1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề phương trình, bất phương trình, hệ phương trình (Trường đại học Phương Đông)

30 230 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 5,18 MB

Nội dung

Chuyên đề: PT- BPT - HPT VÔ TỶ Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) PHẦN I -PHƢƠNG TRÌNHBẤT PHƢƠNG TRÌNH CÁC DẠNG CƠ BẢN B  ► A B A  B B  ► A  B A  B B  ► A  B A  B B   ► A  B  A   A  B2   A   B  ► A B   B    A  B2 TỔNG QUÁT: Đối với những phƣơng trình, bất phƣơng trình dạng chuẩn nhƣ trên, ta thực hiện: - Đặt điều kiện cho thức có nghĩa, - Chuyển vế cho vế không âm, - Bình phƣơng hai vế để khử VÍ DỤ - BÀI TẬP Ví dụ 1: Giải phƣơng trình, bất phƣơng trình sau:  2x  x  x  2 x    x   2x x  4x   3x  17 3x  19x  20  4x  x  12  2x   x   2x  x  x   x    2 4  2x  x   x   x  x     x 3 x   x   x  3x  Vậy: x  x    x   2x  x    x   2x x    Điều kiện: 1  x   4  x  1  2x   Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn)  x    3x  2x  3x   2x   2x  3x  2x    2 (2x  1)  2x  3x  2x    2 4x  4x   2x  3x  1   x  x       x   x   2x  7x    So điều kiện nhận x  Vậy: x  x0 x  4x   3x  17  x  4x     3x  17   x  4x   (3x  17)    x  1  x      x x    17 17    x   x  3   21 8x  98x  294    x   x  x7 Vậy: x  3x  19x  20  4x  4x   4x     2 3x  19x  20  3x  19x  20  (4x  4) x  x     13x  51x    x  5  x   x    x  5    x     x4   13  x  5    x    x  4 Vậy: x  5    x    x  x  12  2x   x   x  12  x   2x  (*) Trang Chuyên đề: PT- BPT - HPT VÔ TỶ (*)  x  12  x   2x   x  12  x   2x   (x  3)(2x  1)  14  2x  (x  3)(2x  1)  (x  3)(2x  1)   x (x  3)(2x  1)    7  x  (x  3)(2x  1)  49  14x  x   x    x    x   x  9x  52     x    x    x   x   3 x   x   x  13   So điều kiện  x  Vậy:  x  Ví dụ 2: Giải phƣơng trình, bất phƣơng trình sau:   x   5x 3 x x  16  x 3  x 3 x 3 (x  1) 16x  17  8x 15x  23 2 (x  3) x   x  2 2x  8x   x   2x  51  2x  x 1 1 x   x   5x (1) 3 x 3  x  x Điều kiện:  9  5x  (1)   x  5x  24x  27 9  x   2 81  18x  x  5x  24x  27 x  16 (2)  x 3  x 3 x 3  x  16   x  4  x   x4 Điều kiện:  x  x   Do x   nên quy đồng bỏ mẫu ta đƣợc: (2)  x  16   x   x  16    8  x   8 x      x  16  (8  x)   x  4  x   x  x     x5 x  5 x 8    16x  80 So điều kiện nhận x  Vậy: x  (x  1) 16x  17  8x 15x  23 (3) Điều kiện: 16x  17   x   17 16 (3)  (x  1) 16x  17  (x  1) 8x  23  (x  1)  16x  17  8x  23    x  1   16x  17  8x  23  x  1    8x  23   16x  17  64x  368x  529   x  1   x  1 23   x    x  x   x   So điều kiện nhận x  1 x  Vậy: x  1 x  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) x   4x  6x  54  x  9    x   x  3  x   x  3 So điều kiện nhận x  3 Vậy: x  3  x  12   Điều kiện:  x    x  2x    Chuyên đề: PT- BPT - HPT VÔ TỶ (x  3) x   x  (4) (5)  (x  1)(2x  6)  (x  1)(x  1)  Điều kiện: x    x  2  x  Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) (4)  (x  3)    (2x  6)(x  1)  x  x     x 1 25  x   Vậy: x  x  1 x    x    x 3   2   x   x  6x  51  2x  x  (6) 1 x Điều kiện:  51  2x  x  1  13  x  1     1  x  x  Do ta chƣa biết dấu (1  x) nên ta chia làm trƣờng hợp  Trƣờng hợp 1:  x   x  (6)  51  2x  x   x 1  x    51  2x  x  51  2x  x  (1  x)  x    1  13  x  1  13  x  5  x   (*)  x   x   x2   x  x     x    x   x  6x    x  2  x     x  3 6x  13   x  1  7x  18x  25  (*)  x   x  x     x2 x 3 13 x   13 Vậy: x  x   4(2x  6)(x  1)  (x  1) 2  x  3 13  x 13  3  x   6   Trƣờng hợp 2: x  thỏa (*)  Trƣờng hợp 3: x    2x   x   (2x  6)(x  1)  4(x  1) Do ta chƣa biết dấu (x  3) nên ta chia làm trƣờng hợp:  Trƣờng hợp 1: x    x  3   x  2  x      x  3   6x  13 x 1  2x   x   x  x   x   (*)   1  13  x  5  Trƣờng hợp 2:  x   x  (6)  51  2x  x   x 2x  8x   x   2x  (5) 2x  8x     x  1  x  Điều kiện:  x   2x     Trƣờng hợp 1: x  1 thỏa (5)  Trƣờng hợp 2: x  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) 1  x   51  2x  x   x    1  13  x  1  13   x  1  13 Vậy: 1  13  x  5  x  1  13 Trang Chuyên đề: PT- BPT - HPT VÔ TỶ Ví dụ 3: Giải phƣơng trình, bất phƣơng trình sau: x   x   x  x 1  x  14x  49  x  14x  49  14 x  x 1  x  x 1  x   x   x  x 1  1  14x  49  7  14x  49  x    14x  98  x  7 Vậy:  x   x   x    x 1  x 1 1       x  1  x  1   x 1 1 1  x    (1)  x  1   x 1  x    x    x   x   x  x     x5  x    x  Vậy: x    x 1 1    x 1 1  x 1 1  x 1 1  A  B ►A  B   A  B  14x  14 14x  49  14x  14 14x  49  14  ( 14x  49  7)  ( 14x  49  7)  14 B   ► A  B  A  B   A  B  ► A  B  (A  B)(A  B)  A  B ► A B A  B A  B ► A B   A  B  14x  49   14x  49   14 (2) Điều kiện: 14x  49   x  Chú ý: CÁC DẠNG PHƢƠNG TRÌNHBẤT PHƢƠNG TRÌNH CHỨA DẤU TRỊ TUYỆT ĐỐI x  14x  49  x  14x  49  14 x  x 1  x  x 1  3  x    x    (3) Điều kiện: x 1   x  1 (3)  x     x    x 1 1   x 1   x     x  (*)  (*) nên hệ với x thỏa điều kiện Vậy: x   x  1  x 1 1  2  x      x     x      x     x  x      VN x   x      x    x  x7  x 1  x 1   x 1  x 1   x   Điều kiện:  x4 x   (1)   49 14 (2) Đặt t  14x  49   14x  49  t  Phƣơng trình trở thành: t    t  14  t  t  t  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)  14x  49   Chuyên đề: PT- BPT - HPT VÔ TỶ GIẢI PHƢƠNG TRÌNH HỆ QUẢ ► A B C Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) 3 Thay x   3x    Điều kiện:  x0 x   2x    A  B  3 A.B   A B C A  B  C ta đƣợc: (2)  3x   2x   4x  x  (*)  A  B  3 A.B.C  C  5x   (3x  1)(2x  2)  5x   4x(x  3) ► f (x)  g(x)  h(x)  k(x) f (x)  h(x)  g(x)  k(x) Mà có:  f (x).h(x)  g(x).k(x)  Biến đổi phƣơng trình dạng: f (x)  h(x)  k(x)  g(x)  Bình phƣơng, giải phƣơng trình hệ VÍ DỤ VÀ BÀI TẬP Ví dụ 1: Giải phƣơng trình sau: w x 1  x   x   x   3x   x  2x  x3   x 1  x2  x 1  x  x 3  x 1  x   Ta thay   6x  8x   4x  12x  2x  4x    x 1 Thử lại nhận x  Vậy: x  Nhận xét:  Do ta chƣa xác định đƣợc vế phƣơng trình (*) dƣơng nên bình phƣơng ta thu đƣợc phƣơng trình hệ  Bài toán giải theo cách biến đổi tƣơng đƣơng nhƣng so với cách phức tạp    x  3  2x   3 x  x   (3x  1)(2x  2)  4x(x  3) x3   x   x  x   x  (3) x 3 Điều kiện: x  1 x 1  x   x    x 1  x    x   x   3x   x  2x  (2)  x   x   x  (3)  x3   x   x2  x 1  x 1 x 3  x3     x 3   x 3    x 1   x2  x 1 x 3 x 1  x    x   3 (x  1)(x  2)(x  3)  3(x  2)  (x  1)(x  2)(x  3)  (x  2)3  (x  2) (x  1)(x  3)  (x  2)    x2  x 1  x 1  x    x  2x      x    (x  2)(1)  x2 Thử lại nhận x  Vậy: x  Thử lại nhận x   ; x   Vậy: x   ; x   Nhận xét: Nhận xét chung:  Khi thay x   x    x  ta nhận  Thấy trƣờng hợp phƣơng trình bậc ba đƣợc phƣơng trình hệ phƣơng trình đầu chƣa phƣơng trình chứa bốn bậc hai nhƣ ta có biết có nghiệm hay không? thể nghĩ đến phƣơng trình hệ  Bài toán giải:  Nếu giải cách phƣơng trình phần trƣớc  x 1  x    x  cảm thấy khó khăn việc giải điều kiện sợ   “sót điều kiện” ta giải phƣơng 2x   3 x  x  x   x    x   trinh hệ sau thử lại    Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Chuyên đề: PT- BPT - HPT VÔ TỶ CÁC DẠNG ĐẶT MỘT ẨN PHỤ ► a.f (x)  b f (x)  c  0; a  Vậy: x  x  7 ► a( A  B)  b(A  B  AB)  c  Phƣơng pháp: Đặt t  A  B a A  b AB  c B   ► a.A  x   bB  x   c A  x  B  x   A  B  mA  nB2  n n n Phƣơng pháp: Bằng cách đặt ẩn phụ u, v ta đƣa đƣợc dạng phƣơng trình: u  uv  v2   B1: Thử trƣờng hợp v =  B2: Xét v  phƣơng trình trở thành : u u        v v u Đặt t = phƣơng trình trở thành v t  t    2x  15  x  5x   10x  2x  10x  15  x  5x   Điều kiện: x  5x    x   x  Đặt t  x  5x  (t  0)  t  x  5x   x  5x  t  Bất phƣơng trình trở thành: 2(t  6)  15  t   t   2t  t     t 1  t  Với t   x  5x    x  5x    x  5x   ►Tham số biến thiên x VÍ DỤ VÀ BÀI TẬP Ví dụ 1: Giải phƣơng trình, bất phƣơng trình sau: Vậy: x   53  53 x 2  53  53 x 2 (x  4)(x  1)  x  5x   2x  15  x  5x   10x 2x  5x   2x  5x   x x 1   x 1 x (x  4)(x  1)  x  5x    x  5x   x  5x    x  5x   x  5x   Điều kiện: x  5x   x 5  17 5  17 x 2 Đặt t  x  5x   t  x  5x   x  5x  t  Phƣơng trình trở thành: (t  0) 2x  5x   2x  5x   Điều kiện: 2x  5x   5  73 5  73 x 4 (t  0) Đặt t  2x  5x  x  2x  5x   t  Phƣơng trình trở thành: t 8  t 1  t   1 t   t   1 t  7  3t   t 1  t   3t   16t  (7  3t) Với t   2x  5x    x  1; x   Vậy: x  x   Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Phƣơng pháp: Đặt t  f (x), t   t  1 t  3t     t4 t  Với t   x  5x  42   x  5x  14   x  2; x  7 Chuyên đề: PT- BPT - HPT VÔ TỶ x x 1   x 1 x x Điều kiện:   x   x 1 x 1 Ví dụ 2: Giải phƣơng trình sau: Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) x (t  0) x 1 Bất phƣơng trình trở thành: t  t Đặt t   2t  3t   t t 2 Với t  x    x  x  3x   2x   x   3x  2x  5x  16 x    x  x  3x    x    x  (x  1)(4  x)  x   Điều kiện:   1  x  4  x  Đặt t  x    x (t  0)  t  x    x  (x  1)(4  x)  x  x 1 x 0  x 1 x   x   1  x  t2   (x  1)(4  x)  Phƣơng trình trở thành: t x  x 1 x  2 x 1 x  2x   0 x 1 x    1 x  x 1 Vậy: 1  x   x  Với t    Cách khác: x x 1   (*) x 1 x x   x   x 1 Điều kiện: x 1  x x 1   (*)     x   x 1 x 1 x    x 1 x 2 2x  2(x  1)  5x(x  1)  0 2(x  1)x t2  5 t   t  2t  