Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 112 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
112
Dung lượng
1,56 MB
Nội dung
phần I con lắc lò xo Bài 1: Một lò xo được treo thẳng đứng, đầu trên của lò xo được giữ chuyển động đầu dưới theo vật nặng có khối lượng m = 100g, lò xo có độ cứng k = 25 N/m. Kéo vật rời khỏi VTCB theo phương thẳng đứng hướng xuống một đoạn 2cm, truyền cho nó vận tốc 310 . π (cm/s) theo phương thẳng đứng hướng lên. Chọn góc tg là lúc thả vật, gốc toạ độ là VTCB, c dương hướng xuống. a. Viết PTDĐ. b. Xác định thời điểm vật đi qua vị trí mà lò xo giãn 2 cm lần thứ nhất. Lời giải a) Tại VTCBO k∆l = mg ⇒ ∆l = 0,04 25 0,1.10 k mg == (m + ω = π=== 5105 1,0 25 m k (Rad/s) + m daođộngđiềuhoá với phương trình x = Asin (ωt + ϕ) Tại thời điểm t = 0 x = 2 cm > 0 v = 10π 3 (cm/s) <0 Ta có hệ 2 = ASin ϕ →Sin ϕ >0 -10π 3 = 5π.Acosϕ →cosϕ <0 Chia 2 vế tgϕ = 3 1− ⇒ ϕ = 6 5 π (Rad) → A = 4(cm) Vậy PTDĐ: x = 4sin (5πt + 6 5 π ) (cm) b) Tại VTCB lò xo dãn ∆l = 4cm + ở thời điểm t = 0, lò xo bị dãn ∆l = 4 + 2 = 6 (cm) + ở thời điểm t = 0 , vật đi lên v<0, tới vị trí lò xo bị dãn 2cm lần đầu tiên thì v<0. ∆l l 0 0(VTCB) ) x - ∆l • • • Vậy lúc đó x = -2 (cm) Ta có: -2 = 4sin (5πt + 6 5 π ) ⇔ sin (5πt + 6 5 π ) = 2 1 − 5πt + 6 5 π = 6 7 π ⇒ t = 15 1 (s) ( Có thể giải bằng mối liên hệ giữa daođộngđiềuhoà và chuyển động tròn đều) Bài 2: Cho con lắc lò xo dđđh theo phương thẳng đứng vật nặng có khối lượng m = 400g, lò xo có độ cứng K, co năng toàn phần E = 25mJ. Tại thời điểm t = 0, kéo m xuống dưới VTCB để lò xo giãn 2,6cm đồng thời truyền cho m vận tốc 25cm/s hướng lên ngược chiều dương Ox (g = 10m/s 2 ) a. CM vật dđđh. b. Viết PTDĐ Lời giải a. Tại VTCB k∆l = mg ⇒ k∆l = 0,4.10 = 4 → ∆l = k 4 (mét) Tại thời điểm t = 0, kéo m xuống dưới VTCB, lò xo dãn 2,6 cm → x = 2,6 - ∆l = 0,026 - k 4 ( mét) Chiều dương 0x hướng xuống ⇒ x >0 Tại t = 0 x = 0,026 m/s > 0 v = -0,25 m/s <0 Cơ năng toàn phần E = 3 10.25 2 2 1 2 2 1 − =+ mvkx (J) Ta có phương trình: 322 25.10).0,4.