Bài soạn : luyệntập Ngày soạn : 30 07 - 2003 I. Mục đích yêu cầu - Kiểm tra kỹ năng tìm số gia của hàm số tơng ứng với số gia của đối số đã cho, kiểm tra tính cẩn thận của học sinh trong khi làm toán. Kết hợp với lý thuyết kiểm tra khả năng nhận thức của học sinh về kiến thức đã học bài trớc. - Rèn luyện cho học sinh kỹ năng tính đạohàm theo 3 bớc của định nghĩa, kỹ năng trình bày bài tập, chỉnh sửa những chỗ cần thiết trong bài làm. II. Lên lớp 1. ổn định tổ chức Lớp /Kiểm diện Ngày dạy 2. Kiểm tra kiến thức đã học - Phát biểu định nghĩa đạo hàm, cách tính đạohàm theo định nghĩa áp dụng tính đạo hàm của hàm số y = 2x 3 + x 2 tại điểm x 0 = 2 - Nêu ý nghĩa hình học của đạohàm ? áp dụng lập phơng trình tiếp tuyến với đồ thị hàm số y = 3x 2 + 1 tại tiếp điểm x = -1 + Gọi 2 h/s lên bảng, cho các h/s nhận xét kết quả. 3. Nội dung bài giảng Nội dung Phơng pháp Bài 1<SGK 11> Tính số gia của hàm số y = x 2 1 tơng ứng x a) x 0 = 1 đến x 0 + x = 2 ĐS : y = 3 b) x 0 = 1 đến x 0 + x = 0,9 ĐS : y = -0,19 Bài 2: <SGK-11> Tính y và y x của các hàm số theo x và x Đáp số a) y = 2x, y x = 2.b) ĐS : y = 2xx ; y x = 2x c) y = 6x 2 x, y x =6x 2 d) y = 2cos(x+ 2 x )sin 2 x ; y x cosx Bài 3 : Tính đạo hàm của các hàm số bằng định nghĩa a) y = x 2 + 3x tại x 0 = 1 - Gọi h/s nêu cách làm, kết quả - Cho h/s nhận xét kết quả của Giá trị y đợc tính bằng biểu thức hay giá trị số ? y = f(x + x)- f(x) thay vào biểu thức của hàm số ta có kết quả - Gọi h/s lên bảng tơng tự tính các câu b, c, d - Cho h/s nhận xét kết quả cà điều chỉnh nếu cần thiết. - Gọi học sinh nêu cách tính và kết quả của bớc 1;bớc 2 ;bớc3 - Trình bày chậm để học sinh rèn Bớc 1: Tính số gia y = (1+x) 2 + 3(1+x) (1 2 + 3.1) =x(5 + x) Bớc 2 : Lập tỉ số y x = 2x + 3 + x Bớc 3 : Tìm giới hạn 0 0 lim lim(5 ) 5 x x y x x = + = vậy f(1) = 5 b) ĐS : y(2) = 3 4 ; c) ĐS y(0) = -2 Bài 4: <SGK-12>. Tìm hệ số góc của cát tuyến M 1 M 2 với Parabol y = 2x x 2 biết rằng hoành độ giao điểm là a) x 1 = 1 ; x 2 = 2 2 1 2 1 0 1 1 2 1 M M y y tg x x = = = b) x 1 = 1; x 2 = 0.9 2 1 2 1 0.99 1 0,1 0.9 1 M M y y tg x x = = = Bài 5 : <SGK-12>. CMR hàm số 1 x y x = + liên tục tại x = 0 nhng không có đạohàm tại điểm đó Chứng minh liên tục lim lim 0; lim lim 0 1 1 1 1 x o x o x o x o x x x x x x x x + + = = = = + + + + chứng tỏ tồn tại giới hạn tại x = 0 liên tục Chứng minh không đạo hàm 2 2 lim lim 1 ( 1) lim lim 1 ( 1) x o x o x o x o y x x x x y x x x x + + = = + = = + Vậy không tồn tại đạo hàm của hàm số tại điểm x=0 luyện kỹ năng - Có phải tìm giới hạn hai phía của biểu thức không ? Tại sao ? - Nếu không thay giá trị x = 1 thì ta có kết quả bằng bao nhiêu ? - Cho 2 h/s lên bảng, gọi h/s nhận xét kết quả - Tìm hệ số góc của cát tuyến có phải tìm giá trị đạohàm không ? Có thể sử dụng công thức sau đợc không 2 1 2 1 M M y y tg x x = - Gọi học sinh trình bày cách giải, tốt nhất nên vẽ hình trớc để xác định cát tuyến và góc của cát tuyến - Sử dụng ý nghĩa hình học của đạohàm tìm hệ số góc của tiếp tuyến trong bài toán này gặp khó khăn gì ? tại sao ? - Nêu mối quan hệ giữa đạohàm và liên tục của hàm số. - Để chứng minh một hàm số không có đạohàm tại một điểm ta phải chứng minh điều gì ? - Gọi học sinh chứng minh tính liên tục tại x = 0 - Gọi học sinh tính biểu thức y x biểu thức này khi tính có gì phức tạp nếu ta tính theo hai phía ? - Tìm đạohàm từng phía đối với hàm số này để có thể rut ra kết luận. 4. Củng cố bài giảng - Khi tính đạohàm theo đinh nghĩa cần phải tuân theo mấy bớc, trong các bớc đó bớc nào phức tạp nhất ? - Xác định hệ số góc của cát tuyến khi biết toạ độ hai điểm có gì khác so với tìm hệ số góc của tiéep tuyến với đồ thị tại tiếp điểm. 5. Dặn dò - Về nhà xem lại các bài tập đã chữa và loàm các bài tập còn lại cẩn thận theo trình bày trên