ĐÁPÁNĐỀ LỚP 7 I/ Trắc nghiệm(5đ) Mỗi câu đúng được 0,25đ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 C B C D A B B B D B C A D C A A C C D A II/ Tự lụân:(5đ) Câu 1:(1,5 đ) Cho P(x) = xxxxxx −−+−+− 33374 5425 a, Thu gọn và sắp xếp đa thức P(x) theo lũy thừa giảm. P(x) = 55425 33374 xxxxxx −−+−+− = 373)34( 24555 +−−+−− xxxxxx = 373 24 +−− xxx b, Cho Q(x) = 65 2 −+ xx . Tính P(x) + Q(x). P(x)+Q(x)=( 373 24 +−− xxx )+( 65 2 −+ xx ) = 373 24 +−− xxx + 65 2 −+ xx = 3463 24 −+− xxx Câu 2:(0,5 đ) Tìm nghiệm của đa thức N(x) = 7x – 5 Để x là nghiệm của N(x)= 7x – 5 thì N(x) = 0 Hay 7x – 5 = 0 7x = 5 x = 7 5 Câu 3:(1 đ) Cho tam giác ABC biết CBA 63 == a, Tìm số đo các góc A, B, C. Theo đònh lý tổng 3 góc của 1 tam giác ta có 0 180 ˆ ˆ ˆ =++ CBA Ta lại có: ⇒ = = ⇔ = = CB BA CB BA 2 3 63 3 00 000 000 40 ˆ ;120 ˆ 20 ˆ 180 ˆ 9180 ˆˆ 8 180 ˆˆ 2.4180 ˆ ˆ 4180 ˆ ˆˆ 3 ==⇒ =⇔=⇔=+⇔ =+⇔=+⇔=++⇒ BA CCCC CCCBCBB b, Vẽ đường cao AD. Chứng minh rằng: AD < BC < CD. Theo cmt thì trong tam giác vuông ABD có 00 50 ˆ 40 ˆ =⇒= DABB ⇒ AD < BD (tính chất cạnh và góc đối diện) (1) Trong tam giác ABC, ta lại có: 00 40 ˆ ;20 ˆ == BC ⇒ AB < AC ⇒ BD < CD (tính chất hình chiếu và đường xiên) (2) Từ (1) và (2) ⇒ AD < BD < CD 0,75đ 0,75đ 0,5đ 0,5đ 0,5đ Câu 4:(2 đ) vẽ hình đúng 0,5đ a, CDA BEC = và DCA HBE = . Tam giác DBE là tam giác cân vì có đường cao BH vẽ từ đỉnh B cũng là đường trung tuyến vẽ từ đỉnh ấy. Suy ra BH là đường phân giác của góc B của DBE ∆ , tức là 32 ˆ B ˆ B = Rõ ràng D ˆ D ˆ 21 = vì đối đỉnh. Mà DBE vìBED D 2 ∆= cân. Suy ra: BED D 1 = ; tức là BECCDA = Ta có: 0 2221 90B D =+=+ DC Vì D 21 = D nên suy ra : 21 B = C Từ đó: HBEDCACCC =⇒=⇒=== 313221 BB B b, BE ⊥ BC. Ta có: 0 211321 90B B =++=++= CCBBCBE Vậy BE ⊥ BC. 0,5đ 0,5đ 0,5đ . ĐÁP ÁN ĐỀ LỚP 7 I/ Trắc nghiệm(5đ) Mỗi câu đúng được 0,25đ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 C B C D A B B B D B C A D C A A C C D A II/ . xxxxxx −−+−+− 33 374 5425 a, Thu gọn và sắp xếp đa thức P(x) theo lũy thừa giảm. P(x) = 55425 33 374 xxxxxx −−+−+− = 373 )34( 24555 +−−+−− xxxxxx = 373 24 +−− xxx