1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tiết 77 : LUYỆN TẬP ĐẠO HÀM CÁC HÀM SỐ LƯỢNG GIÁC pps

8 632 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 186,51 KB

Nội dung

Tiết 77 : LUYỆN TẬP ĐẠO HÀM CÁC HÀM SỐ LƯỢNG GIÁC A.. MỤC TIÊU BÀI DẠY : Qua bài học , học sinh cần nắm được: 1.Về kiến thức: - Nắm vững các công thức tính đạo hàm các hàm số thường g

Trang 1

Tiết 77 : LUYỆN TẬP ĐẠO HÀM CÁC HÀM SỐ LƯỢNG GIÁC

A MỤC TIÊU BÀI DẠY : Qua bài học , học sinh cần nắm được:

1.Về kiến thức:

- Nắm vững các công thức tính đạo hàm các hàm số thường gặp, các công thức tính đạo hàm của một tổng ,hiệu ,tích thương và dạo hàm hàm số hợp

- Nắm được hệ số góc và phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm

M0(x0,y0)

2.Về kĩ năng:

- Giúp học sinh vận dụng thành thạo công thức tính đạo hàm các thường gặp và công thức tìm đạo hàm các hàm số lượng giác vào việc giải các bài toán liên quan đến đạo hàm các hàm số sinu, cosu, tanu, cotu với ( u = u(x))

3.Về tư duy và thái độ:

- Tích cực tham gia các hoạt động xây dựng nội dung bài học

- Biết quan sát và phán đoán chính xác các nội dung về kiến thức liên quan đến nội dung của bài học , bảo đảm tính nghiêm túc khoa học

B CHUẨN BỊ PHƯƠNG TIỆN DẠY HỌC :

- Giáo viên: Soạn bài, dụng cụ giảng dạy , máy chiếu

- Học sinh: Soạn bài, nắm vững các kiến thức đã học về cách xác định đạo hàm bằng định nghĩa và công thức tính đạo hàm của hàm số y = sinx, làm bài tập ở nhà, chuẩn bị các dụng cụ học tập

Trang 2

C PHƯƠNG PHÁP DẠY HỌC :

- Thông qua hoạt động kiểm tra các kiến thức đã học để giải và sữa các bài tập sgk

- Phát hiện và giải guyết vấn đề sai của học sinh nhằm khắc phục các điểm yếu của học sinh khi tiens hành giải bài tập

D TIẾN TRÌNH BÀI HỌC :

Hoạt động của giáo viên

và học sinh

Ghi bảng

♦ HĐ1: Kiểm tra và ôn luyện

kiến thức lý thuyết về công

thức tính đạo hàm của tổng

hiệu tích thương và đạo hàm

các hàm số thường gặp

- Nêu công thức tính đạo hàm

của tổng hiệu tích thương và

đạo hàm các hàm số thường

gặp

- Trình chiếu các công thức

tính đạo hàm của tổng hiệu tích

thương và đạo hàm các hàm số

thường gặp

I Ôn luyện lý thuyết về công thức tính đạo hàm của tổng hiệu tích thương và đạo hàm các hàm số

thường gặp :

1 Các qui tắc tính đạo hàm :

  / / /

uvuv

  / / /

.

u vu vv u   / /

/

u u v v u

 

 

   /  /   /

.

g xf u u x

2 Đạo hàm của các hàm số thường gặp : (u = u(x))

 ( C )/ = 0 ( C là hằng số  (un) / = nun – 1u/

Trang 3

♦ HĐ2:Vận dụng các kiến

thức về đạo hàm của tổng hiệu

tích thương và đạo hàm các

hàm số thường gặp để giải các

bài tập sgk

 Gọi 2 hs giải Bài tập 21/204

sgk

Lưu ý : Cách xét dấu tam thức

bậc hai f(x) = a x2 + bx + c

- Hs tiến hành giải các bài tập

- Gv kiểm tra bài tập hs

- Hs theo dõi và góp ý dưới sự

dẫn dắt của Gv để hoàn thành

nội dung bài tập

- Gv rút ra nhận xét về cách

)

 ( x )/ = 1

 (xn) / = nxn - 1 (n  2

;nN)

/ 2

 

  / 1

2

x

x

với (x > 0)

/ 2

 

  / /

2

u u

u

x

2

1

với (x > 0)

II Ôn luyện bài tập về công thức tính đạo hàm của các hàm số :

1 Bài tập 21/204 sgk

2

x

x

b /  2

f xxx x   

2 Bài tập 23/204 sgk Tính đạo hàm cấp cao của các hàm số sau :

a.

