1. Trang chủ
  2. » Đề thi

Đề đa thi vào 10 môn toán tỉnh thái bình 2016 2017

4 833 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 167 KB

Nội dung

Sở giáo dục đào tạo TháI bình đề thi tuyển sinh lớp 10 thpt năm học 2016 2017 môn : toán (120 phút làm bài) Ngày thi: 16/06/2016 (buổi chiều) Cõu 1: (2.0 im) a) Khụng dựng mỏy tớnh, hóy tớnh: A = + 2 x x +3 + = ữ x 3ữ x +3 x+9 b) Chng minh rng: 1+ vi x v x x Cõu 2: (2,0 im) Cho parabol (P): y = x2 ng thng (d): y = 2(m - 1)x + m2 + 2m (m l tham s, m R) a) Tỡm m ng thng (d) i qua hai im I(1; 3) b) Chng minh rng parapol (P) luụn ct ng thng (d) ti hai im phõn bit A, B Gi x1, x2 l honh hai im A, B, Tỡm m cho: x12 +x22 + 6x1x2 > 2016 Cõu 3: (2.0 im) x y = x y = a) Gii h phng trỡnh: b) Cho tam giỏc vuụng cú di cnh huyn bng 15 cm Hai cnh gúc vuụng cú di hn kộm 3cm Tỡm di hai cnh gúc vuụng ca tam giỏc vuụng ú Cõu 4: (3.5 im) Cho đờng tròn (O) vim A nm ngoi ng trũn T A k hai tip tuyn AB, AC vi ng trũn (B, C l hai tip im) a) Chng minh: Tứ giác ABOC ni tip b) Gi H l trc tõm tam giỏc ABC, chng minh t giỏc BOCH l hỡnh thoi c) Gi I l giao im ca on OA vi ng trũn Chng minh I l tõm ng trũn ni tip tam giỏc ABC d) Cho OB = 3cm, OA = cm Tớnh din tớch tam giỏc ABC Cõu 5: (0.5 im) Gii phng trỡnh: x3 + (3x2 4x - 4) x + = Hết Họ tên thí sinh: Số báo danh: Cõu 1: (2.0 im) a) Khụng dựng mỏy tớnh, hóy tớnh: http://violet.vn/nguyenthienhuongvp77 A = 3+ 2 1+ = + 2 +1 = ( ) 2 2 +1 +1 = +1 +1 =2 b) Vi x v x 9, ta cú: x x +3 + ữ ữ x + x + x x ( x 3) + 3( x + 3) x + = ( x + 3)( x 3) x+9 = x x +3 x +9 x +3 ( x + 3)( x 3) x + x+9 ( x + 3)( x 3) = x x + ữ Vy ữ x + x = x +3 x+9 x +3 = x+9 vi x v x x Cõu 2: (2,0 im) a) ng thng (d): y = 2(m - 1)x + m2 + 2m i qua im I(1; 3) = 2(m - 1).1 + m2 + 2m m2 +4m -5 = Ta cú: a + b + c = + = nờn phng trỡnh trờn cú hai nghim: m1 = 1; m2 = Vy m = hoc m = -5 thỡ ng thng (d) i qua im I(1; 3) b) Phng trỡnh honh d giao im ca parapol (P) v ng thng (d) l: x2 = 2(m - 1)x + m2 + 2m x 2(m 1)x m 2m = ( *) Phng trỡnh (*) cú : ' = ( m 1) 1(m 2m) = 2m2 + > vi mi m Nờn phng trỡnh (*) luụn cú hai nghim phõn bit vi mi m Do ú parapol (P) luụn ct ng thng (d) ti hai im phõn bit A, B Gi x1, x2 l honh hai im A, B thỡ x1, x2 l hai nghim ca phng trỡnh (*) x1 + x2 = 2m Theo h thc Viột ta cú : x1.x2 = m 2m Theo gi thit, ta cú: x12 +x22 + 6x1x2 > 2016 (x1 + x ) + 4x1x > 2016 (2m 2) + 4(-m 2m) > 2016 http://violet.vn/nguyenthienhuongvp77 4m 8m + 4m 8m > 2016 16m > 2012 503 m< Vy m < 503 l giỏ tr cn tỡm Cõu 3: (2.0 im) x y = x y = x = 10 x = x y = x y = x y = y = a) Ta cú : Vy h phng trỡnh cú nghim nht (x ;y) = (2;3) b) Gi di cnh gúc vuụng nh l x (cm) vi < x < 15 Vỡ hai cnh gúc vuụng cú di hn kộm 3cm nờn di cnh gúc vuụng cũn li l x + 3(cm) Vỡ tam giỏc vuụng cú di cnh huyn bng 15 cm nờn theo nh lý Py ta go ta cú phng trỡnh: x2 + (x +3)2 = 152 x + x + x + = 225 x + x 216 = x + 3x 108 = Ta cú: = 32 4.