Thầy giáo Nguyễn Đức Huấn trường THCS Phan Bội Châu huyện Tứ Kỳ, tỉnh Hải Dương xin giới thiệu dạng toán rút gọn lớp 9 để các thầy cô và các em tham khảo trong quá trình ôn tập đạt kết quả cao. Chúc các thầy cô và các em thành công
Trang 1Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương
MOT SO BAI TOAN RUT GON
Bai 1: Cho biéu thirc: B= y —5x,/y + 6x” a) Phân tích B thành nhân tử T1 ; 2 18 b) Tính giá trị của B khi x=——; y= — 3° +? c) Tìm các cặp số (x, y) thoả mãn đồng thời hai điều kiện sau: x-,y+1=0 vaB=0 Bai 2: Rut gon Ly I 45-2” 9+45 b) B=x?412x-8 với x=‡4(V5+1)~44(V5—1); a) A =x? —3x,/y +2y, khi x= vẻ oa Vx 1 | 1 2) Bai 3: Cho biéu thirc P = ea x—vx) West — : ol a) Rut gon P b) Tìm các giá trị của x dé P > 0 Vx _ 2x l—x
^|jxy—2y x+Ax—24|xy—24|y 1—Ax
Bài 4: Cho biểu thức P= a) Rút gọn P b) Tìm tất cả các số nguyên dương x để y = 625 và P<0,2 tele sa) Bài 5: Cho | a) Rút gọn K
Trang 2Bài 7: Cho p-| es me} x Jey | err Vos le +————- x+y a) Rut gon P b) Tinh giá trị của biểu thức với x= 3; y=4+2.3 1 3 =1, TT Vx-1 Vx+1 2 a) Tìm điều kiện của x để biểu thức A có nghĩa b) Rút gọn biểu thức A
c) Giải phương trình theo x khi A = -2
Bài §: Cho biểu thức : 4= (
Bài 9: Cho biểu thức: M=(_# _/x||4Z#! 1, ài o biêu thức (5 A | ( T tt 2-3
a) Rut gon M
b) Tính giá trị của M khi x= 7 + 443 c) Tim x sao cho M = 2
xe 2 , Vx+1 vVx-1 1 Vx 2
Bài 10: Cho biêu mm thức : P= ES Ve+i)'\We+1 1-Ve x-I — : —
a) Rut gon P
b) Tính giá trị của P khi x = vng
c) Tim x sao cho P = 1/2
Bai 11: Cho biểu thức: 4=_—”?” Ce n m
a) Rut gon biéu thức A
b) Tính giá tri ca A biét: m=2+ V3 ;n=2-43
Trang 3Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương
Trang 4HD: —3 A= Va +3 ài LẦU thứ 1 \(vx4+1 Vx-1 Bai 19: Cho biéu thitc A =| Vx -—— lứ +: a) Rút gọn biểu thức A b) Tìm x để A = 8 Bài 20: Cho biểu thức “| ` Fen) (EB) fs + Vx-Jy y-x Vx +4/y a) Rút gọn biểu thức P b) Chứng minh rằng P > 0 Sỹ 2a 1 2Ja Bai 21: Cho A = |} 1- — | mm la a | a) Rut gon A? b) Tinh A biét a = 2004-2 x2003 ; z=2000—2x41999 Vva+1 Na+ 4 Va-2 vVa-1 ` @ oA wv 1 1 Bài 22: Cho biêu thức C=} ——-—— |: [a 4 ( a) Rút gọn biêu thức C b) Tìm giá trị của a để C > = `e 2 r 1 1 Vx +2 Vx +1
Bài 23: Cho biêu thức: 4=| ——- : — :x>0,xzl,x#4
