bài tốn 2: Tìm m để hàm số y = f ( x, m ) đơn điệu khoảng (a,b) +) Để hàm số đồng biến khoảng ( a, b ) f ' ( x ) ≥ 0∀x ∈ ( a, b ) +) Để hàm số nghịch biến khoảng ( a, b ) f ' ( x ) ≤ 0∀x ∈ ( a, b ) ax + b Có TXĐ tập D Điều kiện sau: cx + d +) Để hàm số đồng biến TXĐ y ' > 0∀x ∈ D *) Riêng hàm số: y = +) Để hàm số nghịch biến TXĐ y ' > 0∀x ∈ D  y ' > 0∀x ∈ ( a, b )  +) Để hàm số đồng biến khoảng ( a; b )  d x ≠ − c   y ' < 0∀x ∈ ( a, b )  +) Để hàm số nghịch biến khoảng ( a; b )  d x ≠ − c  *) Tìm m để hàm số bậc y = ax + bx + cx + d đơn điệu R +) Tính y ' = 3ax + 2bx + c tam thức bậc có biệt thức ∆ a > +) Để hàm số đồng biến R ⇔  ∆ ≤ a > a +) Để hàm số nghịch biến R ⇔  ∆ ≤ Chú ý: Cho hàm số y = ax + bx + cx + d a >0 +) Khi để hàm số nghịch biến đoạn có độ dài k ⇔ y ' = có nghiệm phân biệt x1 , x cho x1 − x = k a

Ngày đăng: 05/05/2017, 16:12

Xem thêm

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w