(108) = 441 > = 21 + 21 21 = (tha món), x1 = = 12 (loi) Phng trỡnh trờn cú hai nghim: x1 = 2 Vy di hai cnh gúc vuụng ca tam giỏc vuụng ú l 9cm v + = 12cm Cõu 4: (3.5 im) B H A E I O C a) Ta cú AB v AC l hai tip tuyn ct ca ng trũn (O) , vi B,C l hai tip ã ã im nờn OB AB v OC AC ABO = 900 v ACO = 900 ã ã T giỏc ABOC cú tng hai gúc i : ABO +ACO = 900 + 900 = 1800 Do ú t giỏc ABOC ni tip ng trũn b) Ta cú H l trc tõm ca tam giỏc ABC nờn BH v CH l hai ng cao ca tam giỏc ABC BH AC v CH AB, m theo cõu a) OB AB v OC AC OB // CH v OC // BH T giỏc BOCH l hỡnh bỡnh hnh http://violet.vn/nguyenthienhuongvp77 Li cú OB = OC ( bỏn kớnh) nờn t giỏc BOCH l hỡnh thoi c) Theo tớnh cht hai tip tuyn ct ta cú: AO l tia phõn giỏc ca BAC v OA l tia phõn giỏc ca BOC M I l giao ca OA vi ng trũn tõm O nờn I l im chớnh gia ca cung nh BC ABI = IBC BI l tia phõn giỏc ca ABC Vỡ I l giao im ca hai ng phõn giỏc AO v BI ca tam giỏc ABC nờn I cỏch u ba cnh ca tam giỏc ABC Vy I l tõm ng trũn ni tip tam giỏc ABC d) Gi E l giao im ca BC v OA Ta cú AB = AC (tớnh cht hai tip tuyn ct nhau); OB = OC (bỏn kớnh) => AO l ng trung trc ca BC => AO BC ti E v BC = 2BE Xột tam giỏc ABO vuụng ti B cú BE l ng cao nờn theo h thc lng tam giỏc vuụng ta cú : OB2 = OE.OA => OE = OB 32 = = 1,8 cm => AE = OA OE = 5- 1,8 = 3,2cm OA BE2 = AE.OE = 3,2.1,8 = > BE = 2,4cm => BC = 4,8cm Vy din tớch tam giỏc ABC l: 1 AE.BC = 3,2.4,8= 7,68cm2 2 Cõu 5: iu kin : x t y = x + vi y ta c: x3 + (3x2 4y2)y = x + ( 3x 4y ) y = x3 + 3x y y = ( x3 y ) + (3x y y ) = ( x y ) ( x + xy + y ) + y ( x y )( x + y ) = ( x y )( x + y ) = x = y x + y = 1+ (t / m) x = 2 *) Khi x = y ta cú : x = x + x x = v x > (loai ) x = *) Khi x + 2y = ta cú : x +2 x + = x +1 + x +1 +1 = ( ) x +1 +1 = x + + = (do x + + > 0) x +1 = x = 22 Vy phng trỡnh cú hai nghim : x1 = (tha x ) 1+ , x2 = 2 http://violet.vn/nguyenthienhuongvp77 ... − m − 2m Theo giả thi t, ta có: x12 +x22 + 6x1x2 > 2016 ⇔ (x1 + x ) + 4x1x > 2016 ⇔ (2m − 2) + 4(-m − 2m) > 2016 http://violet.vn/nguyenthienhuongvp77 ⇔ 4m − 8m + − 4m − 8m > 2016 ⇔ −16m > 2012... có phương trình: x2 + (x +3)2 = 152 ⇔ x + x + x + = 225 ⇔ x + x − 216 = ⇔ x + 3x − 108 = Ta có: ∆ = 32 − 4.( 108 ) = 441 > ⇒ ∆ = 21 −3 + 21 −3 − 21 = (thỏa mãn), x1 = = −12 (loại) Phương trình... CH ⊥ AB, mà theo câu a) OB ⊥ AB OC ⊥ AC ⇒ OB // CH OC // BH ⇒ Tứ giác BOCH hình bình hành http://violet.vn/nguyenthienhuongvp77 Lại có OB = OC ( bán kính) nên tứ giác BOCH hình thoi c) Theo tính

Ngày đăng: 01/05/2017, 15:22

TỪ KHÓA LIÊN QUAN

w