Trang 5Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương a) Rút gọn biểu thức P b) Tim x dé P = x-1 Bài 25: Cho biểu thức A= vx } { : + 2 ) soix>ovaxd Xx-1 x-Axj (jx+1 x-I a)) Rút gọn A b) Tính A khi x=3+ 242 c) Tìm các giá trị của x sao cho A < 0 Bài 26: Cho biểu thức 4= Vx:2) -8> Tứ a) Tìm tập xác định của 4 b) Rút gọn A Bài 27: Cho biểu thức Y = [ 1 4 }:{ | | }* Ị -x 1+xzJ \I-x 14x) x41’ a) Rút gọn biểu thức Y
Trang 6b) So sánh A và °
Bài 31: Cho A=|[—**?_||Z+>z >—,_x |wztz-vsw
vx+4y) \x-y y-vjxy ay tx 2 a) Rut gon A? b) Tính A, biết x= 7-43, „~7+⁄3 4 25 HD: DK: x,y >0;x#y _-w)|*-J _ 4 re 2 , 22x 1 Vx Bài 32: Cho biêu thức: 4= _ | 14% —e rales) a) Rut gon A b) Tim x dé A> 0 Bai 33: Cho biéu thirc: P= va_1)(va-1 Va+1 2Va)\Va+1 va-1 a) Rut gon P b) Tìm các giá trị của a để P <0 c) Tìm các giá trị của a để P = -2 (Ja - Jo) +4Vab axb —bAla Jat+vb — vab a) Tìm điều kiện để P có nghĩa b) Rút gọn P
c) Tính giá trị của P khi a =243 và b =A3 Bài 35: Cho biểu thức :
Bài 34: Cho biểu thức: P=
P*[ 1 3Vab lÍ 1l 3Vab } a—b
Jat+vVb ava+bvb }\\Va-Vb ava—bvb } a+Vab+b
a) Rut gon P
Trang 7Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương
Bài 36: Cho biễu thức; P=| “E1 ¿ Vx +Vx _ "lận vx +1 fei) J2x+1 V2x-1 V2x+1 VJ2x-1 a) Rut gon P b)Tinh giá trị của P khi x=—(42V2) x: oy 1 1\(Ja+1 Na+2 Bài 37: Cho biêu al Ø D1euU thức: P= Cc [ a _ |.| ME") +) Km _ NET ee a) Rut gon P b) Tìm giá trị của a để P ><
`3 48 _(¥a+1 Va-1 yelp
Trang 9Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương
Vat 1 Va -a
Bài 49: Cho biểu thức: 4= + +
Va? -1-Va? +a Ja-1l+Va -Ja-1 › VỚI a> ], a) Rút gọn A b) Chứng minh A > 0, với mọi a > Ì c) Tim a dé A =0 d) Tinh A biét a = 10 Bai 50: 0tr với a > f;a z1 a) Rut gonM
b) Tim gia tri cua a khi M = 0
Trang 11Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương
Bài 60: Cho biểu thức
o-| 1 _„_ 3vab 1l 3⁄ab | a-b
Va+vb ava +bvb } Va-vVb ava —bvVb -a+Xab+b
a) Rút gọn biểu thức Q
b) Tìm giá trị của biểu thức Q khi a = 16; b=4
2a° +4 1 1
Bài 61: Cho biểu thức D= _ _
Trang 12
xe 7 , vx Vx+3 Vx+2 Vx +2
Bài 67: Cho biêu thức: P=| 1— :
" oes ( tive} \Ve-2 3-Vx x-5Ve +6 a) Rut gon P b) Tim x dé P <0 Bài 68: Cho A = (2=3¥*_1|.{_9=2 _, ¥#=3_vx-2 3 xivx-6 Vx—2 Jx+3 a) Rut gon A? b) x=? thi A <1 15/x-1l1 3V¥x-2 2x +3 Bài 69: Xét biểu thức P= + = Xx+2Ax-3 I-Vjx vx+3 a) Rút gọn P b) Tìm các giá trị của x sao cho P = - c) So sánh P với > (Tìm x để F nhận giá trị lớn nhất Tìm giá trị lớn nhất đó) 2—54x DS: F= Vx +3 Va +2 5 1
Bai 70: Cho biểu thức : P = —
Trang 13Nguyễn Đức Huắn- THCS Phan Bội Châu - Tứ Kỳ - Hải Dương