15     t 3  t  5 22    x  3x    1  x   x    x  3x     x  3x    x  Vậy: x  x  2x   x   3x  2x  5x  16 2x    Điều kiện:  x    x  1 2x  5x    Đặt t  2x   x  (t  0)  t  3x   2x  5x   3x  2x  5x   t  Phƣơng trình trở thành: t  t  t   16  t  t  20     t  4 (loaïi) Với t   2x   x   x  x    1  x   x  2(x  1)x  3x  2x  5x   52   2x  5x   21  3x 1  x    x  146x  429  1  x    x3  x   x  143 Vậy: x  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Chuyên đề: PT- BPT - HPT VÔ TỶ Ví dụ 3: Giải phƣơng trình sau: (x  2)2  (4  x )  3 (2  x)   x  x   x  x  2 3 (x  2)  (4  x )  (2  x)  (1) Ta có:  x   x  không nghiệm phƣơng trình Chia vế cho: (2  x) ta đƣợc: x2  x2 (1)   3    73 2x  2x  x2 phƣơng trình trở thành: 2x t  4t  7t     t   x2 x 2 1  1  x  Với t   2x 2x Đặt t  Với t  3 x2 x  27 74  x 3   2x  x 64 91 74 Vậy: x  x  91 Với t   Cách khác: (x  2)2  (4  x )  3 (2  x)  Đặt u  x  v   x Phƣơng trình trở thành: 4u  7uv  3v2  Do v  không nghiệm phƣơng trình Chia vế cho v  ta đƣợc: u2 u u u      1  v v v v x2 x 2 u 1 1 x  Với   v 2x 2x u x2 x  27 74  x 1   v 2x  x 64 91 74 Vậy: x  x  91 Với  Với t    2 x   x  (2) Điều kiện: x    x  1 (2)  2(x  x  1)  2(x  1)  (x  1)(x  x  1) Do  x  x    chia hai vế cho  x  x  1 : x 1 x 1 2  (VN) x  x 1 x  x 1 x 1 x 1     2 x  x 1 x  x 1  37 x Vậy: x   37 Nhận xét:  Khó khăn ta việc phân tích:  x    2(x  x  1)  2(x  1)  Việc thực dễ dàng do: x3   (x  1)(x  x  1)  Bằng cách đồng hệ số: (x  x  1)  (x  1)2  x    2(x  2) ta dễ dàng chọn    Một số khai triển đa thức thành nhân tử:  x    x  1  x  x  1  x  x    x  2x  1  x    x  x  1 x  x  1    x   x  2x  x  2x   4x    2x  2x  1 2x  2x  1 x  x   x  x  Điều kiện: x 1   x  1 x  Ta đặt: u  x , v  x  (u, v  0) Phƣơng trình trở thành : u  3v  u  v2  u  6uv  9v2  u  v2 v   10v  6uv    v0 v   u  Với v   x    x   x  1 Vậy: x  1 Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)  2 x   x  x 1 x 1 5 x  x 1 x  x 1 x 1 Đặt t  (t  0) x  x 1 Phƣơng trình trở thành: t  2 2t  5t     t    22 Chuyên đề: PT- BPT - HPT VÔ TỶ Ví dụ 4: Giải phƣơng trình sau: ĐẶT ẨN PHỤ ĐƢA VỀ HỆ x  2(x  1) x  x   x    x  1 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Phƣơng pháp chung:  Đặt ẩn phụ Tìm mối liên hệ ẩn phụ Kết hợp với phƣơng trình ban đầu toán ta đƣợc hệ phƣơng trình  Lƣu ý phƣơng pháp giải hệ phƣơng trình x  2x   x  2 x  2(x  1) x  x   x   (1) Điều kiện: x  x    x   (1)   x  x  1  2(x  1) x  x   2(x  1)   Ví dụ 1: Giải phƣơng trình sau:   Đặt t  x  x  1; t  phƣơng trình trở thành: x 25  x x  25  x  30 t  2(x  1)t  2x   0, t  ,  '  x t    t   2x  x   x  3  x   x  x3   2x  2 Với t   x2  x    x  0; x  1 Với t   2x  x2  x    2x 1  2x   2  x  x   (1  2x)  x   x0 3x  5x  Vậy: x  x  1  x  1   x  1 x  2x   x   3x  1    3x  1  9x    x 25  x x  25  x  30 Đặt y  35  x  x  y3  35 Khi phƣơng trình chuyển hệ sau:  xy(x  y)  30  3  x  y  35 Đây hệ đối xứng loại Giải hệ ta tìm đƣợc cặp nghiệm (2;3) (3;2) Vậy: x  x  x  2x   x  2x   2x  1 x  1 x  u   x Đặt   v   x Khi phƣơng trình chuyển hệ sau: u  v   2 u  v  u  v   u  v 1 x    uv  Vậy: x = Điều kiện: x  2x    x   Đặt t  x  2x  Phƣơng trình trở thành:  x  1 t  t  2x  t   t   x  1 t   x  1    t  x 1 x   Với t   x  2x      x   Với t  x   x  2x   x 1 x    (VN) x  2x   x  2x   Vậy: x   3  x   x  Điều kiện: x 1   x  u   x Đặt  (v  0)  v  x  Khi phƣơng trình chuyển hệ sau: u + v = u(u  u  2)    v  1 u  u + v = Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang Chuyên đề: PT- BPT - HPT VÔ TỶ Ví dụ 2: Giải phƣơng trình sau:  u  x2    u 1     x 1   u  2  x  10 v   u   x3   2x  Đặt y  2x 1  y3   2x Khi phƣơng trình chuyển hệ sau:   x   2y    y   2x   x   2y  3   x  y  2(y  x)   x   2y  2  (x  y)(x  xy  y  2)  y  (Do x  xy  y    x    y   ) 2   x   2y  x  y  x   x   2x    x  1  x  y   1  Vậy: x  x   3x  1   3x  1  9x   Đặt: u  3x  v  3x  Khi phƣơng trình chuyển hệ sau: u  v  u.v    3  u  v  uv  2u  v2 Do đó:  v    v2  v  v     3v  6v     v  1 0  v  1  u  u  3x    x0  v  3x   1 Vậy: x  4x  7x   x  4 81x   x  2x  x  7x  13x   2x x(1  3x  3x ) 4x  11x  10  (x  1) 2x  6x  2x  4x  x 3 Cách 1: 2x  4x  Điều kiện: x  3 x 3 (1) (1)  2(x  1)2    (x  1)2   (x  1)  2 x 1 1 2 t  x 1 t y 1  1  1   Đặt t  x  1; y  2  y  Khi phƣơng trình chuyển hệ sau: 2 t y      y2   t  t  y  (t  y)(t  y  )     y  t   t 2 2t  t   t    Với t  y    t   t  y   17 3  17 t x (thỏa) 4 t  4t  2t   (t  )      2 Với y   t     