(0,25 2 1 ) k 4 k(0,026 2 1 − =+− ⇔ k(2,6.10 -2 - 025,0) 4 2 = k => k > 153,8 N/m ⇔ 0,026 2 .k 2 - 0,233k + 16 = 0 ⇔ k = 250 (N/m) TM k = 94,67 (N/m) loại Vậy k = 250 N/m → ω = 25 4,0 250 == m k (Rad/s) Tại t = 0 x = 1cm > 0 v = -25cm/s < 0 1 = Asin ; sinϕ >0 ϕ = 4 3π Rađ -25 = 25Acosϕ; cosϕ<0 A = 2 cm Vậy phương trình điềuhoà là x = ) 4 3 t25sin(2 π + (cm) Bài 3: Hai lò xo có độ cứng lần lượt là k 1 = 30 (N/m) và K 2 = 30 (N/m) được gắn nối tiếp với nhau và gắn vào vật M có khối lượng m = 120g như hình vẽ. Kéo M dọc theo trục lò xo tới vị trí cách VTCB 10 cm rồi thả không vận tốc đầu trên mặt phẳng ngang. Bỏ qua ma sát. 1. CM vật DĐĐH, viết PTDĐ 2. Tính lực phục hồi cực đại tác dụng vào vật Lời giải 1. Chọn trục ox nằm ngang, chiều dương từ trái qua phải, gốc 0 tại VTCB của vật. Khi vật ở VTCB, các lò xo không bị biến dạng. Khi vật ở li độ x thì x = x 1 + x 2 với x 1 ; x 2 là độ biến dạng của 2 lò xo (cùng dãn hoặc nén). + Lực đàn hồi ở 2 lò xo bằng nhau lên x 1 = 1 k F − ; x 2 = 2 k F − Vậy x = +−=−− 2121 11 kk F k F k F L 1 L 2 M Mặt khác F = - kx ⇒ kkk 111 21 =+ áp dụng định luật 2 N: F = m.a = mx '' → mx '' = - k.x hay x '' = - ωx 2 với ω 2 = )( . 21 21 kkm kk m k + = Vật daođộngđiềuhoà theo phương trình x = Asin (ωt + ϕ) Vậy vật daođộngđiềuhoà * Phương trình daođộng ω = 10 )2030(12,0 20.30 )( . 21 21 = + = + = kkm kk m k (Rad/s) Khi t = 0 x = 10cm>0 v = 0 cm/s Ta có hệ 10 = Asinϕ ; sinϕ >0 ϕ = 2 π 0 = ωAcos ; cosϕ = 0 A = 10 (cm) Vậy phương trình daođộng là x = 10sin (10πt + 2 π ) (cm) 2. Ta coi con lắc được gắn vào 1 lò xo có độ cứng K Vậy lực phục hồi là F = - kx → Lực phục hồi cực đại F max = +kA = 120,10 = 1,2N Bài 4: Dùng hai lò xo cùng chiều dài độ cứng k = 25N/m treo 1 quả cầu khối lượng m = 250 (g) theo phương thẳng đứng kéo quả cầu xuống dưới VTCB 3 cm rồi phóng với vận tốc đầu 0,4 2 cm/s theo phương thẳng đứng lên trên. Bỏ qua ma sát (g = 10m/s 2 ; π 2 = 10). 1. Chứng minh vật daođộngđiều hoà, viết PTDĐ? 2. Tính F max mà hệ lò xo tác dụng lên vật? Lời giải ⇒ 1. Chọn trục 0x thẳng đứng hướng xuống gốc 0 tại VTCB + Khi vật ở VTCB lò xo không bị biến dạng. + Khi vật ở li độ x thì x là độ biến dạng của mỗi lò xo. + Lực đàn hồi ở hai lò xo bằng nhau (VT 2 lò xo cùng độ cứng và chiều dài và bằng 2 1 lực đàn hồi tổng cộng) F = 2F 0 ⇔ -Kx = -2kx ⇒ K = 2k + Tại VTCB: → P + → P2 = → 0 Hay mg - 2k∆l o = 0 (1) + Tại li độ x; 2 lò xo cùng dãn ∆l = x + ∆l 0 Hợp lực: → P + →→ = FF2 dh mg - 2k(∆l 0 + x) = F (2) Từ (1) (2) F = -2kx Theo định luật II Niutơn : F = ma = mx '' ⇒ x '' = x m k2 − → x = Asin (ωt + ϕ) Vậy vật DĐĐH + PTDĐ: Tại t = 0 x = +3cm > 0 v = - 0,4 2 m/s = - 40 2 (cm/s) Ta có hệ 3 = A sinϕ ; sinϕ > 0 - 40 2 = 10 2 Acosϕ ; cosϕ < 0 Biên độ A = 5 200 2.40 3 2 2 =+ cm Ta có hệ 3 = 5sinϕ sinϕ = 0,6 -40 2 = 10 2 .5.cosϕ cos ϕ = -0,8 →ϕ ≈ 2,5 Rad PTDĐ là x = 5sin (10 2 t + 2,5) (cm) k 0 F k 0 F P + m O • → ϕ 143,13 0 → e) Lực mà hệ số lò xo tác dụng vào vật Cả 2 lò xo coi như một lò xo độ cứng K = 2k = 50 N/m ∆l 0 = 05,0 50 10.25,0 == K mg m = 5 (cm) Khi vật ở vị trí thấp nhất, lực đàn hồi đạt cực đại F đhmax = K (A + ∆l 0 ) = 50(0,05 + 0,05) = 5 (N) Bài 5: Một vật có khối lượng m = 100g chiều dài không đáng kể được nối vào 2 giá chuyển động A, B qua 2 lò xo L 1 , L 2 có độ cứng k 1 = 60N/m, k 2 = 40 N/m. Người ta kéo vật đến vị trí sao cho L 1 bị dãn một đoạn ∆ l = 20 (cm) thì thấy L 2 không dãn, khi nén rồi thả nhẹ cho vật chuyển động không vận tốc ban đầu. Bỏ qua ma sát và khối lượng của lò xo. Chọn gốc toạ độ tại VTCB, chiều dương hướng từ A → B,chọn t = 0 là lúc thả vật. a) CM vật DĐĐH? b) Viết PTDĐ. Tính chu kì T và năng lượng toàn phần E. c) Vẽ và tính cường độ các lực do các lò xo tác dụng lên gia cố định tại A, B ở thời điểm t= 2 T . Lời giải a) CM vật DĐĐH + Chọn trục toạ độ như hình vẽ. + Khi vật ở VTCB lò xo L 1 dãn ∆l 1 lò xo L 2 dãn ∆l 2 Khi đó vật để L 1 dãn ∆l = 2cm ; L 2 khi nén k dãn thì ∆l chính là độ biến dạng tổng cộng của vật ở VTCB. ∆l = ∆l 1 + ∆l 2 = 20 (cm) (1) + Tổng hợp lực bằng 0 : 00 02010201 =+→=+++ →→→→→→→ FFFFNP B A → 01 F → 02 F 0 + x G x Hay + K 1 ∆l 1 - k 2 ∆l 2 = 0 (2) + Khi vật có li độ x> 0 độ dãn của L 1 là (∆l 1 + x) cm, L2 là (∆l 2 - x) Tổng hợp lực →→→→→ =+++ amFFNP 21 Hay - k 1 (∆l 1 + x) + k 2 (∆l 2 - x) = mx'' ⇔ - (k 1 + k 2 ) x = mx'' ⇒ x'' = 2 21 . ω −= + − x m kk với ω2 = m kk 21 + − Vậy x = Asin (ωt + ϕ) (cm) → vật DĐĐH b) ω = π 10 1,0 4060 21 = + = + m kk (Rad/s) + Biên độ daođộng A = ∆l 2 (vì A = 2 2 2 2 0 lxx ∆ ==+ ω ) Giải (1), (2) ∆l 1 + ∆l 2 = 20 ∆l 1 = 8cm 60∆l 1 + 400∆l 2 = 0 ∆l 2 = 12cm -> A = 12cm t = 0 -> x 0 = Asin ϕ = A v 0 = ωAcosϕ = 0 Vậy PTDĐ của vật x = 12 sin (10πt + 2 π ) (cm) Chu kì daođộng T = 2,0 10 22 == π π ω π (s) Năng lượng E = 72,0)012.(,100. 