2 /

b

/

1

x

Trang 4

giải của hs và nêu các cách giải

hay và nhanh

 Gọi 3 hs giải Bài tập 23/204

sgk

♦ HĐ3 : Kiểm tra và ôn luyện

kiến thức về ý nghĩa của đạo

hàm

- Nêu ý nghĩa hình học của đạo

hàm

- Nêu phương trình tiếp tuyến

của đồ thị hàm số y = f(x) tại

điểm M0(x0; y0)

- Áp dụng giải Bài tập 24/205

sgk

- Hs tiến hành giải các bài tập

- Hs theo dõi và góp ý dưới sự

dẫn dắt của Gv để hoàn thành

nội dung bài tập

2

yxx x   yxx

III Ôn luyện về ý nghĩa của đạo hàm :

1 Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M 0 (x 0 ; y 0 ) là : /  

yf x xxy

2 Áp dụng giải bài tập 24/205 sgk

HĐ 4 : Luyện tập chung thông qua các câu hỏi trắc nghiệm khách quan phần tham

khảo

HĐ 5 : Dặn dò cho tiết học sau

Trang 5

Tham khảo trắc nghiệm các qui tắc đạo

Câu 1 : Đạo hàm của hàm số y = 1/3x3 - 4x2 +3x -2 tại x = -2 là :

Câu 2 : Hàm số có đạo hàm bằng

2

1

2x

x

 là :

A

3

x x y

x

2

y

x

3

1

x y x

3

y

x

Câu 3 :

Đạo hàm của hàm số

2

2 1

x x m y

x

 dương với mọi x ≠ -1khi và chỉ khi :

A m <1 B m < -6 C m < -3 D m > 3

Câu 4 :

Cho

x x

f x    Tập nghiệm của phương trình f /(x) = 0 là :

A {0 ; 1} B {-2 ; 1} C {1 ; 2} D {-1 ; 0}

Câu 5 : Cho đường cong (C): 2

2

x y x

 phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 1 là :

D

A y = 4x - 7 B y = 4x + 1 C y = - 4x + 3 D y = - 4x + 1

Trang 6

Câu 6 : Gọi (C) là đồ thị hàm số y = x2 - 3x +1 Phương trình tiếp tuyến với (C) tại giao

điểm của (c) với trục tung là :

A y = -3x B y = -3x +1 C y = 3x -1 D y = 3x +1

Câu 7 : Phương trình tiếp tuyến của đồ thị hàm số y = 1/x tại điểm có hoành độ bằng - 1

có dạng y = a x +b với a + b bằng:

D

Câu 21

:

Cho đường cong (C): y = x3 Phương trình tiếp tuyến của đường cong (C) có hệ

số góc của tiếp tuyến bằng 3 là :

A y = x -2 và y = x + 2 B y = 3x - 2 và y = 3x + 2

C y = 2x -1 và y = 2x + 1 D y = 2x -3 và y = 2x + 3

Câu 8 : Cho (C) 1

1

x y x

 phương trình tiếp tuyến của(C) tại giao điểm của (C) với trục

ox là :

y  x

Trang 7

Câu 9 : Có bao nhiêu giá trị nguyên của x để đạo hàm của y = (x + 1)3( x-2 )2 có giá trị

âm :

Câu 10

:

Cho đồ thị (C)yx Tiếp tuyến vuông góc với đường thẳng 4x + y - 3 = 0 có tiếp điểm là M Hoành độ M là số nào dưới đây:

Câu 11

:

Cho hàm số y = x3 có đồ thị (C) Xét ba mệnh đề sau :

(I) Tiếp tuyến với (C) tại giao điểm của (C) với đường thẳng y = 8 có hệ số góc

12

(II) Với mọi k# 0 luôn có hai tiếp tuyến của (C) có hệ số góc k

(III) Không có hai tiếp tuyến nào của (C) vuông góc với nhau:

A Chỉ (I) đúng B (II) và (III)

đúng C (I) và (II) đúng D

(I) và (III) đúng

Câu 12

:

Đạo hàm của hàm số   

 3

3

x x y

x

 bằng 0 tại các điểm x

1 ; x

2 Khi đó x

1 + x

2

bằng

Ngày đăng: 14/08/2014, 16:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w