1  t   t    1  13 5  13 x (thỏa) 4 3  17 5  13 ;x  Vậy: x  4 Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) t Trang 10 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Vậy: x  x  x  10 x 3 2 x  x  1000  8000x  1000 2x  4x  Chuyên đề: PT- BPT - HPT VÔ TỶ PHƢƠNG PHÁP ĐÁNH GIÁ  Vậy x nghiệm phƣơng trình  Hƣớng 3:  Chuyển phƣơng trình dạng f (u)  f (v)  Xét hàm số y  f (x) , dùng lập luận khẳng định hàm số đơn điệu  Khi f (u)  f (v)  u  v Ví dụ 1: Giải phƣơng trình sau: x  6x  11  x  6x  13  x  4x    x  3x   (x  2x  2)(x  4x  5) 2 13  x  3x     x  2x      (x  3)2   (x  3)2   (x  2)2  Mà:     3 (x  3)  Dấu “bằng”xảy   (vô lý) x    Vậy: phƣơng trình vô nghiệm x  3x   (x  2x  2)(x  4x  5) Ta có: x  2x   (x  1)   x  4x   (x  2)   (x  2x  2)  (x  4x  5) x  3x   2 Áp dụng bất đẳng thức Côsi cho số dƣơng a  x  2x  2;b  x  4x  ta có: ab  ab  x  3x   (x  2x  2)(x  4x  5) Dấu “bằng” xảy khi: Vậy: x= 3 2 Áp dụng bất đẳng thức Bunhiacôpxki cho số :  a  b2  c2  d2   (ac  bd)2 Dấu “bằng” xảy khi: ad  bc Với a  2;b  3;c  x  3x  6;d  x  2x  2  3(x  1)2   5(x  1)2    (x  1)2 Điều kiện: D    3(x  1)2    x  12      Mà:  5   x  1  Dấu “bằng” xảy  x  1   x  1 Vậy: x  1  (x  2)2      5x  12x  33 3x  6x   5x  10x  14   2x  x  (x  3)2   (x  3)  2 13  x  3x     x  2x        5x  12x  33  x  4x    (x  2x  2)  (x  4x  5)  2x   x  3x  6x   5x  10x  14   2x  x x  6x  11  x  6x  13 2 2  32   x  3x     x  2x         x  3x     x  2x   2  13  x  3x     x  2x        5x  12x  33 Dấu “bằng” xảy khi: 3(x  3x  6)  2(x  2x  7) Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 16 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Phƣơng pháp: Chủ yếu cách sử dụng công cụ đạo hàm sử dụng bất đẳng thức để tìm nghiệm phƣơng trình Các hƣớng giải quyết:  Hƣớng 1:  Chuyển phƣơng trình dạng: f (x)  k  Xét hàm số y  f (x)  Nhận xét:  Với x  x  f (x)  f (x )  k x nghiệm  Với x  x  f (x)  f (x )  k phƣơng trình vô nghiệm  Với x  x  f (x)  f (x )  k phƣơng trình vô nghiệm  Vậy x nghiệm phƣơng trình  Hƣớng 2:  Chuyển phƣơng trình dạng: f (x)  g(x)  Dùng lập luận khẳng định f (x) g(x) có tính chất trái ngƣợc xác định x cho f (x )  g(x ) Chuyên đề: PT- BPT - HPT VÔ TỶ  3x  9x  18  2x  4x  14 3 x   3x  8x  (1) Điều kiện: x    x  1 (1)  x   3x  8x   Xét hàm số: y  x   3x  8x  Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)  x  5x    x  1; x  Vậy: x  1; x  D   1;    6x  y'  x 1   0, y ''    x  1 Ví dụ 2: Giải phƣơng trình sau:  3x  9x     4x     1 x  x2 1  4x   4x   3 x   3x  8x  x  2x   x  6x  11   x  x      x  x 1  9x     2x  1  (2x  1)    3x  9x    4x     3x    Nhận xét: Phƣơng trình có nghiệm   ;0    Đặt u  3x; v  2x 1 u, v  Phƣơng trình trở thành:   Xét hàm số: f (t)  t   Do y '  có nhiều nghiệm  y  có nhiều hai nghiệm Nhẩm nghiệm đƣợc x  0; x  Vậy: x  0; x  2  x  2x   x  6x  11   x  x  x   Điều kiện:  1 x  3  x   u  u   v  v2    f '(t)   2t  3t t  3t t2 3  0,   x  2x   x    x  x  6x  11   x  1   x 1   x  3  x  2 Xét hàm số: y  t   t t y'   0 x  1;3 t 2 t Khi đó: f  x  1  f   x   x    x  x  t   f (u)  f (v)  u  v  3x  2x   x   Vậy: x   x  D Vậy:  x  4x   4x   4x   x Điều kiện:  2 4x   Xét hàm số: y  4x 1  4x  1 1  D   ;   2  4x y'    0, x  2 4x  4x  Do phƣơng trình có nghiệm nghiệm Nhẩm nghiệm đƣợc x  Vậy: x  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 17 Chuyên đề: PT- BPT - HPT VÔ TỶ PHẦN II -HỆ PHƢƠNG TRÌNH -  Từ phƣơng trình ta tính y theo x x theo y  Thế vào phƣơng trình lại giải tìm x y Ví dụ: Giải hệ phƣơng trình sau đây: 2x  3y  1   x  xy  24  x (y  1)(x  y  1)  3x  4x      xy  x   x 2x  3y  1   x  xy  24  y  2x      x  x  2x    24     2x  19   x  9  y   y     3   x  x  72  x   y  19   Vậy: nghiệm hệ  9,   ;  8,  3  2  (1)  x (y  1)(x  y  1)  3x  4x   (2)   xy  x   x Do x  không nghiệm hệ phƣơng trình nên x2 1 (2)  y   thay vào (1) ta đƣợc: x x 1  x 1  x2 x     3x  4x  x  x    x  1 2x  1   x  1 3x  1   x  1  2x  2x  x  1   x  1 3x  1 x    x  1 2x  x      x   x  2 Với x   y  1 Với x  2  y   5  Vậy: nghiệm hệ 1; 1 ;  2;   2   Bằng cách biến đổi đƣa phƣơng trình dạng tích ta tính đƣợc x theo y  Thế vào phƣơng trình lại giải tìm nghiệm Ví dụ: Giải hệ phƣơng trình sau: 2   xy  x  y  x  2y    x 2y  y x   2x  2y  y   5x    x   2  y  5x  4xy  16x  8y  16  3   x  7x  y  7y  2  x  y  x  y   xy  x  y  x  2y     x 2y  y x   2x  2y Điều kiện: x  1; y  (1)  x  xy  2y2  (x  y)  (1) (2)   