2 1 2 1 22 ==KA (J) c) Vẽ và tính cường độ các lực + Khi t = 1,0 2 = T (s) thì x = 12 sin (10.0,1Π + 2 π ) = -12 (cm) → ϕ = 2 π → P → 0 F 0 (VΠB) + x → 0 T Vì vậy, tại t = 2 π vật ở biên độ x = - A Tại vị trí này lò xo l 1 bị nén 1 đoạn A - ∆l 1 = 12 - 8 = 4 (cm) Lò xo L 2 bị giãn một đoạn 2A = 24 (cm) + Lực tác dụng của lò xo L 1 và L 2 lên A, B lần lượt là →→ 21 ,FF F 1 = 60.0,04 = 2,4 (N) F 2 = 40.0,24 = 0,6 (N) ( →→ 21 ,FF cùng chiều dương) Bài 6: Cho hai cơ hệ được bố trí như các hình vẽ a,b lò xo có độ cứng k = 20N/m. Vật nặng có khối lượng m, m = 100g; bỏ qua ma sát khối lượng của r 2 và lò xo dây treo k dãn. Khối lượng k đáng kể. 1. Tính độ dãn lò xo trong mỗi hình khi vật ở VTCB. 2. Nâng vật lên cho lò xo không biến dạng rồi thả nhẹ, chứng tỏ vật dđđh. Tính chu kì và biên độ daođộng của vật. Lời giải 1) Hình a + Chọn chiều dương ox hướng xuống, gốc 0 tại VTCB + Phương trình lực →→→ =+ 0 00 FT →→→ =+ 0 00 PT Chiều lên ox -T 0 + K∆l = 0 -T 0 + mg = 0 ⇒ T 0 = k∆l = mg = 0,1.10 = 1 ⇒ T 0 = 1N ∆l = 0,05 (m) = 5 (cm) * Hình b a b → P → 0 F + x → 0 T → 0 T O Chọn chiều dương hướng xuống, O là VTCB Chiếu lên Ox -T 0 + mg = 0 -k∆l + 2T 0 = 0 ⇒ T 0 = mg = 1 (N) ∆l = 10 (cm) 2) Chứng minh vật DĐĐH Hình a: + Khi vật ở VTCB lò xo dãn ∆l → k∆l - mg = 0 + Khi vật ở li độ x lò xo dãn ∆l + x F = mg - T T - k(∆l + x) = 0 → F = mg - k∆l 0 - kx ⇒ F = -kx áp dụng định luật II N → - kx = mx '' = xx m k . 2 ω −=− Với ω = m k → x = Asin (ωt + ϕ) → vật daođộngđiềuhoà * Hình b: Khi vật ở VTCB lò xo dãn ∆l → 2 1 k∆l - mg = 0 Khi vật ở li độ x lò xo dãn ∆l + 2 x mg - T = F 2T - k(∆l + 2 x ) = 0 → F = mg - 2 1 k∆l - x k 4 → F = x k 4 − Hay x k 4 − = mx '' → x = x m k 4 − = - ω 2 x với ω = m k 4 x = Asin (ωt + ϕ) → vật daođộngđiềuhoà → → Bài 7: Một vật có khối lượng m = 400g được gắn trên một lò xo dựng thẳng đứng có độ cứng k = 50 (N/m) đặt m 1 có khối lượng 50 g lên trên m. Kích thích cho m daođộng theo phương thẳng đứng biên độ nhỏ, bỏ qua lực ma sát và lực cản. Tìm hiên độ daođộng lớn nhất của m, để m 1 không với khối lượng m trong quá trình daođộng (g = 10m/s 2 ) Lời giải Khi m 1 không rời khỏi m thì hai vật cùng daođộng với gia tốc a = ω 2 x Giá trị lớn nhất của gia tốc (a max = ω 2 A) Nếu m 1 rời khỏi m thì nó chuyển động với gia tốc trọng trường g Vậy điều kiện để m 1 không rời khỏi m a max < g ⇔ ω 2 A < g ⇒ A< 2 g ω + ω = m k → ω 2 = 125 4,0 50 = → A < 125 10 = 0,08 (m) = 8cm → A max = 8cm Bài 8: Cho 1 hệ daođộng như hình vẽ, khối lượng lò xo không đáng kể. k = 50N/m, M = 200g, có thể trượt không ma sát trên mặt phẳng ngang. 1) Kéo m ra khỏi VTCB 1 đoạn a = 4cm rồi buông nhẹ. Tính V TB của M sau khi nó đi qũang đường 2cm . 