x  xy    2xy  y    x  y     x  y  x  2y  1  ( Do có đk có x  y  )  x  2y    x  2y  Thay vào phƣơng trình (2) ta đƣợc:  2y  1 2y  y 2y  2(2y  1)  2y  2y  y  1   y  1   y  1   2y    y  ( Do y  0) Với y  ta có x  Vậy: nghiệm hệ (5; 2) Nhận xét:  Ta kiểm tra phƣơng trình (1) có nhóm đƣợc nhân tử chung hay không phƣơng pháp tham số biến thiên xy  x  y  x  2y2  x  (y  1)x  2y2  y  Ta có:   (y  1)2  8y2  4y  9y2  6y    3y  1 Từ ta tính đƣợc: x   y x  2y 1  (1)  y   5x    x   2 (2)   y  5x  4xy  16x  8y  16  Từ phƣơng trình (2) phƣơng pháp tham số biến thiên xem y ẩn ta có: y2  5x  4xy  16x  8y  16  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 18 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) PHƢƠNG PHÁP THẾ PHƢƠNG PHÁP TÍCH SỐ Chuyên đề: PT- BPT - HPT VÔ TỶ Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)  (y  x  4)(y  5x  4)  y   x   y  5x  Với y   x thay vào (1) ta đƣợc: x   y    5x    x    x   y  Với y  5x  thay vào (1) ta đƣợc 4  x  5x  4 HỆ ĐỐI XỨNG LOẠI I f (x, y)  f (x, y)  f (y, x) Dạng:  với  g(x, y)  g(x, y)  g(y, x) S  x  y Cách giải: Đặt  với S2  4P P  xy  Ví dụ: Giải hệ phƣơng trình sau:   5x    x   x  y  xy   2 x  y   2x 2y  3   y x  x  y  xy    x y0    x   y    Vậy: nghiệm hệ  0;  ;  4;0  ;   ;0     x  7x  y  7y   2  x  y  x  y   x  y3   x  y    2  x  y  x  y   x  y  x  xy  y    2  x  y  x  y  2  x  y  x  xy  y   (VN)   2 2x  2x   x  y  x  y   1 x  y    1 x  y   Vậy: nghiệm hệ  1 1   1 1  ; ;   ;   2 2     3    x  y  xy   2 x  y  S  x  y Đặt:  (Điều kiện: S2 – 4P ≥ 0) P  xy  S  P  Hệ   S  2P  P   S    S    S  P   S S  5  P  10   S   P  S  2S  15  Tới ta có hai cách giải: Cách 1: Có tổng, tích nên áp dụng định lý Viet đảo: x, y nghiệm phƣơng trình: X2  SX  P   S  5  P  10 : Hệ phƣơng trình vô nghiệm (do S2 – 4P = -15 < 0)  S 3 P  x, y nghiệm phƣơng trình: X2  3X   x  x   X  1;X  nên  ; y  y  Cách 2: Giải bình thƣờng bẳng phƣơng pháp thế:  S  5  P  10   x  y  5  x  5  y    y  5  y   10 (VN)  xy  10   S 3 P  x  y    xy    y  x  x   y     y   y   10 x   y   Vậy: hệ phƣơng trình có nghiệm là: 1,  ,  2,1 Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 19 Chuyên đề: PT- BPT - HPT VÔ TỶ  2x 2y  3   y x  x  y  xy   HỆ ĐỐI XỨNG LOẠI II HỆ ĐỐI XỨNG LOẠI I Điều kiện: xy   2x 2y 49   x Hệ   y  x  y  xy   2  x  y   5xy    x  y  xy  Cách 1: Đƣa hệ đối xứng loại Đặt u  x; v  y  x  2y  2x  y   2   y  2x  2y  x  2x    y    2y    x  2  u  v   5uv  Hệ   u  v  uv  Đặt S  u  v;P  uv 2  S2  2P  5P  Hệ   S  P   S  u  u  1    P   v     v      S   3 u  3   u         v   v  3  P     x  3   x   x  1  x     3  y   y  2  y    y    Cách 2: Giải trực tiếp    2  x  y   2xy  5xy  Hệ    x  y  xy   x  y    x   x  1  ;  xy     y   y  2      x  y      x  3    x     y   ;       y    xy   Vậy: Hệ phƣơng trình có nghiệm  2;1 ,  1; 2  ,  3;   (x  y)h(x; y)   f (x; y)  x  y  h(x; y)  hay   f (x; y)  f (x; y)  Ví dụ: Giải hệ phƣơng trình sau: 3 3   ,  ,3  2 2   x  2y  2x  y (1)   2   y  2x  2y  x (2) Trừ vế (1) (2) ta có:  x  2y  (y  2x )  2x  y  (2y  x) Hệ   2  x  2y  2x  y 3(x  y)(x  y)  x  y  2  x  2y  2x  y (x  y)(3x  3y  1)   2  x  2y  2x  y x  y    x  2y  2x  y x  y   x  3x  3x  3y    2  x  2y  2x  y 3x   y  (vn)  9x  3x   x  y    x  y  3 Vậy: hệ có hai nghiệm (0;0); ( 3; 3)  2x    y  (1)   2y    x  (2)   Điều kiện: x, y    ;    Trừ vế (1) (2) ta có: Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 20 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) f (x, y)  f (x, y)  g(y, x) Dạng:  với  g(x, y)  g(x, y)  f (y, x) f (x; y)  g(x; y)  Cách giải:  f (x; y)  Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Chuyên đề: PT- BPT - HPT VÔ TỶ         Do 2x    y  2x    y  2y    x  2x    y  2(x  y) xy  0 2x   2y  4x  4y  0 2x   2y  4x  4y   2x    y    x  y    2x    x    x  y   x   2x   x  16   x  y x  y    x  y  11   11 11  Vậy: Hệ có nghiệm  3;3 ,  ;  9 9 Nhận xét: Ta phải khử cách nhân lƣợng liên hiệp để xuất nhân tử  x  y  HỆ ĐẲNG CẤP HỆ ĐỐI XỨNG LOẠI I 2  a x  b xy  c1 y  d1 Dạng:  2  a x  b xy  c2 y  d Cách giải:  Xét y =  Xét y  đặt x  ty giải phƣơng trình bậc hai ẩn t Ví dụ: Giải hệ phƣơng trình sau: 2  3x  2xy  y  11  2   x  2xy  3y  17  x  y 2 y  2  3  x  y  19 2  3x  2xy  y  11  2   x  2xy  3y  17 3x  11 Xét y = Ta có  (mâu thuẫn)  x  17 Vậy y = không nghiệm hệ phƣơng trình Đặt x = ty thay vào hệ ta có: 2   y (3t  2t  1)  11(1)  2   y (t  2t  3)  