2) Giả sử M đang daođộng như câu trên thì có 1 vật m 0 = 50g bắn vào M theo phương ngang với vận tốc o v . Giả thiết va chạm là không đàn hồi và xảy ra tại thời điểm lò xo có độ dài lớn nhất. Tìm độ lớn o v , biết rằng sau khi va chạm m 0 gắn chặt vào M và cùng daođộngđiềuhoà với A ' = 4 2 cm. m 1 m M k o v m 0 [...]... Bài 17: Một con lắc đơn gồm sợi sây có chiều dài l = 1m và vật nặng có khối lượng m = 0,5kg Lúc đầu kéo con lắc lệch khỏi VTCB 1 góc α0 = 60 rồi thả nhẹ cho daođộng Khi daođộng con lắc chịu tác dụng của lực cản có độ lớn coi như không đổi sau 100 dao động, li độ cực đại của con lắc là α = 30 coi chu kỳ daođộng của con lắc như khi không có lực cản 1 CMR sau mỗi chu kì, li độ góc cực đại của dao động. .. xo 1 1 k∆l2= m2v22 2 2 → ∆l = v2 m2 0,1 ≈ 0,316 ≈ 0,02 k 25 (m) = 2 (cm) c) Chu kì daođộng T = 1 1 (T1 + T2) = (2 + 0,4) = 1,4 (s) 2 2 Phần II: II mạch daođộng điện từ lc Bài 21: Cho mạch daođộng điện LC C = 5µF = 5.10-6F L = 0,2 H 1) Xác định chu kì daođộng của mạch 2) Tại tiêu điểm hđt giữa 2 bản tụ u = 2V và daođộng chạy qua cuộc cảm i = 0,01 A Tính I0; U0 3) Nếu tụ C có dạng 1 tụ phẳng, khoảng... 10 − 1 = 1,4.10 −6 = 3,5.10 −15 (F) (NF) Kết luận: Cn + Cx 1,4.10-16≤ C ≤ 3,5.10-15F Bài 22: Khung daođộng gồm cuộn L và tụ C thực hiện daođộng điện từ tự do, điện tích cực đại trên 1 bản tụ là Q0 = 10-6C và chuyển động daođộng cực đại trong khung là I0 = 10A a Tính bước sóng của daođộng tự do trong khung b Nếu thay tụ điện C bằng tụ C' thì bước sóng của khung tăng 2 lần Hỏi bước... duy trì trong daođộng có suất điện động e = 1µV Tính chuyển động daođộng hiệu dụng trong mạch lúc cộng hưởng Lời giải a Khoảng bước sóng của sóng thu được với mạch daođộng - Bước sóng của sóng vô tuyến λ = 2 πc LC + Xét C = C1 = 10pH = 10-11 F M = 2 πc LC 1 = 2Π.3.108 2.10 −6.10 −11 = 8,4 m + Xét C = C2= 790pF = 49.10-11F λ2= 2 πc LC 2 = 2π.3.10 −8 2.10 −6.49.10 −11 = 59m Vậy mạch daođộng này thu... xuống dưới VTCB 4cm rồi thả nhẹ để vật daođộng h → xmax= 4(cm) < → luôn có F A tác dụng vào vật khi nó daođộng 2 +x F =P +F A +F dh → F = mg - S(h0+ x) Dg - k(∆l0 + x) = mg - Sh0Dg- k∆l0- SDgx - kx →F = - (SDg + k)x Theo định luật 2 N: F = ma = mx'' → mx'' = - (SDg + k)x ⇒ x'' = ω2.x với ω2 = SDg + K m → x = Asin (ωt + ϕ) vậy vật dao độngđiều hoà + Chu kì daođộng T = 2π m 0,4 = 2π = 2π −4 ω SDg +... Thời gian daođộng Tính ∆A: ∆A = 4.0,1.0,2.10 = 0,01 (m) = 1 cm 80 Số chu kì thực hiện được : Vậy thời gian daođộng là n= A = 10 (chu kỳ) ∆A t = n.T = 3,14 (s) 2 µ mg k Phần II con lắc đơn Bài 11: Hai con lắc đơn chiều dài l1, l2 (l1>l2) và có chu kì daođộng tương ứng là T1; T2, tại nơi có gia tốc trọng trường g = 9,8m/s 2 Biết rằng, cũng tại nơi đó, con lắc có chiều dài l1 + l2 , chu kì daođộng 1,8s... 150 = 0,28 (s) 3 Cơ năng E Coi vật daođộng vật được gắn vào lò xo có độ cứng k' = SDg+ K = 200 N/m Biên độ daođộng A = 0,04 (cm) → Cơ năng: E = 1 ' 2 1 k A = 200.(0,04) 2 = 0,16 (J) 2 2 Bài 10: Gắn một vật có khối lượng m = 200g vào 1 lò xo có độ cứng k = 80 N/m Một đầu của lò xo được chuyển động kéo m khỏi VTCB 10cm dọc theo trục lò xo rồi thả nhẹ cho vật daođộng Biết hệ số ma sát giữa m và mặt... ngang Lời giải 1 - Chu kì daođộng nhỏ của con lắc Lúc đầu T0 = 2 π l 1 ≈ 2.3,14 = 2 (s) g 9,8 2 - Cho con lắc tích điện daođộng trong đtrường đều + Các lực tác dụng vào con lắc: P = m g : Trọng lực T: lực căng của dây F d = q E : lực điện trường + Coi con lắc daođộng trong trường trọng lực hiệu dụng g' ' ' P = P + Ed = m g Khi CB dây treo con lắc có phương của P ' và chu kì daođộng nhỏ được tính theo... các bản di động 1800 Vậy phải xoay góc α α= 180(51,9 − 10) = 15,7 490 − 10 + Cường độ hiệu dụng trong mạch khi bắt sóng (cộng hưởng) Z = R ⇒ Imax = U l 10 −6 = = −3 = 10-2A = 1mA R R 10 Bài 24: Cho mạch LC: bộ tụ điện C1//C2 rồi mắc với cuộc cảm L mạch daođộng với tần số góc ω = 48Π Rad/s Nếu C1 nối tiếp C2 rồi mắc với cuộn cảm thì mạch daođộng với tần số góc ω' = 100Π Rad/s Tính tần số daođộng của... giảm 1 lượng không đổi (đpcm) 2 Công suất của động cơ duy trì daođộng con lắc + CHu kì daođộng của con lắc T = 2 π l 1 = 2π = 2 (s) g 10 + Độ giảm năng lượng trong N chu kì là ∆E = 1 1 1 mgl α20 - mgl α2 = mgl (α20 - α2) 2 2 2 1 π2 (6 2 − 32 ) = 2,08.10 − 2 (J) ∆E = 0,5.10 2 2 180 + Công suất của động cơ là ΔE ΔE 2,08.10 −12 = 1,04.10-5 W = = = t N.T 100.2 Bài 18: Tại một nơi nang bằng mực nước biển, . . 21 21 kkm kk m k + = Vật dao động điều hoà theo phương trình x = Asin (ωt + ϕ) Vậy vật dao động điều hoà * Phương trình dao động ω = 10 )2030(12,0 20.30. + ϕ) vậy vật dao động điều hoà + Chu kì dao động T = 15010.10.10.50 4,0 22 2 34 + = + = − ππ ω π KSDg m = 0,28 (s) 3. Cơ năng E Coi vật dao động vật được