17 (2) Lấy (1) chia (2) 4 ;t  5 25 y Với t = - thay vào (1)  y2  3 x  y= ; 3 x  y=3 Với t = thay vào (1)  y2   y  2  y =  x  1;  y = -  x  1 Vậy: Nghiệm hệ: 5 ( ; ), ( ;  ), (1; 2), (1; 2) 3 3 Khử y ta đƣợc: 10t2 + 3t – =  t   x  y 2 y  2  3  x  y  19 Do x  không nghiệm hệ Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 21 Chuyên đề: PT- BPT - HPT VÔ TỶ Đặt y  tx  x 1  t  t    x  tx  tx   Hệ    3 3  x  t x  19    x  t  19 Lấy (1) chia (2) t  2t  t  Khử x ta đƣợc:  t3 19 2 tt   t  t  19  21t  17t    t   t  19 Với t   x  19  x   y  27 342 1 Với t   y x  19  x  343 18 18 PHƢƠNG PHÁP ẨN PHỤ   Nhận xét:  Nếu hệ gồm phƣơng trình phƣơng trình dƣới đồng bậc ta giải theo phƣơng pháp  x   y  y  x   4y   x  1  y  x    y   x   x  y3  y   2x  y    y  x   y  y  x   4y   x  1  y  x    y Do y  không nghiệm phƣơng trình Chia hai vế cho y ta đƣợc:  x2 1 xy4   y Hệ    x   y  x  2   y x2 1 ; v  x  y  ta đƣợc: Đặt u  y u  v   u  Hệ    uv  v   x2 1 1   y x  y    x   y  y   x x  x    y   x x   y    x  2  y  Vậy: Hệ có nghiệm (1;2),( 2;5)   x   x  y3  y   2x  y    y x  y     Điều kiện:  x   y   y  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 22 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)   Vậy: Hệ có hai nghiệm  3;  ,  ;   18 18  Ví dụ 1: Giải hệ phƣơng trình sau: Chuyên đề: PT- BPT - HPT VÔ TỶ  Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Đặt u  x  ; v  x  y  y    y2  xy2  y2      u  v  u  v    u  3     v   u  v2  u   v   u   v    2 2 u  v   u   uv   v     u   v   2 3u   uv  45  24 v  **  Do v  y2  không nghiệm nên      Ví dụ 2: (D2-10) Giải hệ phƣơng trình sau:     4  2  x y  2xy  y     x y (1)   x  y  x  (2)       u u **       45  24  v v u u   3  5 v v 2 xy  xy    3  5 2 y y  2  xy   3y  xy      y      y2 (x  3)   ( u   v ) Thay y2  x  7x  ta đƣợc:  x 2  x y  2xy  y     x y    x  y  x       7x   x  3    x   y   y  1    x    y2    y      x   2(l) Vậy: Nghiệm hệ phƣơng trình  2;1 ;  2; 1 ; 4   2;  ;  2;   x  y2  x  3  x  3  x     2 2  x  y   6x  x  y   x  7x  Giải (1): Bằng phƣơng pháp tham số biến thiên coi y ẩn ta phân tích đƣợc:    x y4  2xy2  y4     x y2  2  (x 1)y     Đặt u  xy2  1; v  y2 Phƣơng trình trở thành:  1  x  1  x  1  y y     x  y   x  y3    y   10  x   10    y   10  x   10 So điều kiện nhận cặp nghiệm Vậy: Hệ có nghiệm 3;1 ; 5; 1 ;  10;3  10 ;  10;3  10 Giải (2):    y2  xy2   x   x  y3  y  Hệ   x   x  y    y u  v  u   v    u   v  u  v  Với u  2; v  ta có hệ:  1  x 4  x 2  y y    x  y   x  y 3 1  y   x    y  1  x  Với u  1; v  ta có hệ:   xy   (x  1)y2     x y Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 23  Chuyên đề: PT- BPT - HPT VÔ TỶ PHƢƠNG PHÁP ĐÁNH GIÁ Ví dụ: Giải hệ phƣơng trình sau: 1  1  x4 y 2  1  1  Vậy: Nghiệm hệ  ;4  2  x4        3 x  x  3 y    3 y  y  3 x Điều kiện: x, y  Trừ vế cho vế hai phƣơng trình ta đƣợc:  x  x   y2  y Xét hàm số y  f (t)   t  t t y'    0, t   t2 t Khi đó: f (x)  f (y)  x  y Thay vào phƣơng trình đầu:  x2  x   x   x2  x   Xét hàm số: G(x)   x  x  t G '(x)    0, x  2 x 3 x Mà G(1)  Do phƣơng trình có nghiệm x  1 y  Vậy: Nghiệm hệ (1;1) 3   x  5x  y  5y   x  y  Nhận xét:  x   x, y   1;1 Do x8  y4  nên   y  Xét hàm số: y  f (t)  t  5t t   1;1 y '  3t   0, Do x3  5x  y3  5y  x  y Thay vào phƣơng trình dƣới:  1  x  x  x 1   1  x   Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 24 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)   3 x  x  3 y    3 y  y  3 x 3   x  5x  y  5y   x  y  Do x   1;1 nên nhận Chuyên đề: PT- BPT - HPT VÔ TỶ Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) PHƢƠNG TRÌNHBẤT PHƢƠNG TRÌNHHỆ PHƢƠNG TRÌNH CHỨA THAM SỐ I Kiến thức cần nhớ Xét hàm số f  x   3x       ;   \ 0 f ' x    Cho hàm số y  f  x  liên tục tập D Yêu cầu Khai thác f  x   m có nghiệm f  x   m  max f  x  f  x   m có nghiệm f  x   m f  x   m có nghiệm max f  x   m f  x   m có nghiệm max f  x   m xD f  x   m có nghiệm 1  lim f  x   lim  3x      ; x 0 x 0  x 1  lim f  x   lim  3x      x  x  x  Bảng biến thiên: xD xD f  x   m  Bƣớc 4: Tìm f  x  ; max f  x  xD xD  Bƣớc 5: Kết luận giá trị m cần tìm  f’(x) xD  Bƣớc 2: Tìm TXĐ D hàm số y  f  x   Bƣớc 3: Lập bảng biến thiên hàm số y  f  x  D 1 x xD f  x   g  m  f  x   g  m     với x    ;   \ 0 x   Giới hạn: xD II PHƢƠNG PHÁP GIẢI Để giải toán tìm giá trị tham số m cho phƣơng trình, bất phƣơng trình, hệ phƣơng trình có nghiệm ta làm nhƣ sau:  Bƣớc 1: Biến đổi phƣơng trình, bất phƣơng trình dạng: f  x   g  m  tập x + -  f(x)   Số nghiệm phƣơng trình (1) số giao điểm đồ thị hàm số f  x   3x   đƣờng thẳng x   y  m miền   ;   \ 0   Dựa vào bảng biến thiên ta đƣợc giá trị m thỏa mãn yêu cầu toán m  Vậy: m  Ví dụ 1: Tìm m để phƣơng trình sau có nghiệm thực phân biệt: x  mx   2x  Ví dụ 2: Tìm m để phƣơng trình sau có nghiệm thuộc 0;1   x  mx   2x   2x    2   x  mx    2x  1  x    mx  3x  4x  1*  Xét phƣơng trình * Với x   0.x  1 (vô nghiệm) Với x   3x    m x m  m   x  2x    x   x   x  2x    x   x    Đặt t  x  2x   x   x   t  x 1 t' x  2x  Bảng biến thiên : x t’ t - ,t '   x 1 1 + 2 Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 25 Chuyên đề: PT- BPT - HPT VÔ TỶ Do đó: x  0;1    t  1; 2 Bất phƣơng trình trở thành: lim f  x   lim x   t  1   với t  1;2    t  1 Bảng biến thiên hàm số f  t   Bất phƣơng trình cho có nghiệm x  0;1    bất phƣơng trình 1 có nghiệm t  1;2   m  max f t   f 2   1;2  Vậy : m  Ví dụ 3: Tìm m để phƣơng trình sau có nghiệm: x  2x   x  2x   m  x  2x   x  2x  4x x  2x   x  2x  4  lim  2 x  4  1   1  x x x x x  2 x   lim + f(t) 4x 2 Bảng biến thiên hàm số f  x  x - f’(x)  + f(x) -2 Số nghiệm phƣơng trình cho số giao điểm đồ thị hàm số y  f  x  đƣờng thẳng y  m  Dựa vào bảng biến thiên ta suy phƣơng trình có nghiệm  2  m  Vậy: 2  m  x  2x   x  2x   m  (x  1)2   (x  1)2   m Điều kiện: D   Xét hàm số Ví dụ 4: Tìm m để phƣơng trình sau có nghiệm: 1 x   x  f  x   x  2x   x  2x   x 1 f ' x    x 1 x  2x  x  2x  x 1 x 1  f '(x)   (x  1)  (x  1)  y'  2t  (t  3)3 1  x 8  x   m Điều kiện: 1  x  t 3 Đặt t   x   x 1  t' với 1  x  1 x  x 1 t'0   0 1 x  x  0, t    x 1   x  x 1   x  x  Xét hàm số: y  f (t)  2 1 x   x  1  x 8  x   m t Do đó: f '(x)  0, x  Ta có: Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 26 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) lim f  x   lim x   x  2x   x  2x  x  2x   x  2x  4  lim 2 x  4 1   1  x x x x x  t2  m (do  t  ) t 1 t2  tập 1; 2 Xét hàm số f  t   t 1 t f’(t)   lim m  t  1  t  (1) f ' t   x  Chuyên đề: PT- BPT - HPT VÔ TỶ   x  3x      x  x x  m  15m  Bảng biến thiên: x t’ Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) -1 + Ta có: x  3x    1  x  Hệ phƣơng trình cho có nghiệm -  x  x x  m2  15m  có nghiệm x   1;4  t  x  x x  m2  15m có nghiệm x   1;4  3 Từ dẫn đến  t  Do t   x   x  t   1 x   x    x  3x   x  Đặt f  x   x  x x     x  3x  x  t2  Phƣơng trình cho trở thành: 3x  6x   x   f ' x     3x  6x  x   x  18  x    t f '  x    x  0; x  2 Bảng biến thiên : t 9  m  t  2t   2m 2 Xét hàm số f  t   t  2t  tập 3;3  f '  t   2t   với x  3;3  Bảng biến thiên: t - - + 16 f(x) -4 f  x   m  15m có nghiệm x   1;4   max f  x   m2  15m  16  m2  15m + f’(t) x -1 f’(x) 1;4 96 f(t)  m2  15m  16   16  m  Vậy: 16  m  Số nghiệm phƣơng trình cho số giao điểm đồ thị hàm số y  f  t  đƣờng thẳng y  2m 3;3  Dựa vào bảng biến thiên ta suy phƣơng trình có 96 nghiệm   2m     m  Vậy:  m  96 2 Ví dụ 5: Tìm m để hệ bất phƣơng trình sau có nghiệm:   x  3x      x  x x  m  15m  Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 27 Chuyên đề: PT- BPT - HPT VÔ TỶ MỘT SỐ ĐỀ THI ĐẠI HỌC Bài 18 (A-10) Giải bất phƣơng trình sau: x x I PHƢƠNG TRÌNHBẤT PHƢƠNG TRÌNH: (x  3x) 2x  3x   Bài (A1-02) Giải phƣơng trình sau: Bài 19 (B-10) Giải bất phƣơng trình sau: 3x    x  3x  14x   Bài 20 (D2-10) Giải bất phƣơng trình sau: 13  4x  x   x   2x  12  x  16 Bài (A-04) Giải bất phƣơng trình sau:  x  16  1 2x    4x  3  2x   16  4x  15 7x x 3 x 3 Bài (D2-04) Giải bất phƣơng trình sau:  x 3  x  2x  4x    2x Bài (A-05) Giải bất phƣơng trình sau: 5x   x   2x  Bài (D-05) Giải phƣơng trình sau: II HỆ PHƢƠNG TRÌNH: Bài (B-02) Giải hệ phƣơng trình sau:  x  y  x  y   x  y  x  y  Bài (A-03) Giải hệ phƣơng trình sau: 1  x  x  y   2y  x   x   x   x   Bài (B1-05) Giải bất phƣơng trình sau: 8x  6x   4x   Bài (B2-05) Giải phƣơng trình sau: 3x    x  2x  Bài (D2-05) Giải bất phƣơng trình sau: 2x    x  3x  Bài 10 (D-06) Giải phƣơng trình sau: Bài (B-03) Giải hệ phƣơng trình sau:  y2   3y  x2   3x  x   y2 Bài (A1-05) Giải hệ phƣơng trình sau: 2x   x  3x   Bài 11 (B1-06) Giải bất phƣơng trình sau: 3x   x   4x   3x  5x  Bài 12 (D2-06) Giải bất phƣơng trình sau: x   x  x   x  8x   Bài 13 (A1-08) Giải bất phƣơng trình sau: (2x  1) 2 Bài 14 (A2-08) Giải bất phƣơng trình sau: 3x 1  1 x 1 x2 2x    2x  Bài 15 (B1-08) Giải bất phƣơng trình sau: 10x   3x   9x   2x  Bài 16 (D1-08) Giải bất phƣơng trình sau: x  y2  x  y    x(x  y  1)  y(y  1)  Bài (A2-05) Giải hệ phƣơng trình sau:   2x  y   x  y    3x  2y Bài (A-06) Giải hệ phƣơng trình sau:  x  y  xy    x   y   Bài (A1-06) Giải hệ phƣơng trình sau:  x   y  y  x   4y   x  1  y  x    y Bài (A2-06) Giải hệ phƣơng trình sau: (x  1)(x  3) x  2x    (x  1) Bài 17 (A-09) Giải bất phƣơng trình sau:  x  8x  y3  2y   x    y  1 3x    5x   Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 28 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Bài (D-02) Giải bất phƣơng trình sau:  2(x  x  1) Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Chuyên đề: PT- BPT - HPT VÔ TỶ Bài (B2-06) Giải hệ phƣơng trình sau: Bài 20 (D1-10) Giải hệ phƣơng trình sau:  x  y   x  y   13    x  y   x  y   25 Bài 10 (D1-06) Giải hệ phƣơng trình sau: 3  27x y  7y   2  9x y  y  6x Bài 21 (D2-10) Giải hệ phƣơng trình sau :  x  xy  y   x  y   2  x  xy  y   x  y  Bài 11 (A2-07) Giải hệ phƣơng trình sau: 2  x  x y  x y     x y  x  xy  1 Bài 12 (B2-07) Giải hệ phƣơng trình sau: 2xy   x2  y x  x  2x    2xy y   y2  x  y  2y  Bài 13 (A-08) Giải hệ phƣơng trình sau:  x  y  x y  xy  xy      x  y  xy 1  2x     Bài 14 (B-08) Giải hệ phƣơng trình sau: 2   x  2x y  x y  2x     x  2xy  6x  Bài 15 (D-08) Giải hệ phƣơng trình sau: 2   xy  x  y  x  2y    x 2y  y x   2x  2y Bài 16 (B2-08) Giải hệ phƣơng trình sau:  x   y   x  (x  4)  y Bài 17 (B-09) Giải hệ phƣơng trình sau:  xy  x   7y  2  x y  xy   13y Bài 18 (D-09) Giải hệ phƣơng trình sau:  x(x  y  1)     (x  y)  x   Bài 19 (A-10) Giải hệ phƣơng trình sau:  (4x  1)x  (y  3)  2y   2  4x  y   4x    2  x y  2xy  y   2   x y    x  y  x  III BÀI TOÁN CHỨA THAM SỐ m: Bài Xác định m để phƣơng trình sau có nghiệm: m   1 x2  1 x2   1 x4  1 x2  1 x2 Bài (D-04) Tìm m để hệ phƣơng trình sau có nghiệm:  x  y    x x  y y   3m Bài (B-06) Tìm m để phƣơng trình sau có hai nghiệm thực phân biệt: x  mx   2x  Bài (A-07) Tìm m để phƣơng trình sau có nghiệm: x 1  m x   x 1 Bài (B-07) Chứng minh với giá trị dƣơng tham số m phƣơng trình có hai nghiệm thực dƣơng: x  2x   m(x  2) Bài (D-07) Tìm giá trị tham số m để hệ phƣơng trình sau có nghiệm thực: 1  x   y  5  x y    x   y   15m  10  x3 y3 Bài (A1-07) Tìm m để bất phƣơng trình có nghiệm x  0;1   : m   x  2x    x   x   Bài (B1-07) Tìm m để phƣơng trình có nghiệm: x2 1  x  m Bài (B2-07) Tìm m để phƣơng trình có nghiệm: 4 x  13x  m  x   Bài 10 (D1-07) Tìm m để phƣơng trình có hai nghiệm: x 3 x   x 6 x  5  m Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 29 Chuyên đề: PT- BPT - HPT VÔ TỶ Bài 11 (D2-07) Tìm m để hệ phƣơng trình có nghiệm nhất: 2x  2x   x   x  m -4 ĐÁP SỐ I PHƢƠNG TRÌNHBẤT PHƢƠNG TRÌNH  x     x  2 x  x    x   x  10  34  x  2 x   x  10  x    x   x  2, x  2 3  x 1  14 x   10 x  1, x   11 x  12 x  4, x  13 x  1 ;x 2 15 x  17 x  2 19 x    1  x  14    x  16   x   3 18 x  20 x  II HỆ PHƢƠNG TRÌNH : 3 1 1;1 ;  ;  2 2    2;  ;  2; ; 1; 2  ;  2;1  3;3  6    4 ; ;      13 ; 13 13      13  (2; 1) 1; 2 ;  2;5 10  0;0  ;  2;1 ;  1; 2   2;3 ;  2; 3 11 1;1 ;  1; 1 12 1;1 ;  0;0   25   3 13  ;  ; 1;   16   2  17  14  4;    15  5;  16  2;1  17 1;  ;  3;1  3 1 19  ;  2  3 18 1;1 ;  2;   2  1    20  ;1 ;   ; 2  3      21  2;1 ;  2; 1 ;  2;  ; 4  2;    III BIỆN LUẬN THEO THAM SỐ m: 1  m  1  m 7 1  m  m  2 7 m2    m  22 m  3  m   m  12  11 m   m  10  m  12   m    1  1    1  1   ; ; (1;1);    ;  2 2     1;1 Tổ môn toán - Khoa CNTT & Truyền Thông - ĐH Phương Đông (sưu tầm & biên soạn) Trang 30 Khoa Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn)  2x  y  m     x  xy  Bài 12 (A-08) Tìm giá trị tham số m để phƣơng trình sau có hai nghiệm thực phân biệt: ... phƣơng trình, bất phƣơng trình, hệ phƣơng trình có nghiệm ta làm nhƣ sau:  Bƣớc 1: Biến đổi phƣơng trình, bất phƣơng trình dạng: f  x   g  m  tập x + -  f(x)   Số nghiệm phƣơng trình. .. MỘT SỐ ĐỀ THI ĐẠI HỌC Bài 18 (A-10) Giải bất phƣơng trình sau: x x I PHƢƠNG TRÌNH – BẤT PHƢƠNG TRÌNH: (x  3x) 2x  3x   Bài (A1-02) Giải phƣơng trình sau: Bài 19 (B-10) Giải bất phƣơng trình. .. Công nghệ Thông tin & Truyền Thông - Trường Đại học Phương Đông (cntt.phuongdong.edu.vn) Chuyên đề: PT- BPT - HPT VÔ TỶ Bài (B2-06) Giải hệ phƣơng trình sau: Bài 20 (D1-10) Giải hệ phƣơng trình

Ngày đăng: 03/03/2017, 15:09

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w